

The GEO AquaWatch Initiative

The Water Quality Community of Practice

Steven Greb University of Wisconsin-Madison GEO AquaWatch Director

CEOS WGISS-47 meeting 29 April-2 May, 2019 Silver Springs, Md.

Inland and Coastal Waters

- ~117 million lakes globally covering 3.7% of the Earth's land surface, coastal zones ~ 15 percent.
- Critical role in ecosystem services. Only 0.007 percent of the planet's water is available to fuel and feed its 6.8 billion people.
- Water scarcity facing 1.8 billion people by 2025
- Sentinels of change and threatened globally by climate change, eutrophication, toxicity.
- Many gaps in monitoring, particularly in developing countries

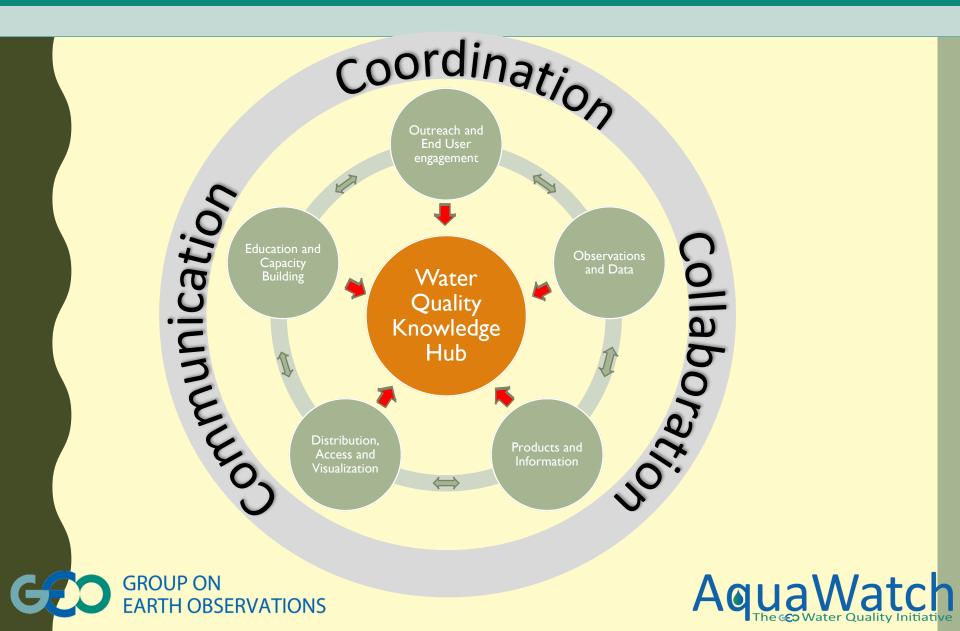
GEO AquaWatch Goal

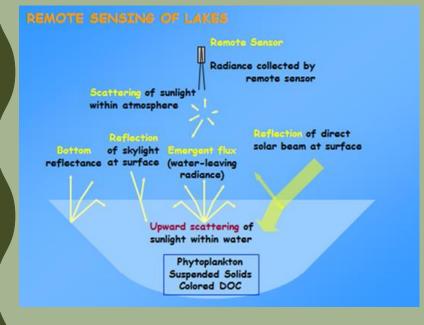
AquaWatch aims to develop and build the global capacity and utility of Earth Observation-derived water quality data, products and information to support water resources management and decision making.

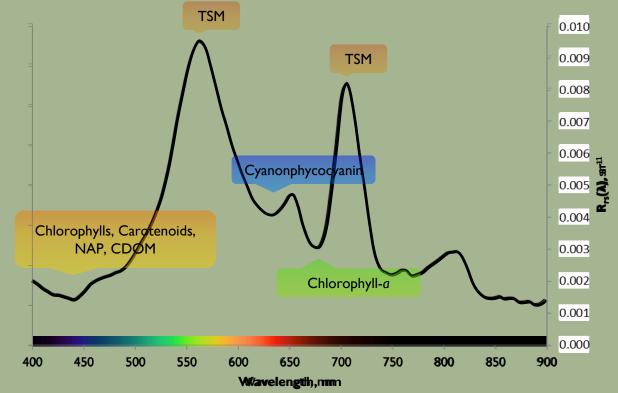
Chesapeake Bay Buoy - NOAA Image

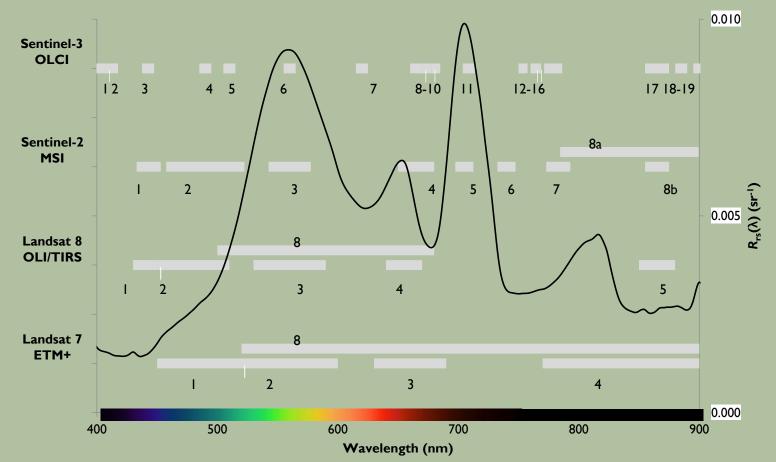
Lakes Mendota & Monona -University of Wisconsin SSEC image

AquaWatch Objectives




- Objective I: Facilitate effective partnerships between the producers, providers and users of water quality data, products and information.
- Objective 2: Improve analysis and integration of in situ and remote sensing water quality data.
- Objective 3: Develop and deliver fit-for-purpose water quality products and information services.
- Objective 4: Support technology transfer and access to water quality data products and information.
- Objective 5: Advocate for increased education and capacity for the use of water quality information for decision making.


GROUP ON EARTH OBSERVATIONS


AquaWatch Organizational Model

COMPARISON OF EARTH OBSERVATION SENSORS SUITABLE FOR WATER QUALITY ASSESSMENT WITH PUBLIC ACCESS DATA POLICY

Examples of current data and product sources

The TIGER Water Observation Information System (WOIS)

Disparate Data Sources

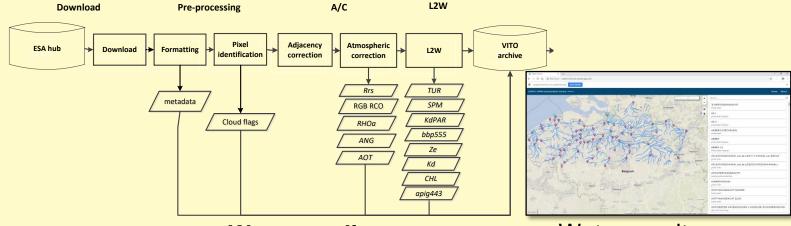
Different.....

- Sensors
- Regions /AOI
- Time scales
- Time segments
- Product processing

Some open source/some proprietary

Different degree of validation

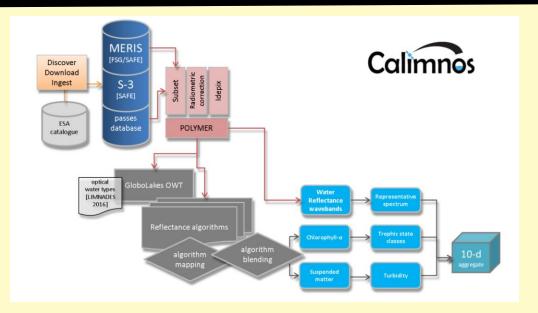
Bottom line...... Conflicting results from different products for same time/location



DILBERT BY SCOTT ADAMS WE WON A GOVERN-WHICH WE CAN'T PUT WE CAN MEASURE A THE MENT CONTRACT TO PART OF SENSORS EVERY-BUNCH OF PLACES WHOLE MEASURE OCEAN THE WHERE IN THE AND ESTIMATE THE OCEAN. TEMPERATURES. OCEAN? OCEAN, IT'S TOO REST. BIG. 50 ... YOU WANT I DON'T WOULDN'T IT BE EVERY NOW AND KNOW ME TO MEASURE 1% CHEAPER TO MEASURE TRY THEN YOU COME OF THE OCEAN'S HOW TO NOTHING AND JUST UP WITH A GREAT USING DO THAT. TEMPERATURE AND ESTIMATE THE MATH IDEA. WHOLE THING? ESTIMATE THE ť **OTHER 99%?** 100

月

Two examples of WQ processors


S2 WATER QUALITY PROCESSOR AND VIEWER

Water quality processor


+ Water monitor

DCS4COP

GLOBAL TURBIDITY PRODUCT HARMONIZATION

- AquaWatch data inventory \rightarrow RealEarth Portal
- Embedded in AquaWatch Website
- Bring together data of varying file formats, naming conventions, and columns, and transforming it into one cohesive data set
- Grab samples, buoy data, satellite products
- Visual display, time series, scroll across sources for data comparison
- Updated hourly

Looking towards the future.....

Continue Expansion of AquaWatch Knowledge Hub

- Understanding all user needs
- In situ data- more data needed in underrepresented areas and water

types, access to databases for calibration and validation, standardization of methods, instruments, metadata, integrate with satellite data

- Satellite imagery accessibility and discovery tools, cloud resources, algorithm library
- Increased interoperability and standardization of metadata, sensor specification, calibration reports, updates on processing software
- Inland and Coastal Analysis Ready Data System- Demonstration project (10-100m res., 5-10 day).

Additional Resources and leverage ongoing work with similar objectives UNEP World Water Quality Alliance, SDGs (6.3.2,14.1.1), GEO Initiatives, CoPs

Upstream.....Downstream

Looking towards the future.....

Continue Expansion of AquaWatch Knowledge Hub

Understanding all user needs

• In situ data- more data needed in underrepresented areas and water types, access to databases for calibration and validation, standardization of methods, instruments, metadata, integrate with satellite data

- Satellite imagery accessibility and discovery tools, cloud resources, algorithm library
- **Increased interoperability and standardization** of metadata, sensor specification, calibration reports, updates on processing software
- Inland and Coastal Analysis Ready Data System- Demonstration project (10-100m res., 5-10 day). Incorporate in respective WPs?

Additional Resources and leverage ongoing work with similar objectives UNEP World Water Quality Alliance, SDGs (6.3.2,14.1.1), GEO Initiatives, CoPs

Contact Information

AquaWatch Secretariat (Merrie-Beth Neely) at info@aquawatch.org

Or contact Steven Greb, AquaWatch Director at the University of Wisconsin at <u>srgreb@wisc.edu</u>

Visit our website : <u>www.geoaquawatch.org</u>

GEO GROUP ON EARTH OBSERVATIONS

