

CEOS/CGMS status on GHG monitoring

David Crisp (NASA JPL)

Ben Veihelmann (ESA ESTEC)

CEOS

2

An Architecture for Monitoring CO₂ and CH₄ from Space

- The CEOS Chair commissioned the Atmospheric Composition Virtual Constellation (AC-VC) to write a white paper that defines the key characteristics of a global architecture for monitoring atmospheric CO₂ and CH₄ concentrations and their natural and anthropogenic fluxes from instruments on space-based platforms to:
 - reduce uncertainty of national emission inventory reporting;
 - identify additional emission reduction opportunities and provide nations with timely and quantified guidance on progress towards their emission reduction strategies and pledges (Nationally Determined Contributions, NDCs); and,
 - to track changes in the natural carbon cycle caused by human activities (deforestation, degradation of ecosystems, fire) and climate change

The CEOS AC-VC GHG White Paper

- 166-page document
- 88 authors representing 47 organizations
- Executive Summary (2 pages)
 - Overview of objectives and approach
 - Intended for policy makers, CEOS/CGMS Agency leads
- Body of report (75 pages)
 - Science background and requirements
 - Current and near-term mission heritage
 - System implementation approach
 - Intended for program scientists and project managers
- Technical Appendices (42 pages)
 - "Textbook" summarizing state-of-the-art in observation capabilities and analysis methods to justify system-level requirements
 - Intended for scientists, engineers, and inventory community

A CONSTELLATION ARCHITECTURE FOR MONITORING CARBON DIOXIDE AND METHANE FROM SPACE

Prepared by the CEOS Atmospheric Composition Virtual Constellation Greenhouse Gas Team Version 1.2 – 11 November 2018 © 2018. All rights reserved

A System-Level Approach for Integrating Atmospheric Data

Actions Proposed in the AC-VC GHG White Paper

- Proposes a series Actions to the CEOS Plenary for disposition:
 - Link atmospheric GHG measurement and modelling communities with stakeholders in national inventory and policy communities to refine requirements;
 - Exploit capabilities of the CEOS and CGMS member agencies and the WMO Integrated Global Greenhouse Gas Information System (IG³IS) to:
 - integrate surface and airborne measurements of CO₂ and CH₄ with those from available and planned space-based sensors
 - develop a prototype, global atmospheric CO₂ and CH₄ flux product in time to support inventory builders in their development of GHG emission inventories for the 2023 Global Stocktake; and,
 - Use lessons learned from this prototype product to facilitate the implementation of a complete, operational, space-based constellation architecture that can:
 - o quantify atmospheric CO₂ and CH₄ concentrations and
 - serve as a complementary system for estimating NDCs in time to support the 2028
 Global Stocktake.

5

GHG Mission Timeline

Satellite, Instrument (Agencies)	$\rm CO_2 CH_4$	Swath	Sample	2002		2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
ENVISAT SCIAMACHY (ESA)	• •	960 km	30x60 km ²																			
GOSAT TANSO-FTS (JAXA-NIES-MOE)	• •	3 pts	10.5 km (d)																			
OCO-2 (NASA)	•	10.6 km	1.3x2.3 km ²																			
GHGSat (Claire)	•	12 km	0.0004 km ²																			
TanSAT (CAS-MOST-CMA)	•	20 km	1x2 km ²											•								
Sentinel 5P TROPOMI (ESA)	•	2600 km	7x7 km ²																			
Feng Yun 3D GAS (CMA)	• •	7 pts	10 km (d)																			
GaoFen-5 GMI	• •	5-9 pts	10 km (d)																			
GOSAT-2 TANSO-FTS (JAXA-MOE-NIES)	• •	5 pts	10.5 km (d)																			
OCO-3 (NASA)	•	11 km	4 km ²																			
Bluefield Technologies	• :	25x20 km	0.0004 km ²																			
MicroCarb (CNES)	•	13.5 km	40 km ²																			
MethaneSAT (EDF)	•	200 km	1 km ²																			
MetOp Sentinel-5 series (Copernicus)	•	2670 km	7x7 km ²																			
Feng Yun 3G (CMA)	• •	100 km	< 3 km ²																			
GEOCARB (NASA)	• •	2800 km	4x4 km ²																			
MERLIN (DLR-CNES)	•	100 m	0.14 km (w)																			
TanSat-2 Constellation	• • :	3x100 km	ן 2x2 km²																			
GOSAT-3 (JAXA-MOE-NIES)	• •	TBD	TBD																			
CO2 Sentinel (Copernicus)	• • :	3x250 km	2x2 km ²																			
					Scien	ce			Oper	ationa	al		Exten	ded Mi	ssion		Pla	nned		Co	nside	red

Endorsement of the AC-VC GHG White Paper

- The 2018 CEOS Plenary endorsed the AC-VC GHG White Paper
 - The Plenary confirmed CEOS interest in continuing collaboration with CGMS through a specific task in WGClimate on GHG monitoring, with dedicated resources and activities based on the mapping table of the actions identified in the Way Forward chapter of the report
 - The 3-point plan and activities are interpreted as recommendations to the CEOS Agencies
 - Plenary also endorsed the revision of the Terms of Reference of the WGClimate to accommodate these changes
 - AC-VC will continue to support GHG constellation development and synergistic GHG and atmospheric composition observations and modelling efforts
 - The CEOS SIT Chair encouraged the publication of the white paper to facilitate citations and efforts to build on its content
 - o WMO and Copernicus have agreed to jointly publish the white paper
 - o Publication date ~June 2019

7

State of the Art – CO₂ Anomalies

Goal: Identifying persistent XCO₂ anomalies in OCO-2 data

- Seasonal (left) and annual (right) average anomalies derived for 2015-2018.
 - Positive XCO₂ anomalies dominate the tropics, except equatorial Africa during JJA – are the tropics now a net source of CO₂?
 - High latitudes land dominated by negative XCO₂ anomalies (strongest during JJA)
 - Biospheric CO₂ uptake reverses the positive XCO₂ anomalies over northeast U.S. and east Asia during JJA

Hakkarainen, J., et al., Global XCO₂ anomalies as seen by Orbiting Carbon Observatory-2, Remote Sensing, in review, 2019.

-1.5

CEOS

2015-2016 Fluxes as seen by OCO-2 and the Global in situ Network

 The OCO-2 team has been running a global multimodel intercomparison to improve our ability to retrieve CO₂ sources and sinks on regional scales from in situ and OCO-2 observations

Results

- OCO-2 v7 data and in situ data indicate a global annual carbon sink of 3.7±0.5 PgC
 Lond contribution is 4.5±0.6 DgC
 - o Land contribution is 1.5±0.6 PgC
- Agreement is best in northern hemisphere extratropics, which are well sampled by the surface networks
- The largest difference occur over tropical Africa where there are few in situ measurements

Crowell et al. Atmos. Chem. Phys. Discuss 2019

Implementation Approach

Ben Veihelmann ESA ESTEC, AC-VC Co-Chair

Approach for Implementing GHG Actions

- The CEOS Chair proposed that WGClimate coordinate the joint effort between CEOS and CGMS to monitor GHGs
 - 1. Create a well-identified task within WGClimate addressing GHG monitoring (action WGClimate to decide how this would be implemented, by SIT-34).
 - 2. WGClimate to detail a roadmap based on activities from the AC-VC white paper and the outputs from the JRC GHG workshop (draft by SIT-34).
 - 3. WGClimate to establish appropriate links and cross-representation with AC-VC and the WGCV Atmospheric Composition subgroup.
 - 4. Relevant CEOS Agencies to dedicate appropriate resources.
 - 5. Task would also include the existing coordination layer for the CEOS Carbon Strategy.
 - 6. Update the WGClimate terms of reference (to also be confirmed by CGMS).
- AC-VC will work with CEOS and CGMS to implement a (new) CO₂/CH₄ focus within WGClimate, using their existing interfaces with GCOS, WMO, IPCC, and UNFCCC. Mark Dowell has agreed to lead this activity.

CESS	CEOS GHG Monitoring Ad	ctions
CEOS-32-05	WGClimate to report on internal implementation for the way forward on CEOS-CGMS coordination on GHG monitoring, including a roadmap based on the mapping of the GHG report recommendations and the JRC workshop conclusions.	SIT-34

- A document mapping the recommendations from AC-VC white paper to different CEOS/CGMS working groups (WGClimate, WGCV) and virtual constellations (AC-VC) was distributed for discussion
- The process and governance on the GHG monitoring within WGClimate will be discussed at the joint GCOS/WGClimate meeting in Marrakech during the week of March 18th 2019
- A proposal will be presented to CEOS SIT-34

Objective

The following slides

- propose AC-VC activities and interactions with WGClimate and WGCV (dedicated sub-groups) to support the implementation of GHG monitoring system (Rec#1,2,3)
- are meant to serve as input for discussion with WGClimate and WGCV
- are meant to serve as input to the roadmap for the development of the GHG constellation (Rec#3)

CESS

AC-VC GHG Activities and Interaction with WGClimate

WGClimate input for AC-VC (Rec#4, 7):

- Policy users' needs for GHG flux products from space
- ECVs and FCDRs needs for GHG L2 products from space
- Evaluation of satellite GHG products wrt related requirements

Support of AC-VC to WGClimate (Rec#7):

 Consolidation and refinement of satellite GHG product requirements, at various temporal and spatial scales (global, regional, national, local)

AC-VC input for WGClimate (Rec#1) Description of

- GHG Constellation and gaps
- GHG L1&2 data set, its consistency, and traceable data quality
- GHG flux data set and its consistency

CESS

AC-VC GHG Activities and Interaction with WGCV

Work with WGCV and GSICS to define cal/val needs (Rec#9)

- Identify available standards and techniques that can be used to crosscalibrate space based sensors prior to launch and on orbit (lunar, solar, vicarious)
 - Level-1: cross-calibration, common radiometric standards, vicarious calibration, ...
- Identify available standards and techniques that can be used to crossvalidate space based estimates (TCCON, AirCore ...) (Rec#11)
 - Level-2: cross-calibration, (fiducial) reference measurements, ...
- Discuss possible role of an active mission as flying standard in a GHG constellation (Rec#14)
- Surface flux products: validation approaches and reference estimates

CESS

AC-VC Coordination of Spaceborne GHG Sensor Development

- Implement a prototype system that incorporates products from a virtual constellation of sensors by 2021 (Rec#1)
- Define an operational system or dedicated constellations of sensors as long-term goal to as backbone for the Climate Monitoring Architecture (Rec#2)
- Define best practices and facilitate exchange and harmonization of approaches for instrument cross-calibration (Rec#10)
- Facilitate exchange of expertise and support in defining mission requirements (Rec#7)
- Coordinate discussion on auxiliary observations enhancing data quality (e.g., aerosol properties for light path correction) (Rec#15)
- Track implementation and operations of space-based GHG sensors (Rec#14)
- Identify and propose solutions for observational gaps (Rec#14)

AC-VC Coordination of GHG Product (L1&2) Development

- Document the performance of existing and near term L1 and L2 products and their ability to meet WGClimate needs for ECV and FCDRs
- Establish product accuracy, precision, resolution, and coverage requirements needed to meet the flux requirements on various scales
- Coordinate between CCI and ACOS to identify best practices and develop a prototype product
- Pursue consistency in product content, format, units, variable names, ...
- Pursue traceability of data quality
- Coordinate algorithm inter-comparisons to improve accuracy and speed of retrieval algorithms
- Facilitate exchange and harmonization of approaches to calibration and retrieval challenges
- Follow and provide recommendations on development of laboratory spectroscopy
- Define types of data (calibration, L1, L2) that must be exchanged to enable the integration of space based systems into a constellation

CEOS

AC-VC Coordination of GHG Flux Estimation Development

- Coordinate research on flux estimation (local to national scale; Level-4 products) (Rec#3)
- Coordinate between CAMS/C3S and NASA OCO-2/CMS/GMAO (Rec#12)
- Coordinate OSSE studies dedicated to flux estimation (Rec#8)
- Identify synergies between observation strategies for GHGs and air quality gases and aerosols
- Consolidate mission requirements for auxiliary observations (e.g. plume tracers like NO₂) (Rec#14)
- Aim at accuracy and precision sufficient for policy applications
- Pursue consistency in the product content (Rec#12)
- Pursue traceability of data quality (Rec#12, 13)
- Define types of data that must be exchanged to derive and validate fluxes from a constellation of space-based sensors to facilitate open data access (Rec#11)

Near-term AC-VC Output

Deliverables needed by 2021 to demonstrate that satellites can support the 2023 stocktake (WP-Rec#1)

- Description of the virtual constellation consisting of the GHG satellite sensors that fly in 2021
- Prototype CO₂ and CH₄ product (spanning 2009-2021) from this virtual constellation, with traceable consistency and data quality
- Description of the quality of flux estimates derived from the prototype product on various spatial and temporal scales

Deliverables needed by ~2021 to prepare a future purpose-built, operational constellation to support future stocktakes (WP-Rec#2)

- Observational requirements for a future GHG constellation
- R&D plan for GHG retrieval and flux estimation schemes
- Action plan for validation and cross-calibration of GHG products aiming at traceable consistency and data quality

Progress with Interfaces in the GHG Communities

- The White Paper proposes to link atmospheric GHG measurement and modelling communities with stakeholders in national inventory and policy communities to refine requirements
- Existing scientific conferences and workshops are being exploited to encourage interactions among these groups
 - 17-20 Sept 2018: IG³IS/TRANSCOM Ground and space-based measurement, flux modeling, and gridded inventory communities
 - 26-29 Nov 2018: ESA ATMOS Current/future Space based measurements
 - 10-14 Dec 2018: AGU Ground and space-based measurement, flux modeling, and gridded inventory communities
 - 4-8 March: GSICS Calibration and operational satellite communities
 - 12-14 March: CHE/VERIFY Ground and space-based measurement, flux modeling, gridded inventory and national (bottom-up) inventory communities
- Principal Challenge Interface with national inventory community

Future Meetings

- The 15th International Workshop on Greenhouse Gas Measurements from Space (IWGGMS-15) will be held at Hokkaido University, Sapporo campus on 3-5 June.
 - The meeting announcement, registration, and abstract submission page here: <u>https://www.nies.go.jp/soc/en/events/iwggms15/</u>
 - Registration closes on March 28 and Abstracts are due on April 1,
- The CEOS AC-VC meeting webpage is posted here: <u>http://ceos.org/meetings/ac-vc-15/</u>
 - Venue: Nakano Sunplaza in Tokyo, Japan on 10-12 June.
 The registration closes on May 3
 - We are still compiling the agenda, but the current plan is to focus on greenhouse gases on Monday, 10 June and air quality on 11-12.

Committee on Earth Observation Satellites

Backup

A Candidate Operational CO₂/CH₄ Constellation Architecture

The coverage, resolution, and precision requirements could be achieved with a constellation that incorporates

- A constellation of 3 (or more) satellites in LEO with
 - A broad (> 200) km swath with a mean footprint size < 4 km²
 - A single sounding random error near 0.5 ppm, and vanishing small regional scale bias (< 0.1 ppm) over > 80% of the sunlit hemisphere
 - One (or more) satellites carrying ancillary sensors to identify plumes (CO, NO₂) or to detect and mitigate biases (CO₂ and/or CH₄ Lidar)
- A constellation with 3 (or more) GEO satellites
 - Monitor diurnally varying processes (e.g. rush hours, diurnal variations in the biosphere)
 - Stationed over Europe/Africa, North/South America, and East Asia
- This constellation could be augmented with one or more HEO satellites
 to monitor carbon cycle changes in the high arctic

Other Needs: Calibration Advances

- Space based sensors for CO₂ and CH₄ must be
 - calibrated to unprecedented levels of accuracy to detect and quantify the small XCO₂ and XCH₄ changes associated with surface fluxes
 - cross-calibrated against internationally-accepted standards prior to launch and in orbit so that their measurements can be integrated into a harmonized data product that meets the accuracy, precision, resolution, and coverage requirements for CO₂ and CH₄
- Efforts by the ACOS and GHG-CCI teams have demonstrated the feasibility of this approach for SCIAMACHY, GOSAT, and OCO-2
 - Rigorous pre-launch and in-orbit calibration methods demonstrated
- Substantial improvements will be needed to meet the much more demanding requirements of anthropogenic emissions monitoring
 - Cross-calibrating a more diverse range of spacecraft sensors
 - Reducing calibration-related biases across multiple spacecraft

Other Needs: Validation Advances

XCO₂ and XCH₄ estimates across the constellation must be cross validated against internationally-recognized standards to yield a harmonized integrated product that meets the demanding precision, accuracy, resolution, and coverage requirements

- The Total Carbon Column Observing Network (TCCON) currently serves a critical transfer standard between the space based measurements and the *in situ* standard maintained by WMO GAW
- TCCON must be maintained and expanded meet the much greater demands of anthropogenic emissions monitoring on national scales
 - Biases must be reduced by a factor of 5-10 from 0.25% on regional scales to < 0.025 to 0.05% to improve inventories
- Additional validation methods must be developed to support validation emissions estimates on scales ranging from that of individual large power plants to that of a large urban area.

Other Needs: Science advances needed to support GHG monitoring

Two types of analysis tools are needed to estimate CO₂ and CH₄ fluxes (sources and sinks) from space-based observations:

- Remote sensing retrieval algorithms used to estimate the XCO₂ and XCH₄ from space based observations
- Flux inversion models are used to estimate the surface fluxes needed to maintain the observe XCO₂ and XCH₄ distributions in the presence of the prevailing wind field
- These methods are now being successfully used to study emission hot spots and regional-scale natural CO₂ sources and sinks
- A substantial amount of additional development is needed to support applications as demanding and diverse as
 - supporting urban- to national-scale GHG emission inventories
 - monitoring the natural carbon cycle response to climate change
- CEOS should work with its partners to meet these needs