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Description 

Product Family Specification Title: Aquatic Reflectance (CEOS-ARD AR) 

Applies to: Data collected with multispectral and hyperspectral imaging sensors operating in 

the VIS/NIR/SWIR wavelengths over water bodies (including oceans, seas, coastal zones, and 

inland waters). These typically operate with ground sample distance and resolution in the 

order of 1-4000 metres however the specification is not inherently limited to these 

resolutions. 

 

Definitions 

See: CEOS Terms and Definitions Wiki 

https://calvalportal.ceos.org/web/guest/t-d_wiki


 

Requirements 

General Metadata 

These are metadata records describing a distributed collection of pixels. The collection of pixels referred to must be contiguous in space and time. General metadata should 

allow the user to assess the overall suitability of the dataset and must meet the following requirements. 

Information should be available in the metadata as a single DOI landing page, which may include links to further detailed documents and references to citable peer-reviewed 

algorithms or technical documentation. 

# Item 
Threshold (Minimum) 

Requirements 
Goal (Desired) 
Requirements 

Threshold 
Self-Asses

sment 

Goal 
Self-Asses

sment 

Self-Assessment 
Explanation/ 
Justification 

Comments 

1.0 

CEOS-ARD AR 
PFS 

Compliance 
Version 

Version of the CEOS-ARD 
PFS with which the 
product is complying is 
identified. 

As threshold. 

    

1.1 Traceability 

Aquatic Reflectance 
(dimensionless) or the 
Remote Sensing 
Reflectance (sr-1) of the 
water bodies (AR=pi*Rrs) 
is given. 

Data must be traceable to SI 
reference standard. 
 
Note: Relationship to 3.2. 
Traceability requires an 
estimate of measurement 
uncertainty. 
 

    

1.2 
Metadata 
Machine 

Readability 

Metadata is provided in a 
structure that enables a 
computer algorithm to be 
used consistently and to 
automatically identify and 
extract each component 
part for further use. 

As threshold, but metadata 
should be provided in a 
community endorsed standard 
that facilitates 
machine-readability, such as ISO 
19115-2. 

    



 

1.3 
Data 

Collection 
Time 

The beginning and end of 
the data collection time is 
expressed in date/time 
and identified in the 
metadata consistent with 
ISO 8601. The time is 
expressed with the time 
offset from UTC 
unambiguously identified. 

As threshold, but information 
required to determine, within a 
stated uncertainty, when the 
individual observations were 
taken is available. 

    

1.4 
Geographical 

Area 

The surface location to 
which the data relates is 
identified, typically as a 
series of four corner 
points, expressed in an 
accepted coordinate 
reference system (e.g., 
WGS84). 

The geographic area covered by 
the observations is identified 
specifically, such as through a set 
of coordinates of a closely 
bounding polygon. The location 
to which each pixel refers is 
identified (or can be reliably 
determined) with the projection 
system (if any) and reference 
datum provided. 

    

1.5 
Coordinate 
Reference 

System 

The coordinate reference 
system that has been used 
is detailed. 

As threshold. 

    

1.6 
Map 

Projection 

The map projection that 
has been used and any 
relevant parameters 
required in relation to use 
of data in that map 
projection is detailed. 

As threshold. 

    



 

1.7 
Geometric 
Correction 
Methods 

Not required. The user is 
not explicitly advised of 
the geometric correction 
source and methods. 

Information on geometric 
correction source and methods 
are provided, including reference 
database and auxiliary data such 
as elevation model(s) and 
reference chip-sets. 

    

1.8 
Geometric 

Uncertainty 
of the Data 

Not required. The user is 
not provided with results 
of geometric uncertainty 
assessments pertaining to 
the dataset. 

Inclusion of metrics describing 
the assessed geodetic 
uncertainty of the data, 
expressed in units of the 
coordinate system of the data. 
Uncertainty is assessed by 
independent verification (as well 
as internal model-fit where 
applicable). Uncertainties are 
expressed quantitatively. 

    

1.9 Instrument 
The instrument used to 
collect the data is 
identified. 

As threshold, with references to 
the relevant “CEOS Missions, 
Instruments, and Measurements 
Database” record 
(database.eohandbook.com). 

    

1.10 
Spectral 
Bands 

Full spectral response 
function is provided. 

As threshold. 

    

1.11 
Sensor 

Calibration 

Binary description of 
calibrated / not calibrated 
only. 

Specification of sensor calibration 
parameters including history of 
onboard calibrations where 
available. 

    

1.12 
Measurand 
Radiometric 
Uncertainty 

Metrics describing the 
assessed radiometric 
uncertainty of the version 
of the data or product are 
provided. Method of 
determination of 

As threshold, but the absolute 
radiometric uncertainty of the 
data is provided. 

    

http://database.eohandbook.com


 

radiometric uncertainty is 
specified. 

1.12a 
Radiometric 

Encoding 
Range and bit depth are 
provided. 

As threshold. 

    

1.13 Algorithms 

All algorithms and the 
sequence in which they 
were applied in the 
generation process are 
identified. 
 
Algorithms must be 
published and validated, 
and a description of the 
validation process is 
included. 
 
Note: It is possible that 
corrections are applied 
through non-disclosed 
processes. CEOS-ARD does 
not require full and open 
data and methods. 

As threshold. 

    

1.14 Auxiliary Data 
Lists the sources of 
auxiliary data used in the 
generation process. 

As threshold, but information on 
auxiliary data should be available 
for free online download, 
contemporaneously with the 
product or through a link to the 
source. 

    



 

1.15 
Processing 

Chain 
Provenance 

Not required. 

Information on processing chain 
provenance should be available 
with a detailed description of the 
processing steps used to 
generate the product, including 
the versions of software used, 
giving full transparency to the 
users. 

    

1.16 Data Access 

Information on data 
access should be available 
as a single DOI landing 
page. 
 
Note: Manual and offline 
interaction action (e.g., 
login) may be required. 

As threshold. 

    

1.17 Valid Pixels 

Percentage of valid pixels 
in a specified area based 
on the applied flags from 
Section 2 (per-pixel 
metadata). 

As threshold. 

    

 

 



 

Per-Pixel Metadata 

The following minimum metadata specifications apply to each pixel. Whether the metadata is provided in a single record relevant to all pixels, or separately for each pixel, is 

at the discretion of the data provider. Per-pixel metadata should allow users to discriminate between (choose) observations on the basis of their individual suitability for 

application. 

Information should be available in the metadata as a single DOI landing page, which may include links to further detailed documents and references to citable peer-reviewed 

algorithms or technical documentation. 

# Item 
Threshold (Minimum) 

Requirements 
Goal (Desired) 
Requirements 

Threshold 
Self-Assess

ment 

Goal 
Self-Assess

ment 

Self-Assessment 
Explanation/ 
Justification 

Comments 

2.1 
Metadata 
Machine 

Readability 

Metadata is provided in a 
structure that enables a 
computer algorithm to be 
used to consistently and 
automatically identify and 
extract each component 
part for further use. 

As threshold. 

    

2.2 No Data 

Pixels that do not 
correspond to an 
observation (e.g., empty 
pixels / invalid observations 
/ below noise floor) are 
masked. 

As threshold. 

    

2.3 
Per-pixel 

Assessment 

Identifies pixels for which 
the per-pixel tests (below) 
have not all been 
successfully completed. 
 
Note: This may be the result of 
missing ancillary data for a 
subset of the pixels. 

Identifies which tests have 
and have not been 
successfully completed for 
each pixel. 

    



 

2.4 Saturation 

Specification of whether 
there is pixel radiometric 
saturation at Level 1 in one 
or more spectral bands. 

As threshold, with 
specification of which pixels 
are radiometrically saturated 
for each spectral band. 

    

2.5 Cloud 
Specification of whether a 
pixel is cloud or 
cloud-affected. 

As threshold, but clouds and 
cirrus clouds are 
differentiated. 

    

2.6 
Cloud 

Shadow 

Specification of whether a 
pixel is cloud shadow or 
cloud shadow-affected. 

As threshold. 

    

2.7 Land 
Specification of whether a 
pixel is less than 100% 
water covered due to land. 

As threshold. 

    

2.8 Ice 
Specification of whether a 
pixel is ice or ice-affected. 

As threshold. 

    

2.9 Sun Glint 

Specification of whether 
sun glint in a pixel is 
negligible, correctable 
(moderate), or 
uncorrectable (severe). 
 
Note: Sun glint is deemed 
uncorrectable if the upper limit 
of the dynamic range of a 
sensor’s spectral band is 
reached (i.e., radiometric 
saturation occurs). 

Specification of the amount of 
sun glint for each pixel and 
spectral band. 
 
Note: An additional product must 
be provided to specify the 
amount. 

Note 2: See correction 3.8. 

    



 

2.10 Sky Glint Not required. 

Specification of the amount of 
sky glint for each pixel and 
spectral band. 
 
Note 1: An additional product 
must be provided to specify the 
amount. 

Note 2: Sky glint is the 
at-water-surface reflected 
component of the diffuse 
downwelling irradiance. 

Note 3: See correction 3.9. 

    

2.11 
Solar and 
Viewing 

Geometry 

Specification of the solar 
and sensor viewing azimuth 
and zenith angles. 

As threshold. 

    

2.12 
Whitecap / 

Foam 
Not required. 

Specification of whether a 
pixel is affected by whitecaps 
or foam. If affected, detail the 
method applied. 
 
Note: See correction 3.10. 

    

2.13 

Aerosol 
Optical 
Depth 

Parameters 

Not required. 

Either per-pixel spectral AOD 
or per-pixel AOD (550 nm) 
and Angstrom exponent are 
provided. 
 
Note: This might be an input or 
an output parameter. 

    



 

2.14 
Adjacency 

Effects 
Not required. 

Depending on the adjacency 
effects correction method 
(embedded in the 
atmospheric correction or 
separate from the 
atmospheric correction) the 
metadata specifies the 
amount of per-pixel adjacency 
effect contamination. 
 
Note: An additional product must 
be provided to specify the 
amount. 

    

2.15 
Floating 

Vegetation / 
Surface Scum 

Specification of whether a 
pixel is affected by floating 
vegetation / surface scum. 

As threshold. 

    

2.16 Bathymetry Not required. 

Water surface to bottom 
substratum depth (i.e., water 
column depth) at the specific 
pixel location is specified.  
 
Note 1: Specify whether a 
recalculation to a mean sea level 
has taken place for oceanic 
waters. 

Note 2: Specify whether a 
recalculation to a mean water 
surface level has taken place for 
any non-oceanic waters. 

   
 

2.17 

Optically 
Deep or 
Optically 
Shallow 

Assessment 

Information regarding 
whether pixels are optically 
deep or shallow is provided 
if there is an assumption 
during the processing that a 
pixel is optically deep or 
optically shallow. 

A flag that indicates optically 
deep and shallow waters is 
provided. 

    



 

2.18 
Optical 

Water Type 

Specification of optical 
water type, when applicable 
(for optically deep waters). 

As threshold. 

    

2.19 Turbid Water 
Specification of whether a 
pixel is assessed as being 
turbid. 

As threshold. 

    

2.20 Elevation 

Specification of 
approximate elevation 
(above mean sea level) of 
the surface of the water 
body pixels is required for 
atmospheric correction 
(range = -430 m to approx. 
6500 m) 

As threshold. 

    

 

 



 

Products and Algorithms 

The following requirements must be met for all pixels in a collection. The requirements specify both the necessary outcomes (3.1-3.3) and the minimum steps necessary to be 

deemed to have achieved those outcomes (3.4 onwards). Radiometric corrections must lead to a valid measurement of aquatic reflectance.  

Metadata must contain a single DOI landing page with relevant information to support each requirement. For corrections, references to a citable peer-reviewed algorithm or 

technical documentation regarding the implementation of that algorithm and the sources of ancillary data used to make corrections / provision of parameterisation data are 

required. Examples of technical documentation include an Algorithm Theoretical Basis Document, product user guide, etc. 

# Item 
Threshold (Minimum) 

Requirements 
Goal (Desired) 
Requirements 

Threshold 
Self-Assess

ment 

Goal  
Self-Assess

ment 

Self-Assessment 
Explanation/ 
Justification 

Comments 

3.1 Measurement 

Pixel values that are 
expressed as a 
measurement of the 
Aquatic Reflectance 
(dimensionless) or the 
Remote Sensing 
Reflectance (sr-1) of the 
water bodies (AR=pi*Rrs). 

As threshold. 
 
Note: See also 1.1 and 3.3. 

    

3.2 
Measurement 

Uncertainty 

An estimate of the 
uncertainty of the values is 
provided in measurement 
units, following the BIPM 
Guide to the Expression of 
Uncertainty in 
Measurement (GUM). 

Note: In current practice, 
users determine fitness for 
purpose based on knowledge 
of the lineage of the data, 
rather than on a specific 
estimate of measurement 
uncertainty. 

As threshold. 

    



 

3.3 
Measurement 
Normalisation 

Not required. 

Measurements are 
normalised (to nadir) to 
remove the effect of 
bidirectional dependence of 
the upwelling radiance on 
observation and 
solar-illumination geometries. 

    

3.4 
Directional 

Atmospheric 
Scattering 

Specification of corrections 
applied for molecular 
(Rayleigh) scattering and 
for aerosol scattering and 
absorption. 

As threshold. 

    

3.5 
Water Vapour 

Corrections 

Corrections are applied for 
water vapour if spectral 
bands are affected. 

As threshold. 

    

3.6 
Ozone 

Corrections 

Data is corrected for ozone 
if spectral bands are 
affected. 
 
Note: Relevant metadata 
must be provided under 1.8 
and 1.9. 

As threshold. 

    

3.7 

Other 
Gaseous 

Absorption 
Corrections 

Not required. 

Data is corrected for other 
trace gaseous absorption for 
affected spectral bands. 
 
Note: Relevant metadata must 
be provided under 1.8 and 1.9. 

    



 

3.8 
Sun Glint 

Correction 
Not required. 

Sun glint is removed from the 
data if a pixel is of correctable 
(i.e., not radiometrically 
saturating) sun glint. 
 
Note 1: Sun glint removal 
methods can only partially 
remove sun glint from a pixel. 
Over or under correction may 
occur. 

Note 2: See flag 2.9. 

    
 
 

3.9 Sky Glint 
Correction 

Specification of whether or 
not sky glint is implicitly 
corrected for in the 
atmospheric correction 
procedure. 
 
Note: Sky glint is often 
modelled in forward models 
explicitly. It is also often 
measured with above surface 
spectroradiometers. However, 
sky glint is seldom corrected 
for separately in atmospheric 
and air-water interface 
correction methods. 

Sky glint is separately 
assessed and corrected for in 
the data processing. The 
metadata indicates the 
surface contributions from 
sky glint removed from the 
data. 
 
Note: See flag 2.10.  

    
 

3.10 
Whitecap / 

Foam 
Correction 

Specification of whether 
the water leaving 
reflectance or radiance is 
corrected for the 
contribution from surface 
whitecaps and foam. 

The data are corrected for the 
contribution from surface 
whitecaps and foam and 
reported on a per-pixel basis. 
 
Note: See flag 2.12. 

    

3.11 
Adjacency 

Effects 
Correction 

Not required. 
The data are corrected for 
adjacency effects. 

    



 

3.12 
Turbid Water 
Reflectance 
Correction 

Specification of whether 
the atmospheric correction 
accounted for a pixel being 
turbid or not. 

As threshold. 

    

 

 



 

Geometric Corrections Metadata (Co-Registration and Ortho-Rectification) 

Geometric corrections must place the measurement accurately on the surface of the Earth (that is, geolocate the measurement) allowing measurements taken through 
time to be compared. Ocean and coastal imagery do not have an independent terrestrial referencing system and therefore 4.2 applies to that imagery. 

# Item 
Threshold (Minimum) 

Requirements 
Goal (Desired) 
Requirements 

Threshold 
Self-Assess

ment 

Goal  
Self-Assessment 

Self-Assessment 
Explanation/ 
Justification 

Comments 

4.1 

Geometric 
Correction 

 
1) for land  

 
2) for inland 

waters where 
an 

independent 
terrestrial 

referencing 
system is 
available 

Sub-pixel uncertainty is achieved in 
relative geolocation, that is, the pixels 
from the same instrument and 
platform are consistently located, and 
are thus comparable, through time. 
 
Sub-pixel uncertainty is taken to be 
less than or equal to 0.5-pixel radial 
root mean square error (rRMSE) or 
equivalent in Circular Error 
Probability (CEP) relative to a defined 
reference image. 
 
A consistent gridding / sampling 
frame is used, including common cell 
size, origin, and nominal sample point 
location within the cell (centre, ll, ur). 
 
Relevant metadata must be provided 
under 1.7 and 1.8. 
 
Note 1: The threshold level will not 
necessarily enable interoperability 
between data from different sources as 
the geometric corrections for each of the 
sources may differ. 

Note 2: It is useful to note if the sensor is 
used at its native resolution before 
geometric correction or that some 
resampling must be done. 

Sub-pixel uncertainty 
is achieved relative 
to an identified 
absolute 
independent 
terrestrial 
referencing system 
(such as a national 
map grid). 
 
Relevant metadata 
must be provided 
under 1.7 and 1.8. 
 
Note: This requirement 
is intended to enable 
interoperability 
between imagery from 
different platforms that 
meet this level of 
correction and with 
non-image spatial data 
such as GIS layers and 
terrain models. 

    



 

4.2 

Co-Registration 
and 

Ortho-Rectifica
tion 

Co-registration is performed to 

ensure consistency of pixel location in 

each spectral band of one image at 

0.5 GSD. 

Ortho rectification specifies the 

pointing accuracy related to a 

geographic reference grid. The 

associated uncertainty is pixel size 

dependent and therefore cannot be 

given an a priori measure of 

uncertainty.  

The specifications of the 

co-registration and ortho-rectification 

processing (including 

parameterisation data) must be 

provided, including the estimated 

uncertainty of each processing, in 

publicly available documentation. 

Note: Including but not limited to 

ocean-to-sea to coastal, estuarine, 

deltaic, lagoonal waters and inland water 

bodies such as canals, rivers, lakes and 

reservoirs. 

 

Co-registration is 

performed to ensure 

consistency of pixel 

location in each 

spectral band of one 

image at 0.2 GSD. 

Ortho rectification 

specifies the pointing 

accuracy related to a 

geographic reference 

grid. The associated 

uncertainty is pixel 

size dependent and 

therefore cannot be 

given an a priori 

measure of 

uncertainty. 

The specifications of 

the co-registration 

and 

ortho-rectification 

processing (including 

parameterisation 

data) must be 

provided, including 

the estimated 

uncertainty of each 

processing, in 

publicly available 

documentation. 

 

    

 



 

Summary Self-Assessment Table 

 Threshold Goal 
1. General Metadata   
1.0 CEOS-ARD AR PFS Compliance Version   
1.1 Traceability   
1.2 Metadata Machine Readability   
1.3 Data Collection Time   
1.4 Geographical Area   
1.5 Coordinate Reference System   
1.6 Map Projection   
1.7 Geometric Correction Methods   
1.8 Geometric Uncertainty of the Data   
1.9 Instrument   
1.10 Spectral Bands   
1.11 Sensor Calibration   
1.12 Measurand Radiometric Uncertainty   
1.12a Radiometric Encoding   
1.13 Algorithms   
1.14 Auxiliary Data   
1.15 Processing Chain Provenance   
1.16 Data Access   
1.17 Valid Pixels   
2. Per-Pixel Metadata   
2.1 Metadata Machine Readability   
2.2 No Data   
2.3 Per-pixel Assessment   
2.4 Saturation   
2.5 Cloud   
2.6 Cloud Shadow   
2.7 Land   
2.8 Ice   
2.9 Sun Glint   
2.10 Sky Glint   
2.11 Solar and Viewing Geometry   
2.12 Whitecap / Foam   
2.13 Aerosol Optical Depth Parameters   
2.14 Adjacency Effects   
2.15 Floating Vegetation / Surface Scum   
2.16 Bathymetry   
2.17 Optically Deep or Optically Shallow 
Assessment 

  

2.18 Optical Water Type   
2.19 Turbid Water   
2.20 Elevation   
3. Products and Algorithms   
3.1 Measurement   
3.2 Measurement Uncertainty   



 

3.3 Measurement Normalisation   
3.4 Directional Atmospheric Scattering   
3.5 Water Vapour Corrections   
3.6 Ozone Corrections   
3.7 Other Gaseous Absorption Corrections   
3.8 Sun Glint Correction   
3.9 Sky Glint Correction   
3.10 Whitecap / Foam Correction   
3.11 Adjacency Effects Correction   
3.12 Turbid Water Reflectance Correction   
4. Geometric Corrections Metadata   
4.1 Geometric Correction   
4.2 Co-Registration and Ortho rectification    

 



 

Guidance 

This section aims to provide background and specific information on the processing steps that can be 

used to achieve CEOS Analysis Ready Data. This guidance material does not replace or override the 

specifications. 

Introduction to CEOS-ARD 

What are CEOS Analysis Ready Data (CEOS-ARD) products? 

CEOS-ARD products have been processed to a minimum set of requirements and organized into a 

form that allows immediate analysis with a minimum of additional user effort. These products would 

be resampled onto a common geometric grid (for a given product) and would provide baseline data 

for further interoperability both through time and with other datasets. 

CEOS-ARD products are intended to be flexible and accessible products suitable for a wide range of 

users for a wide variety of applications, including particularly time series analysis and multi-sensor 

application development. They are also intended to support rapid ingestion and exploitation via 

high-performance computing, cloud computing and other future data architectures. They may not be 

suitable for all purposes and are not intended as a ‘replacement’ for other types of satellite products. 

When can a product be called CEOS-ARD? 

The CEOS-ARD branding is applied to a particular product once: 

● That product has been self-assessed as meeting CEOS-ARD requirements by the agency 

responsible for production and distribution of the product, and 

● That self-assessment has been peer reviewed by the CEOS Working Group on Calibration 

and Validation (WGCV). 

 

Entities considering undertaking an assessment should contact  and ard-contact@lists.ceos.org

review the Guide to CEOS-ARD Self-Assessments. 

A product can continue to use CEOS-ARD branding as long as its generation and distribution remain 

consistent with the peer-reviewed assessment. 

What is the difference between Threshold and Goal? 

Products that meet all Threshold requirements should be immediately useful for scientific analysis or 

decision-making.  

Products that meet Goal requirements will reduce the overall product uncertainties and enhance 

broad-scale applications. For example, the products may enhance interoperability or provide 

increased accuracy through additional corrections that are not reasonable at the Threshold level.  

Goal requirements anticipate continuous improvement of methods and evolution of community 

expectations, which are both normal and inevitable in a developing field. Over time, Goal 

specifications may (and subject to due process) become accepted as Threshold requirements. 

mailto:ard-contact@lists.ceos.org
https://ceos.org/ard/files/User%20Guide/CEOS_ARD%20User%20Guide%20v1_4.pdf


 

Procedural Examples 

Processes to produce Threshold Aquatic Reflectance CEOS-ARD: 

The following correction processes would typically be applied to produce CEOS-ARD-AR Threshold: 

● No example processes are provided at this time. 

 

The following additional processes could be applied to produce CEOS-ARD-AR Goal: 

● No example processes are provided at this time. 

Specific Examples  

Processes to produce Threshold Aquatic Reflectance CEOS-ARD. 

● No example processes are provided at this time. 
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