

Analysis Ready Data

Product Family Specification:

> Synthetic Aperture Radar

Document Status

Product Family Specification, Synthetic Aperture Radar

Proposed revisions may be provided to: ard-contact@lists.ceos.org

Document History

Version	Date	Description of change	Affected CEOS-ARD product	Author
0.1	14-12-2022	Zero Draft based on the CARD4L NRB PFS v5.5, POL PFS 3.5, ORB PFS v1.0 and draft GSLC v0.1	-	Charbonneau Rosenqvist, Truckenbrodt, Small, Zhou, Albinet, Tadono, Chapman, Logan, Yuan, Repse, Dadamia, Lavalle, Miranda, Mayer, KelIndorfer, Valentino, Lewis, Pinheiro, Siqueira, Deschamps, Hajduch
0.2	13-02-2023	Reformat to CEOS-ARD PFS template. Change "CARD4L" to "CEOS-ARD" Change "Target" to "Goal"	-	Rosenqvist
0.3	29-07-2023	Refinement of GSLC specifications and alignment with NRB, POL and ORB parameters. Annex reorganisation and ORB and GSLC examples added	[GSLC]	Charbonneau, Zebker, Rosenqvist, Albinet, Small, Truckenbrodt

Version	Date	Description of change	Affected CEOS-ARD product	Author
0.3.1	26-09-2023	New items 1.7.15 (Reference orbit) and 3.7 (Flattened Phase) added as Goal	[NRB] [POL]	Charbonneau
0.4	26-09-2023	Item 4.3 (Geometric accuracy). Clarification added to indicate whether absolute location accuracy (ALE) estimates refer to source data, ARD product, or both.	[NRB] [POL] [ORB] [GSLC]	Small, Chapman, Charbonneau, Rosenqvist, Albinet, Truckenbrodt
0.4.1	11-10-2023	Add product code in summary table		Rosenqvist
1.0	11-10-2023	CEOS-ARD for SAR PFS – including Geocoded Single-Look Complex v1.0 – endorsed at LSI-VC-14		LSI-VC
1.0.1	17-05-2024	Item 1.6.7 (Source Data Image Attributes): Azimuth time sample interval [sec] added as alternative to Azimuth resolution [m].	[NRB] [POL] [ORB] [GSLC]	Charbonneau, Small, Chapman, Logan, Shiroma, Brancato
1.1	23-07-2024	CEOS-ARD for SAR PFS, update v1.1 endorsed at LSI-VC teleconference		LSI-VC
1.1.1	07-12-2023	Drafting InSAR product addition to PFS	[InSAR]	Charbonneau
1.1.2	10-07-2024	Completion of the InSAR addition	[InSAR]	Charbonneau, Rosenqvist, Small, De Zan, Brancato, Shiroma
1.2.0.1	02-04-2025	InSAR displacement addition and [InSAR] refinement	[InSAR]	Charbonneau, Garthwaite, Rosenqvist, De Zan, Chapman, Staniewicz, Shiroma, Truckenbrodt, Zhou
1.2	14-04-2025	CEOS-ARD for SAR PFS update 1.2 – including Interferometric Radar [InSAR] – endorsed at LSI-VC-17	[InSAR]	LSI-VC

Contributing Authors

Francois Charbonneau, Natural Resources Canada, Canada Ake Rosenqvist, soloEO / Japan Aerospace Exploration Agency, Japan John Truckenbrodt, German Aerospace Centre (DLR), Germany Clément Albinet, European Space Agency (ESA), Italy David Small, University of Zurich, Switzerland Bruce Chapman, Jet Propulsion Laboratory, USA Howard Zebker, Stanford University, USA Zheng-Shu Zhou, CSIRO, Australia David Bekaert, Jet Propulsion Laboratory, USA Virginia Brancato, Jet Propulsion Laboratory, USA Danilo Dadamia, CONAE, Argentina Benjamin Deschamps, Environment and Climate Change, Canada Matt Garthwaite, CSIRO, Australia Guillaume Hajduch, Collecte Localisation Satellites, France P.V. Jayasri, ISRO, India Josef Kellndorfer, Earth Big Data, USA Marco Lavalle, Jet Propulsion Laboratory, USA Thomas Logan, Alaska Satellite Facility, USA Franz Meyer, Alaska Satellite Facility, USA Nuno Miranda, European Space Agency (ESA), Italy Muriel Pinheiro, European Space Agency (ESA), Italy Marko Repse, Sinergise, Slovenia HariPriya Sakethapuram, ISRO, India Gustavo H. X. Shiroma, Jet Propulsion Laboratory, USA Andreia Sigueira, Geoscience Australia, Australia Scott Staniewicz, Jet Propulsion Laboratory, USA Takeo Tadono, Japan Aerospace Exploration Agency, Japan Medhavy Thankappan, Geoscience Australia, Australia Antonio Valentino, Starion for European Space Agency (ESA), Italy Anna Wendleder, German Aerospace Centre (DLR), Germany Fang Yuan, Digital Earth Africa, Australia Francesco De Zan, Delta-Phi Remote Sensing GmbH, Germany

CEOS Analysis Ready Data Definition

"CEOS Analysis Ready Data (CEOS-ARD) are satellite data that have been processed to a minimum set of requirements and organised into a form that allows immediate analysis with a minimum of additional user effort and interoperability both through time and with other datasets."

Description

Product Family Specification Title: Synthetic Aperture Radar (CEOS-ARD SAR)

Applies to: Data collected by Synthetic Aperture Radar sensors

Background to CEOS-ARD for Synthetic Aperture Radar:

The CEOS Analysis Ready Data (CEOS-ARD) Product Family Specification (PFS) for Synthetic Aperture Radar (SAR) data is specifically aimed at users interested in exploring the potential of SAR but who may lack the expertise or facilities for SAR processing.

This CEOS-ARD for Synthetic Aperture Radar PFS incorporates, into a single generic document, the following five CEOS-ARD SAR specifications endorsed by CEOS Land Surface Imaging-Virtual Constellation (CEOS LSI-VC):

- Normalised Radar Backscatter [version 5.5]
- Polarimetric Radar [version 3.5]
- Ocean Radar Backscatter [version 1.0]
- Geocoded Single-Look Complex [version 1.1]
- Interferometric SAR [version 1.2]

The **CEOS-ARD Normalised Radar Backscatter [NRB]** specification describes products that have been subject to Radiometric Terrain Correction (RTC) and are provided in the Gamma-Nought (γ_T^0) backscatter convention (Small, 2011), which mitigates the variations from diverse observation geometries and is recommended for most land applications. An additional metadata layer can be optionally provided for conversion of γ_T^0 to Sigma-Nought (σ_T^0) backscatter layer for compatibility with legacy software or numerical models. As the **[NRB]** product contains backscatter values only, it cannot be directly used for SAR polarimetry or interferometric applications that require relative polarization phase or local phase estimates respectively. However, as an option, a "flattened" phase data layer can be provided with an **[NRB]** product for enabling InSAR analysis. The flattened phase is the interferometric phase, with respect to a reference orbit and to a digital elevation model (DEM), for which the topographic phase contribution is removed.

The **CEOS-ARD Polarimetric Radar [POL]** product format is an extension of the CEOS-ARD Normalised Radar Backscatter format **[NRB]**. This extension is required in order to better support Level-1 SLC polarimetric data, including full-polarimetric modes (e.g., RADARSAT-2, ALOS-2/4, SAOCOM-1 and future missions), and hybrid or linear dual-polarimetric modes (i.e., Compact Polarimetric mode available on RCM, SAOCOM and the upcoming NISAR mission). The **[POL]** product can be defined in two processing levels:

- The normalised covariance matrix **[CovMat]** representation (C2 or C3) which preserves the inter-channel polarimetric phase(s) and maximizes the available information for users. Interoperability within current CEOS-ARD SAR backscatter definition is preserved, since diagonal elements of the covariance matrix are backscatter intensities. Scattering information enhancement can be achieved by applying incoherent polarimetric decomposition techniques (e.g., Freeman-Durden, van Zyl, Cloude-Pottier, Yamaguchi-based) directly on the C2 or C3 matrix.
- Polarimetric Radar Decomposition **[PRD]** refers to ARD products where polarimetric information is broken down into simplified parameters to facilitate user interpretation of the data. They are derived from coherent or incoherent polarimetric decomposition techniques.

Notice and Limitations [POL]

For Polarimetric Radar **[POL]** products, optimal incoherent Polarimetric Radar Decomposition **[PRD]** should be performed under the slant range projection (Gens *et al.*, 2013, Toutin *et al.*, 2013). In order to minimise bias in the CEOS-ARD SAR Level-2a covariance matrix product, speckle filtering and averaging of the covariance matrix should be applied in the slant range projection, and nearest neighbour method is recommended for resampling the data to the geocoded format. Specifically, nearest-neighbour resampling ensures that the averaged covariance matrix elements in slant range and in geocoded ground projection are exactly the same. Consequently, the polarimetrically derived parameters are exactly equal in both approaches (assuming that no further averaging is performed on the ARD product for decomposing the polarimetric information). Bilinear and average resampling methods are also suitable for resampling the covariance matrix, but some differences with polarimetric parameters generated in slant range and then resampled (bilinear) might be observed on sloped terrains. Even if Sinc interpolation may be more robust for spatial resampling, it does not preserve covariance matrix integrity, and should consequently not be used for this ARD product.

It is recommended that ARD providers who desire to distribute **[PRD]** products decompose the polarimetric information starting from Level-1 SLC data and then geocode the derived parameters rather than use the **[CovMat]** ARD product. Resampling can be performed using any of the supported methods (nearest-neighbour, bilinear, average, bi-cubic spline or Lanczos are recommended), which need to be indicated in the product metadata. Note that coherent decomposition techniques cannot be performed on **[CovMat]** ARD products. Covariance matrix products contain a variable number of layers (or bands) with different data types depending on the polarimetric mode (full or dual) and decomposition technique. The **[CovMat]** products for the C2 matrix have 3 layers (2 real-valued diagonal elements and 1 complex-valued off-diagonal element). **[CovMat]** products for the C3 matrix have 6 layers (3 real-valued diagonal elements and 3 complex-valued off-diagonal elements). Layers that can be obtained via a complex conjugation of other layers are not provided within the product. Polarimetric Decomposition products contain typically 2 to 4 (or more) real-valued layers depending on the particular decomposition algorithm. Within the **[CovMat]** product files, ARD layers are organized in order to reduce access delays and maximize efficiency in extracting the desired information. In **[CovMat]** products, geographically contiguous samples for each layer may be stored next to each other and organized "layer by layer". Alternatively, samples belonging to the same covariance matrix might be stored next to each other and organized "layer by layer", i.e., with bands corresponding to the output of the polarimetric decomposition stored next to each other).

The **CEOS-ARD Ocean Radar Backscatter [ORB]** product specification describes products that have been projected on a geoid and are provided in the Sigma-Nought (σ^0) backscatter convention, which is recommended for most ocean applications. Backscatter may be calibrated to the ellipsoid (σ_E^0) or radiometrically terrain corrected (σ_T^0) prior to geometric terrain correction. As the basic **[ORB]** product contains backscatter values only, it *cannot* be directly used for SAR polarimetry or interferometric applications that require local phase estimates. Nonetheless, an advanced **[ORB]** product could include the upper diagonal of the polarimetric σ^0 covariance matrix for enabling advanced polarimetric analysis (similar to the **[POL]** product).

The **CEOS-ARD Geocoded Single-Look Complex (GSLC)** product is relevant to interferometric studies. The **[GSLC]** product is derived from the range-Doppler (i.e. slant range) Single-Look Complex (SLC) product using a DEM and the orbital state vectors and output in the map projected system. The phase of a geocoded SLC is "flattened" with respect to a reference orbit and to a DEM, to eliminate topographic phase contributions [Zebker *et al.*, 2017 and Zheng and Zebker, 2017]. The sample spacing of the **[GSLC]** product in the map coordinate directions is comparable to the full resolution original SLC product. The **[GSLC]** product can be directly overlaid on a map or combined with other similar **[GSLC]** products to derive interferograms and create change maps, for example. Since the **[GSLC]** phase is flattened, the phase difference between two **[GSLC]** products acquired on a same relative orbit produces an interferogram referring only to surface displacement and noise (i.e., no topographic fringes). The **[GSLC]** product may optionally be radiometrically terrain corrected such that the squared amplitude yields γ_T^0 .

The **CEOS-ARD Interferometric SAR [InSAR]** product format specification describes products resulting from InSAR processing steps. Two levels of product categories are supported: 1) The first level includes InSAR coherence and wrapped interferogram images derived from a pair (or several pairs) of SLC or GSLC source data listed in the product metadata file. The

product metadata file reports the processing information (parameters and methods) used to produce them. The PFS also supports unwrapped interferograms, but their inclusion is not a threshold requirement for this product level. An InSAR pair identification label allows support of InSAR time series products derived from several repeated pass SAR source combinations. A Boolean flag is used to indicate whether the interferometric phases due to Earth curvature and to the surface topography are removed from interferograms. This [InSAR] product level can then serve as input in temporal coherence analysis techniques or as input in production of time series displacement products by distributed target approaches like Small BAseline Subset (SBAS) technique [Lanari et al. 2004]. 2) InSAR displacement belongs to the second level of **[InSAR]** products. Displacement products can be expressed as InSAR displacement from a pair of SAR acquisitions and/or from a time series of SAR acquisitions, as a displacement and/or as displacement rate products over a time period. Since several different InSAR displacement approaches exist in the literature for which, each have their own criteria and parameters, it is not possible to prescribe specific metadata details. Nonetheless, it is required that main processing steps (with reference to methodologies), with their chosen parameters (criteria like statistical thresholds and estimation window sizes) are well defined in the displacement product metadata, in order to preserve traceability for the end users. For [InSAR] displacement products generated from first level CEOS-ARD [InSAR], listed "source" products in the metadata can refer to those first level CEOS-ARD [InSAR] described above. In accordance with other CEOS-ARD products, per-pixel metadata and data are terrain geocoded products.

As can be seen from the above PFS descriptions, only a few minor details in terms of generated parameters and/or the addition of supplemental data distinguish these CEOS-ARD products. In part, they are to a large extent all backward-compatible. For example, **[POL]** products implicitly include **[NRB]** products, while a coastal **[NRB]** or **[POL]** product can simply be made compatible with other **[ORB]** products by applying gamma-to-sigma conversion. Just as **[GSLC]** can be converted to **[NRB]**, the inverse conversion can be made true by including the optional topographically flattened phase. In this way a **[NRB]** or **[POL]** product can be used like a **[GSLC]** for InSAR applications. Consequently, it becomes obvious that they all can follow a common approach, in terms of content and structure, in order to optimize their interoperability.

For this combined **CEOS-ARD for Synthetic Aperture Radar** PFS, as for the individual **[NRB]**, **[POL]**, **[ORB]**, **[GSLC]**, and **[INSAR]** PFSs, metadata requirements are defined under two categories: Threshold and Goal. **Threshold requirements** refer to metadata parameters or data files which are mandatorily required in a product in order to be CEOS-ARD compliant. **Goal requirements** (formerly called Target) are complementary metadata parameters or data files that are desirable or more accurate but more constraining/challenging to achieve depending on the SAR missions and the data provider constraints. Since this document integrates four CEOS-ARD PFSs, it is worth noting that some requirements have been "relaxed" for a few Threshold parameters, depending on the applications/environment of the CEOS-ARD product. Exceptions are identified in the tables by specifying the usage.

Definitions and Abbreviations

Ancillary Data	Data other than instrument measurements, originating in the instrument itself or from the satellite, required to perform processing of the data. They include orbit data, attitude data, time information, spacecraft engineering data, calibration data, data quality information, and data from other instruments.
Auxiliary Data	The data required for instrument processing, which does not originate in the instrument itself or from the satellite. Some auxiliary data will be generated in the ground segment, whilst other data will be provided from external sources.
CEOS-ARD	Committee on Earth Observation Satellites - Analysis Ready Data
CovMat	Normalised Radar Covariance Matrix
DOI	Digital Object Identifier
GSLC	Geocoded Single-Look Complex
InSAR	Interferometric Synthetic Aperture Radar
Metadata	Structured information that describes other information or information services. With well-defined metadata, users should be able to get basic information about data without a need to have knowledge about its entire content.
NRB	Normalised Radar Backscatter
Pixel Spacing	Processed sample distance
POL	Polarimetric Radar
PRD	Polarimetric Radar Decomposition
RTC	Radiometrically Terrain Corrected
Spatial Resolution	The smallest size objects that can be distinguished by the sensor at the ground surface.
Spatial Sampling Distance	Spatial sampling distance is the great circle distance on the reference surface distance between adjacent spatial samples on the Earth's surface.

Requirements

General Metadata

These are metadata records describing a distributed collection of pixels. The collection of pixels referred to must be contiguous in space and time. General metadata should allow the user to assess the <u>overall</u> suitability of the dataset and must meet the requirements listed below. The column "CEOS-ARD product" indicates to which CEOS-ARD SAR product (NRB, POL, ORB, GSLC) the parameter refers.

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
1.1	Traceability	[NRB] [POL] [ORB] [GSLC] [InSAR]	Solution Solution Goal (Desired) Requirements Data must be traceable to SI reference standard. Note 1: Relationship to 3.5. Traceability requires an estimate of measurement uncertainty. Note 2: Information on traceability should be available in the metadata as a single DOI landing page.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.2	Metadata Machine Readability	[NRB] [POL] [ORB] [GSLC] [InSAR]	Threshold (Minimum) Requirements Metadata is provided in a structure that enables a computer algorithm to be used to consistently and automatically identify and extract each component/variable for further use. Goal (Desired) Requirements As threshold, but metadata is formatted in accordance with CEOS-ARD SAR Metadata Specifications, v.1.0, or in a community endorsed standard that facilitates machine-readability, such as ISO 19115-2, Climate and Forecast (CF) convention and the Attribute Convention for Data Discovery (ACDD), etc.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
1.3	Product Type	[NRB] [POL] [ORB] [GSLC] [InSAR]	Threshold (Minimum) Requirements CEOS-ARD product type name – or names in case of compliance with more than one product type – and, if required by the data provider, copyright.Goal (Desired) Requirements As threshold.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.4	Document Identifier	[NRB] [POL] [ORB] [GSLC] [InSAR]	Threshold (Minimum) Requirements Reference to CEOS-ARD for Synthetic Aperture Radar PFS document as URL. Goal (Desired) Requirements As threshold.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.5	Data Collection Time	[NRB] [POL] [ORB] [GSLC] [INSAR]	Threshold (Minimum) RequirementsNumber of source data acquisitions of the data collection is identified. The start and stop UTCtime of data collection is identified in the metadata, expressed in date/time. In case ofcomposite products, the dates/times of the first and last data takes and the per-pixelmetadata 2.8 (Acquisition ID Image) is provided with the product.Goal (Desired) RequirementsAs threshold.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.6	Source Data Attributes		Subsection describing (detailing) <u>each SAR acquisition</u> used to generate the ARD product. Note 1: Source data attribute information is described for each acquisition and sequentially identified, e.g. as acqID= 1, 2, 3, Note 2: Source data attribute information can refer to [NRB], [POL], [ORB], [InSAR] or [GSLC] products for higher level ARD derived from those, under the condition of their availability (item 1.6.1).	

		[NRB]	Threshold (Minimum) Requirements The metadata identifies the location from where the source data can be retrieved, expressed	Achieved level: Threshold / Goal
1.6.1	Source Data	[POL] [OBB]	as a URL or DOI.	Explanation / Justification:
	Access	[GSLC]	Goal (Desired) Requirements	Other feedback:
		[InSAR]	reliably retrieved by a computer algorithm without any manual intervention being required.	
			Threshold (Minimum) Requirements	Achieved level: Threshold / Goal
		[NRB] [POL]	- Satellite name	Explanation / Justification:
1.6.2	Instrument	ent [ORB] [GSLC] [InSAR]	- Instrument name	Other feedback:
			Goal (Desired) Requirements As threshold, but including a reference to the relevant CEOS Missions, Instruments and	
			Measurements Database record.	
		[NRB]	Threshold (Minimum) Requirements	<u>Achieved level:</u> Threshold / Goal
1.6.3	Source Data	[POL] [ORB] [GSLC]	and time, at least to the second.	Explanation / Justification:
	Time		Goal (Desired) Requirements	Other feedback:
		[IIIJAK]	As threshold.	
			Threshold (Minimum) Requirements Acquisition parameters related to the SAR antenna:	Achieved level: Threshold / Goal
	Source Data	[NRB] [POL]	- Radar band	Explanation / Justification:
1.6.4	Acquisition Parameters	[ORB]	 Observation mode (i.e., Beam mode name) 	Other feedback:
	i di di le cers	[InSAR]	 Polarization(s) (listed as in original product) Antenna pointing [Right/Left] 	
			- Beam ID (i.e., Beam mode Mnemonic)	

			Goal (Desired) Requirements As threshold.	
1.6.5	Source Data Orbit Information	[NRB] [POL] [ORB] [GSLC] [InSAR]	Threshold (Minimum) Requirements Information related to the platform orbit used for data processing: - Pass direction [asc/desc] * - Orbit data source [e.g., predicted/ definite/ precise/ downlinked, etc.] - Relative orbit number (for [GSLC] and [InSAR] only) * For source data crossing the North or South Pole, it is recommended to produce two distinct CEOS-ARD products and to use the appropriate "Pass direction" in each. Goal (Desired) Requirements As threshold, including also: - Platform heading angle expressed in degrees [0 360] from North - Orbit data file containing state vectors (minimum of 5 state vectors, from 10% of scene length <i>before</i> start time to 10% of scene length <i>after</i> stop time) - Platform (mean) altitude. - Absolute orbit number - For [GSLC], perpendicular baseline to virtual orbit or reference orbit used for phase correction	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>

1.6.6	Source Data Processing Parameters	[NRB] [POL] [ORB] [GSLC] [INSAR]	Threshold (Minimum) RequirementsProcessing parameters details of the source data:-Processing facility-Processing dateSoftware version-Product levelProduct ID (file name)Azimuth number of looks-Range number of looks (separate values for each beam, as necessary)Note: Azimuth and Range number of looks are not required when sources are CEOS-ARD or any other geocoded productsGoal (Desired) Requirements As threshold, plus additional relevant processing parameters, e.g., range- and azimuth look bandwidth and LUT applied.	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:
1.6.7	Source Data Image Attributes	[NRB] [POL] [ORB] [GSLC] [InSAR]	 Threshold (Minimum) Requirements Image attributes related to the source data: Source Data geometry (slant range/ground range/geocoded) Azimuth pixel spacing [m] (alternatively, Azimuth pixel spacing can be provided in second [s], equivalent to the azimuth time sample interval) Range pixel spacing Azimuth resolution Range resolution Near range incident angle Far range incident angle Note: For geocoded sources ([GSLC] and [InSAR]), Azimuth and Range pixel spacing are replaced by line (row) and pixel (column) spacing information. Spatial resolution information is not required for geocoded sources. 	<u>Achieved level:</u> Threshold / Goal Explanation / Justification: Other feedback:

			Goal (Desired) Requirements Geometry of the image footprint expressed in WGS84 in a standardised format (e.g., WKT).	
	Sensor	[NRB] [POL]	<u>Threshold (Minimum) Requirements</u> Not required.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u>
1.6.8	Calibration	[ORB] [GSLC] [InSAR]	Goal (Desired) Requirements Sensor calibration parameters are identified in the metadata or can be accessed using details included in the metadata. Ideally this would support machine to machine access.	Other feedback:
1.6.9	Performance Indicators	[NRB] [POL] [ORB] [GSLC] [InSAR]	Threshold (Minimum) Requirements Provide performance indicators on data intensity noise level (NE σ^0 and/or NE β^0 and/orNE γ^0 (noise equivalent Sigma- and/or Beta- and/or Gamma-Nought)). Provided for each polarization channel when available.Parameter may be expressed as the mean and/or minimum and maximum noise equivalent values of the source data.Values do not need to be estimated individually for each product, but may be estimated once for each acquisition mode, and annotated on all products. Goal (Desired) Requirements Provide additional relevant performance indicators (e.g., ENL, PSLR, ISLR, and performance reference DOI or URL).	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.6.10	Source Data Polarimetric Calibration Matrices	a [NRB] [POL]	<u>Threshold (Minimum) Requirements</u> Not required.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u>
		Polarimetric Calibration Matrices	[ORB] [GSLC] [InSAR]	Goal (Desired) Requirements The complex-valued polarimetric distortion matrices with the channel imbalance and the cross-talk applied for the polarimetric calibration.

1.6.11	Mean Faraday Rotation Angle	[NRB] [POL] [ORB] [GSLC] [InSAR]	<u>Threshold (Minimum) Requirements</u> Not required. <u>Goal (Desired) Requirements</u> The mean Faraday rotation angle estimated from the polarimetric data and/or from models with reference to the method or paper used to derive the estimate.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.6.12	lonosphere Indicator	[NRB] [POL] [ORB] [GSLC] [InSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Flag indicating whether the backscatter imagery is "significantly impacted" by the ionosphere (0 – false, 1 – true). Significant impact would imply that the ionospheric impact on the backscatter exceeds the radiometric calibration requirement or goal for the imagery.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.7	CEOS-ARD Product Attributes		Subsection containing information related to the CEOS-ARD product generation procedure and geographic parameters.	
1.7.1	Product Data Access	[NRB] [POL] [ORB] [GSLC] [InSAR]	Threshold (Minimum) RequirementsProcessing parameters details of the CEOS-ARD product:-Processing facility-Processing date-Software version-Location from where CEOS-ARD product can be retrieved, expressed as a URL or DOI.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>

			Goal (Desired) Requirements The metadata identifies an online location from where the data can be consistently and reliably retrieved by a computer algorithm without any manual intervention being required.	
1.7.2	Auxiliary Data	[NRB] [POL] [ORB] [GSLC] [InSAR]	Goal (Desired) Requirements The metadata identifies the sources of auxiliary data used in the generation process, ideally expressed as DOIs.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
			note: Auxiliary data includes DEMs, etc., and any additional data sources used in the generation of the product.	
1.7.3	Product Sample Spacing	[NRB] [POL] [ORB] [GSLC] [InSAR]	Threshold (Minimum) Requirements CEOS-ARD product processing parameters details: - Pixel (column) spacing - Line (row) spacing Goal (Desired) Requirements As threshold.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.7.4	Product Equivalent Number of Looks	[NRB] [POL] [ORB] [InSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Equivalent Number of Looks (ENL)	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>

1.7.5	Product Resolution	[NRB] [POL] [ORB] [GSLC] [INSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Average spatial resolution of the CEOS-ARD product along: - Columns - Rows	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.7.6	Product Filtering	[NRB] [POL] [ORB]	Threshold (Minimum) Requirements Flag if speckle filter has been applied [True/False]. Metadata should include: - Reference to algorithm as DOI or URL - Input filtering parameters o Type o Window size in pixel units o Any other parameters defining the speckle filter used Mandatory for [POL]: Advanced polarimetric filter preserving covariance matrix properties should be applied. Goal (Desired) Requirements As threshold.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.7.7	Product Bounding Box	[NRB] [POL] [ORB] [GSLC] [InSAR]	Threshold (Minimum) RequirementsTwo opposite corners of the product file (bounding box, including any zero-fill values) are identified, expressed in the coordinate reference system defined in 1.7.11.Four corners of the product file are recommended for scenes crossing the Antemeridian, or the North or the South Pole.Goal (Desired) Requirements As threshold.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>

1.7.8	Product Geographical	[NRB] [POL] [ORB]	Threshold (Minimum) Requirements The geometry of the SAR image footprint expressed in longitude/latitude based on WGS84 (EPSG 4326), in a standardised format (e.g., WKT Polygon).	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u>
	Extent	[GSLC] [InSAR]	Goal (Desired) Requirements As threshold.	Other feedback:
1.7.9	Product Image Size	[NRB] [POL] [ORB] [GSLC] [InSAR]	Threshold (Minimum) Requirements Image attributes of the CEOS-ARD product*: - Number of lines - Number of pixels per line - File header size (if applicable) - Number of no-data border pixels (if appl.) Goal (Desired) Requirements As threshold.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.7.10	Product Pixel Coordinate	[NRB] [POL] [ORB]	Threshold (Minimum) Requirements Coordinate referring to the Centre, or the Upper Left Corner or the Lower Left Corner of a pixel. Values are [pixel centre, pixel ULC or pixel LLC].	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u>
	Convention	[USEC] [InSAR]	Goal (Desired) Requirements As threshold.	Other reeuback
1.7.11	Product Coordinate Reference System	[NRB] [POL] [ORB] [GSLC] [INSAR]	Threshold (Minimum) Requirements The metadata lists the map projection (or geographical coordinates, if applicable) that was used and any relevant parameters required to geolocate data in that map projection, expressed in a standardised format (e.g., WKT). Indicate EPSG code, if defined for the CRS.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
			As threshold.	

1.7.12	Look Direction Polynomials	[ORB]	Threshold (Minimum) RequirementsIn case the per-pixel item 2.11 (Look Direction Image) is not provided, then a list of thepolynomial coefficients ai necessary to reconstruct the look direction angle*, together withan estimate of the added error from use of polynomial vs. per-pixel more accurate values,shall be provided.Example polynomial:LookDir = a1Lat² + a2Lon² + a3LatLon + a4Lat + a5Lon + a6where:ai = polynomial coefficientsLat = latitudeLon = longitudeLat and Lon are the related coordinates in the product map units ['m', 'deg', 'arcsec']* The look direction angle represents the planar angle between north and each rangedirection. It is not constant in range, especially close to the poles.Goal (Desired) RequirementsAs threshold.	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:
1.7.13	Radar Unit Look Vector	[GSLC] [InSAR]	Threshold (Minimum) Requirements3-D components radar unit look vector, specified at centre of scene, in an Earth-CentredEarth-Fixed (ECEF) coordinate system (also called Earth Centred Rotating - ECR) is provided. Itconsists of unit vectors from antenna to surface pixel (i.e., positive Z component).Only required if per-pixel metadata 2.12 (Radar Unit Look Vector Grid Image) is not provided.Goal (Desired) Requirements As threshold.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>

1.7.14	Slant Range Sensor to Surface	[GSLC]	Threshold (Minimum) Requirements Slant range distance from the sensor to the surface, specified at centre of scene. Only required if per-pixel metadata 2.13 (Slant Range Sensor to Surface Image) is not provided.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
			Goal (Desired) Requirements As threshold.	
1.7.15	Reference Orbit	[NRB] [POL] [GSLC]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Usage: For [NRB] & [POL] only when per-pixel metadata 3.7 (Flattened phase) is provided. For [GSLC] when a reference orbit is used instead of a virtual orbit (see Annex A 1.2). Provide the absolute orbit number used as reference for topographic phase flattening. In case a virtual orbit has been used, provide orbit parameters or orbit state vectors as DOI or URL.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
			Provide scene-centred perpendicular baseline for the for the source data relative to the reference orbit used (for approximate use only).	

InSAR Pair	[InSAR]	Threshold (Minimum) RequirementsInSAR baseline criteria information• Baseline type: Single Reference, Multi-baseline or All• Minimal and maximal perpendicular baselines (not required when type = "All")• Minimal and maximal temporal baselines (not required when type = "All")• Minimal and maximal temporal baselines (not required when type = "All")• When [InSAR] product contains data derived from InSAR pairs, as defined under items 3.8, 3.9, and 3.10, provide list of source acquisition ID (e.g. as per item 1.6 acqID) for the InSAR pair (primary and secondary acquisitions). Repeat for multiple InSAR pair products and assign/specify InSAR pair ID number (e.g. insarID = 1,2,3) For multi-polarisation source acquisition, specify the polarisation used for the InSAR pair.Provide Perpendicular and Parallel orbit baseline information estimated at scene centre. In addition, orbital baseline information can be provided as per pixel metadata 2.18 and 2.19. Flag if orbital baseline refinement has been applied [true/false]. If true, specify refinement method (ex.: GCPs, FFT,).Azimuth common band filtering and range spectral shift filtering flagsGoal (Desired) Requirements Source type format with value "GSI C" should be provided when InSAR analysis is performed	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:
		from [GSLC] products generated from SLC source acquisitions listed under item 1.6. If GSLC data aren't provided with the InSAR product, provide the [GSLC] URL link(s) if it is available. If source acquisitions listed under 1.6 are [GSLC], discard this note.	
InSAR Pair Co registration	[InSAR]	Threshold (Minimum) Requirements Co-registration information of source acquisitions with a reference source. Provide reference source ID (or filename if different from source list) and for each co-registered source, report the azimuth and range standard deviation error in metre or sample fraction. Not required when the InSAR product is generated from [GSLC] products Goal (Desired) Requirements As threshold	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
	InSAR Pair InSAR Pair Co registration	InSAR Pair [InSAR]	InSAR Pair Coregistration Provide Perpendicular baseline source acquisitions (not required when type = "All") InSAR Pair Coregistration [InSAR] InSAR Pair Coregistration [InSAR] InSAR Pair Coregistration [InSAR] InSAR Pair Coregistration [InSAR]

1.7.18	Local InSAR Phase Quality	[InSAR]	Threshold (Minimum) Requirements Local InSAR phase quality estimation information • Methodology name [ex.: Coherence, DespecKS, Persistent Scatterers [Temporal variability of intensity and/or Spectral diversity correlation],) • Reference to methodology [text or DOI] • Estimation parameters and selection criteria used, as for examples: 1. For coherence • Window size • Weighting shape • Coherence threshold for selection 2. For DespecKS [Ferretti <i>et al.</i> 2011] or similar statistical approach • Window size • Statistical test function (Kolmogorov-Smirnov, Anderson-Darling,) • Number of statistically homogeneous pixels (SHP) threshold for selection • Phase triangulation coherence (YPTA) threshold 3. For Persistent Scatterers • Temporal variability of intensity - Intensity mean/std ratio threshold - Spectral correlation - Line and column spectral looks - Intensity minimal threshold - Spectral correlation threshold - Spectral correlation threshold - Spectral correlation threshold - Intensity minimal threshold - Spectral correlation threshold - Intensity mean/std ratio threshold - Intensity mean/std ratio threshol	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

1.7.19	Interferogram Filtering	[InSAR]	Threshold (Minimum) Requirements If applied, interferogram filtering information • Methodology name • Reference to methodology [text or DOI] • Filtering parameters used.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.7.20	Phase Unwrapping	[InSAR]	Threshold (Minimum) Requirements If 3.10-Unwrapped Interferogram Image is provided, technique used for InSAR phase unwrapping Methodology name Reference to methodology [text or DOI] Unwrapping parameters 1. Coherence threshold 2. Number of iterations 3. Stable reference point coordinates or multi-point approach information	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.7.21	Atmospheric Phase Correction	[GSLC] [InSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements If applied, reference to atmospheric phase correction technique and parameters used. • Methodology name • Reference to methodology [text or DOI]	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>

		[GSLC] [InSAR]	Threshold (Minimum) Requirements Not required.	<u>Achieved level:</u> Threshold / Goal
1.7.22	lonospheric Phase Correction		 <u>Goal (Desired) Requirements</u> If applied, reference to ionospheric phase correction technique and parameters used. Methodology name Reference to methodology [text or DOI] 	<u>Other feedback:</u>
			<u>Threshold (Minimum) Requirements</u> Not required.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
1.7.23	Displacement Modelling	lacement odelling	Goal (Desired) Requirements Reference to displacement modelling technique used • Methodology name • Reference to methodology [text or DOI] • Specific input parameters used	
			If a temperature refinement model is used, indicate model and temperature data source.	

Per-Pixel Metadata

The following minimum metadata specifications apply to each pixel. Whether the metadata are provided in a single record relevant to all pixels or separately for each pixel is at the discretion of the data provider. Per-pixel metadata should allow users to discriminate between (choose) observations on the basis of their individual suitability for applications.

Cloud optimized file formats are recommended.

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
2.1	Metadata Machine Readability	[NRB] [POL] [ORB] [GSLC] [INSAR]	 <u>Threshold (Minimum) Requirements</u> Metadata is provided in a structure that enables a computer algorithm to be used to consistently and automatically identify and extract each component/variable for further use. <u>Goal (Desired) Requirements</u> As threshold, but metadata is formatted in accordance with CEOS-ARD SAR Metadata Specifications, v.1.0, or in a community endorsed standard that facilitates machine-readability, such as ISO 19115-2, Climate and Forecast (CF) convention and the Attribute Convention for Data Discovery (ACDD), etc. 	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
2.2	Data Mask Image	[NRB] [POL] [ORB] [GSLC] [INSAR]	Threshold (Minimum) Requirements Mask image indicating: Valid data Invalid data Invalid data No data File format specifications/ contents provided in metadata: Sample Type [Mask] Data Format [GeoTIFF/HDF5/NetCDF,] Data Type [Int,] Bits per Sample Byte Order Bit Value Representation Note: For CEOS-ARD products created from repeat-pass acquisitions, with narrow orbital tube radius, a single static per pixel metadata file can be provided as a URL address of that unique metadata file. Goal (Desired) Requirements As threshold, including additional bit value representations, e.g.: Layover (masked as invalid data in threshold) Ocean water Land (recommended for [ORB]) RTC applied (e.g., for maritime scenes with land samples for which RTC has been applied) DEM gap filling (i.e., interpolated DEM over gaps) [InSAR] Unwrapped interferogram phase quality flag/score	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
2.3	Scattering Area Image	[NRB] [POL] [ORB] [GSLC] [INSAR]	Threshold (Minimum) Requirements Not required.Goal (Desired) Requirements Usage: Recommended for scenes that include land areas.DEM-based scattering area image used for Gamma-Nought terrain normalisation is provided. This quantifies the local scattering area used to normalise for radiometric distortions induced by terrain to the measured β^0 backscatter. The terrain-flattened γ^0_T is best understood as β^0 divided by the local scattering area.File format specifications/ contents provided in metadata: - Sample Type [Scattering Area] - Data Format [GeoTIFF/HDF5/NetCDF,] - Data Type [Int/Float,] - Bits per Sample - Byte OrderNote: For CEOS-ARD products created from repeat-pass acquisitions, with narrow orbital tube radius, a single static per pixel metadata file can be provided as a URL address of that unique metadata file.	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
2.4	Local Incident Angle Image	[NRB] [POL] [ORB] [GSLC]	Threshold (Minimum) Requirements DEM-based Local Incident angle image is provided.File format specifications/ contents provided in metadata:-Sample Type [Angle]-Data Format [GeoTIFF/HDF5/NetCDF,]-Data Type [Int/Float,]-Bits per Sample-Byte OrderNote: For CEOS-ARD products created from repeat-pass acquisitions, with narrow orbital tube radius, a single static per pixel metadata file can be provided as a URL address of that unique metadata file.Note: For maritime [ORB] scenes when no land areas are covered, a geoid model could be used for the calculation of the local incident angle	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:
		[GSLC]	Goal (Desired) Requirements As threshold.	

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
2.5	Ellipsoidal Incident Angle Image	[GSLC] [InSAR]	Threshold (Minimum) Requirements Ellipsoidal incident angle is provided.File format specifications/ contents provided in metadata:-Sample Type [Angle]-Data Format [GeoTIFF/HDF5/NetCDF,]-Data Type [Int/Float,]-Bits per SampleReference Ellipsoid NameRequired when 2.12 Radar Unit Look Vector Grid Image is not providedNote: For CEOS-ARD products created from repeat-pass acquisitions, with narrow orbital tube radius, a single static per pixel metadata file can be provided as a URL address of that unique metadata file.	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:
		[NRB] [POL] [ORB] [GSLC]	Goal (Desired) Requirements As threshold. Note: For maritime [ORB] scenes when no land areas are covered, the ellipsoidal incident angle is nearly identical to the geoid based local incident angle.	

2.6	Noise Power Image	[NRB] [POL] [ORB] [GSLC] [InSAR]	<u>Threshold (Minimum) Requirements</u> Not required.	<u>Achieved level:</u> Threshold / Goal
			Goal (Desired) RequirementsEstimated Noise Equivalent σ^0 (or β^0 or γ^0 , as applicable) used for noise removal,if applied, for each channel. NE σ^0 and NE γ^0 are both based on either an ellipsoidEarth model or the local topography.File format specifications/ contents provided in metadata:- Sample Type [Gamma-Nought, Sigma-Nought, Beta-Nought]- Correction model type [Ellipsoid, Topography]- Data Format [GeoTIFF/HDF5/NetCDF,]- Data Type [Int/Float,]- Bits per Sample- Byte Order	<u>Explanation / Justification:</u> <u>Other feedback:</u>
	Gamma-to- Sigma Ratio Image	amma-to- gma Ratio Image [INRB] [GSLC] [InSAR]	<u>Threshold (Minimum) Requirements</u> Not required.	<u>Achieved level:</u> Threshold / Goal
2.7			Goal (Desired) RequirementsRatio of the integrated area in the Gamma projection over the integrated area in the Sigma projection (ground). Multiplying RTC γ_T^0 by this ratio results in an estimate of RTC σ_T^0 .File format specifications/ contents provided in metadata: - Sample Type [Ratio] - Data Format [GeoTIFF/HDF5/NetCDF,]	<u>Other feedback:</u>
			 Data Type [Int/Float,] Bits per Sample Byte Order Note: For CEOS-ARD products created from repeat-pass acquisitions, with narrow orbital tube radius, a single static per pixel metadata file can be provided as a URL address of that unique metadata file. 	

2.8 Acquisition Image	ID [NRB] [POL] [ORB] [GSLC]	Threshold (Minimum) Requirements Note: Required for multi-source product only. Acquisition ID, or acquisition date, for each pixel is identified. In case of multi-temporal image stacks, use source acquisition IDs (e.g., 1.6 acqID values) to list contributing images. In case of Date, data represent (integer or fractional) day offset to reference observation date [UTC]. Date used as reference ("Day 0") is provided in the metadata. Pixels not representing a unique date (e.g., pixels averaged in image overlap zones) are flagged with a pre-set pixel value that is provided in the metadata. File format specifications/ contents provided in metadata: - Sample Type [Day, Time, ID] - Data Format [GeoTIFF/HDF5/NetCDF,] - Data Type [Int/Float,] - Bits per sample - Byte Order	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:
2.8 Image	[GSLC]	 Pixels not representing a unique date (e.g., pixels averaged in image overlap zones) are flagged with a pre-set pixel value that is provided in the metadata. File format specifications/ contents provided in metadata: Sample Type [Day, Time, ID] Data Format [GeoTIFF/HDF5/NetCDF,] Data Type [Int/Float,] Bits per sample Byte Order Goal (Desired) Requirements In case of image composites, the sources for each pixel are uniquely identified. 	

2.9	Per-pixel DEM	[NRB] [POL] [GSLC] [InSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Provide DEM or DSM as used during the geometric and radiometric processing of the SAR data, resampled to an exact geometric match in extent and resolution with the CEOS-ARD SAR image product. Can also be provided with [ORB] products containing land areas. File format specifications/ contents provided in metadata: - Sample Type [Height] - Data Format [GeoTIFF/HDF5/NetCDF,] - Data Type [Int/Float,] - Bits per Sample - Byte Order	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:
2.10	Per-pixel Geoid	[ORB]	Note: For CEOS-ARD products created from repeat-pass acquisitions, with narrow orbital tube radius, a single static per pixel metadata file can be provided as a URL address of that unique metadata file.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>

			Goal (Desired) RequirementsProvide Geoid as used during the geometric and radiometric processing of the SAR data, resampled to an exact geometric match in extent and resolution with the CEOS-ARD ORB image product.File format specifications/ contents provided in metadata: Sample Type [Height] Data Format [GeoTIFF/HDF5/NetCDF,] Data Type [Int/Float,] Bits per Sample Byte Order Ground Sampling Distance	
2.11	Look Direction Image	[ORB]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Look Direction Image is provided. It represents the planar angle between north and each range direction. File format specifications/ contents provided in metadata: - Sample Type [Angle] - Data Format [GeoTIFF/HDF5/NetCDF,] - Data Type [Int/Float,] - Bits per Sample - Byte Order Note: For CEOS-ARD products created from repeat-pass acquisitions, with narrow orbital tube radius, a single static per pixel metadata file can be provided as a URL address of that unique metadata file.	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

			Threshold (Minimum) Requirements Not required.	<u>Achieved level</u> : Threshold / Goal <u>Explanation / Justification</u> :
2.12	Radar Unit Look Vector Grid Image	[GSLC] [InSAR]	Goal (Desired) Requirements 3-D components radar unit look vector, specified at each pixel in an Earth-Centred Earth-Fixed (ECEF) coordinate system (also called Earth Centred Rotating – ECR) is provided. It consists of unit vectors from the antenna to the surface pixel (i.e., positive Z component). In the case of [InSAR] product, 3-D components radar unit look vector of the reference acquisition. File format specifications/ contents provided in metadata: - Sample Type [3D unit vector] - Source acquisition ID (e.g. acqID) (for [InSAR] product only) - Data Format [GeoTIFF/HDF5/NetCDF,] - Data Type [Double Float,] - Bits per Sample - Byte Order	Other feedback:

			Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
2.13	Slant Range Sensor to Surface Image	[GSLC] [InSAR]	 Slant range distance from the sensor to the surface, specified at each pixel in an Earth-Centred Earth-Fixed (ECEF) coordinate system (also called Earth Centred Rotating – ECR) is provided. In the case of [InSAR] product, the slant range distance of the reference acquisition File format specifications/ contents provided in metadata: Sample Type [Length] Source acquisition ID (e.g. acqID) (for [InSAR] product only) Data Format [GeoTIFF/HDF5/NetCDF,] Data Type [Float,] Bits per Sample Byte Order Note: For CEOS-ARD products created from repeat-pass acquisitions, with narrow orbital tube radius, a single static per pixel metadata file can be provided as a URL address of that unique metadata file. 	

			Threshold (Minimum) Requirements Not required.	Achieved level: Threshold / Goal
2.14	InSAR Phase Uncertainty Image	[GSLC] [InSAR]	Interference (minimum) requirements Boal (Desired)! Requirements Estimates of uncertainty in InSAR phase is provided, such as finite signal to noise ratio, quantization noise, platform state vector accuracy, or DEM error. Identification of which error sources are included will be provided as DOI/URL reference or brief description. It represents statistical variation from known noise sources only. In case both the wrapped and unwrapped interferograms are supplied, specify which interferogram the uncertainty image corresponds to. File format specifications/ contents provided in metadata: - Sample Type [Angle] - insarID number (for [InSAR] product only) - Corresponding interferogram (for [InSAR] product only)	Explanation / Justification: Other feedback:
			 Data Format [GeoTIFF/HDF5/NetCDF,] Data Type [Float,] Bits per Sample Byte Order 	
2.15	Atmospheric Phase Correction Image	[GSLC] [InSAR]	Threshold (Minimum) Requirements Not required.Goal (Desired) RequirementsPhase correction value at each pixel, if applied.File format specifications/ contents provided in metadata:-Sample Type [Angle]-insarID number (for [InSAR] product only)-Data Format [GeoTIFF/HDF5/NetCDF,]-Data Type [Float,]-Bits per SampleByte Order	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
------	---	-------------------	---	--
2.16	lonospheric Phase Correction Image	[GSLC] [InSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Phase correction value at each pixel, if applied. DOI/URL reference to algorithm or brief description is provided. File format specifications/ contents provided in metadata: - Sample Type [Angle] - insarID number (for [InSAR] product only) - Data Format [GeoTIFF/HDF5/NetCDF,] - Data Type [Float,] - Bits per Sample - Byte Order	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

2.17	Simulated Topographic Phase	[InSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Simulated topographic phase image(s) used to remove topographic contribution to interferogram(s). File format specifications/ contents provided in metadata: - Sample Type [Angle] - insarID number (for [InSAR] product only) - Data Format [GeoTIFF/HDF5/NetCDF,] - Data Type [Float,] - Bits per Sample - Byte Order	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
2.18	InSAR Perpendicular Baseline	[InSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Perpendicular orbital baseline between primary and secondary source acquisitions. File format specifications/ contents provided in metadata: - Sample Type [Length] - insarID number (for [InSAR] product only) - Data Format [GeoTIFF/HDF5/NetCDF,] - Data Type [Float,] - Bits per Sample - Byte Order	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

2.19			Threshold (Minimum) Requirements Not required.	<u>Achieved level</u> : Threshold / Goal <u>Explanation / Justification</u> :
	InSAR Parallel Baseline	[InSAR]	Goal (Desired) RequirementsParallel orbital baseline between primary and secondary source acquisitions.File format specifications/ contents provided in metadata:- Sample Type [Length]- insarID number (for [InSAR] product only)- Data Format [GeoTIFF/HDF5/NetCDF,]- Data Type [Float,]- Bits per Sample- Byte Order	<u>Other feedback:</u>
			Threshold (Minimum) Requirements Not required.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u>
2.20	InSAR Displacement Model Points	[InSAR]	Goal (Desired) RequirementsData file(s) identifying pixels used for InSAR displacement modelling (items 3.11to 3.14). As a suggestion, this information can be provided as a single multi-layerfile, where each 1-bit layer, containing 0 (not used) and 1 (used) flags, refers toan insarID pair (for SBAS type InSAR) or Source ID (when insarIDs are not listed).Instead, a list of Dates identifying layers can be provided under this item.File format specifications/ contents provided in metadata:-Sample Type [Model Points]-Source ID or insarID number or Dates-Data Type [1bit, 8bit,]-Bits per Sample-Byte Order	<u>Other feedback:</u>

Radiometrically Corrected Measurements

The requirements indicate the necessary outcomes and, to some degree, the minimum steps necessary to be deemed to have achieved those outcomes. Radiometric corrections must lead to normalised measurement(s) of backscatter intensity and/or decomposed polarimetric parameters. As for the per-pixel metadata, information regarding data format specification needs to be provided for each record. The requirements below must be met for all pixels/samples/observations in a collection. Cloud optimized file formats are recommended.

The column "CEOS-ARD product" indicates which CEOS-ARD SAR product (NRB, POL, ORB, GSLC) the parameter refers to.

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
3.1	Backscatter Measurements	[NRB]	Threshold (Minimum) Requirements [NRB] "Terrain-flattened" Radiometrically Terrain Corrected (RTC) Gamma-Nought backscatter coefficient (γ_T^0) is provided for each polarization.File format specifications/contents provided in metadata: 	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
3.1	Backscatter Measurements	[POL]	Threshold (Minimum) Requirements [POL]Measurements can be:Normalised Radar Covariance Matrix (CovMat)Diagonal (equivalent to [NRB]) and upper diagonal elements of the terrain- flattened Gamma-Nought (γ_T^0) Covariance Matrix are provided for coherent dual (e.g., HH-HV, VV-VH, or) and fully polarimetric (e.g., HH- HV-VH-VV) acquisitions.And/orPolarimetric Radar Decomposition (PRD)The individual components of the polarimetric decomposition obtained from the terrain-flattened (Gamma-Nought (γ_T^0)) covariance matrix.File format specifications/contents provided in metadata: - Measurement Type [CovMat/PRD]Measurement Type [CovMat/PRD]Individual covariance matrix element or/and Individual component of the decomposition [C3m11, C3m12, or H, A, alpha, or]Scaling Conversion Equation*Data Format [GeoTIFF/HDF5/NetCDF,]Data Type [Int/ Float/Complex, etc.]Bits per SampleByte Order* Scaling Conversion Equation is required only for scaling upper diagonal 	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
3.1	Backscatter Measurements	[ORB]	Threshold (Minimum) Requirements [ORB] Geoid-corrected Sigma-Nought backscatter coefficient (o ⁰) is provided for each polarization. File format specifications/contents provided in metadata: - Measurement Type [Sigma-Nought] - Backscatter Expression Convention [linear amplitude or linear power*] - Polarization [HH/HV/VV/VH] - Data Format [GeoTIFF/HDF5/NetCDF,] - Data Type [Int/Float,] - Bits per Sample - Byte Order *Note: Transformation to the logarithm decibel scale is not required or desired as this step can be easily completed by the user if necessary. Goal (Desired) Requirements Radiometrically Terrain-corrected Sigma-Nought backscatter coefficient	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:
			(σ_T^0) is provided for each polarization.	

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
3.1	Backscatter Measurements	[GSLC]	Threshold (Minimum) Requirements [GSLC]Backscatter coefficient, in complex number format, is provided for each polarization (e.g., HH, HV, VV, VH). GSLC phase is terrain-flattened using Earth ellipsoid and digital elevation or surface models.File format specifications/contents provided in metadata: 	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
3.1	Backscatter Measurements	[InSAR]	Threshold (Minimum) Requirements [InSAR] Not required.Goal (Desired) RequirementsTerrain-flattened Radiometrically Terrain Corrected (RTC) Gamma-Nought backscatter coefficient (γ_T^0) is provided for each polarization.File format specifications/contents provided in metadata: - Measurement Type [Gamma-Nought] - Source ID (e.g. item 1.6 acqID) - Backscatter Expression Convention [linear amplitude or linear power*] - Polarization [HH/HV/VV/VH,] 	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:
3.2	Scaling Conversion	[NRB] [POL] [ORB] [GSLC] [INSAR]	Threshold (Minimum) RequirementsIf applicable, indicate the equation to convert pixel linear amplitude/power tologarithmic decibel scale, including, if applicable, the associated calibration (dBoffset) factor, and/or the equation used to convert compressed data(int8/int16/float16) to float32.Goal (Desired) RequirementsAs threshold, but use of float32.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
3.3	Noise Removal	[NRB] [POL] [ORB] [GSLC] [INSAR]	Threshold (Minimum) RequirementsFlag if noise removal* has been applied (Y/N). Metadata should include the noise removal algorithm and reference to the algorithm as URL or DOI.*Note: Thermal noise removal and image border noise removal to remove overall scene noise and scene edge artefacts, respectively.Goal (Desired) Requirements As threshold.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
3.4	Radiometric Terrain Correction Algorithm	[NRB] [POL]	Threshold (Minimum) RequirementsAdjustments were made for terrain by modelling the local contributing scattering area using the preferred choice of a published peer-reviewed algorithm to produce radiometrically terrain corrected (RTC) γ_T^0 backscatter estimates.Metadata references, e.g.: - a citable peer-reviewed algorithm - technical documentation regarding the algorithm used to generate the backscatter estimates is expressed as URLs or DOIs - the sources of auxiliary data used to make corrections Note: Examples of technical documentation include an Algorithm, Theoretical Basis Document, product user guide, etc.	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:
		[GSLC] [InSAR]	<u>Goal (Desired) Requirements</u> As Threshold	
		[AII]	Require resolution of DEM better than the output product resolution when applying terrain corrections.	

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
3.5	Radiometric	[NRB] [POL]	<u>Threshold (Minimum) Requirements</u> Not required.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> Other feedback:
	Accuracy	[ORB] [GSLC] [INSAR]	<u>Goal (Desired) Requirements</u> Uncertainty (e.g., bounds on γ^0 or σ^0) information is provided as document referenced as URL or DOI. SI traceability is achieved.	Requirements Self-Assessment squirements Achieved level; Threshold / Goal Explanation / Justification; Other feedback; ents Other feedback; i on y ⁰ or σ ⁰) information is provided as document Achieved level; Threshold / Goal squirements Achieved level; Threshold / Goal equirements Achieved level; Threshold / Goal squirements Achieved level; Threshold / Goal ents Secree over ocean) backscatter coefficient is provided for n. It is calculated as the ratio between the Is aimulated backscatter intensity image generated ind model such as, e.g., Quiffen et al. (1998) or Other feedback; v/contents provided in metadata: [Wind-Normalised Backscatter] ion Convention [intensity ratio] //V/V/H] FF/HDF5/NetCDF,]] i,]]
			<u>Threshold (Minimum) Requirements</u> Not required.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u>
3.6	Mean Wind- Normalised Backscatter Measurements	[ORB]	Goal (Desired) RequirementsUsage: Only for Maritime sceneMean wind-normalised (over ocean) backscatter coefficient is provided foreach available polarization. It is calculated as the ratio between thebackscatter intensity and a simulated backscatter intensity image generatedusing an ocean surface wind model such as, e.g., Quilfen et al. (1998) orVachon and Dobson (2000) for VV and HH polarization respectively.File format specifications/contents provided in metadata:Measurement Type [Wind-Normalised Backscatter]Backscatter Expression Convention [intensity ratio]Polarization [HH/HV/VV/VH]Data Format [GeoTIFF/HDF5/NetCDF,]Bits per SampleByte OrderNote: Reference wind model, wind speed and direction used for referencebackscattering coefficient should be provided.	<u>Other feedback:</u>

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
3.7	Flattened Phase	[NRB] [POL]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Usage: Alternative to [GSLC] product for [NRB] and [POL] products The Flattened Phase is the interferometric phase for which the topographic phase contribution is removed. It is derived from the range-Doppler SLC product using a DEM and the orbital state vectors with respect to a reference orbit (see Annex A1.2). The use of the Flattened Phase with the [NRB] or [POL] intensity (3.1 Backscatter measurement) provides the [GSLC] equivalent, as follows: GSLC = sqrt(NRB) x exp(j FlattenPhase) File format specifications/contents provided in metadata: - Measurement Type [Flattened Phase] - Reference Polarization [HH/HV/VV/VH] - Data Tormat [GeoTIFF/HDF5/NetCDF,] - Data Type [Int/Float,] - Bits per Sample - Byte Order In case of polarimetric data, indicate the reference polarization.	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

3.8	Coherence Image	[InSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements InSAR coherence image for each InSAR pair defined under 1.7.16. File format specifications/contents provided in metadata: - Measurement Type [Coherence] - insarID number - Data Format [GeoTIFF/HDF5/NetCDF,] - Data Type [Int/Float, Complex Float] - Bits per Sample	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
	 Byte Order Coherence image statistics Average Standard deviation Threshold (Minimum) Requirements Not required. 	Achieved level: Threshold / Goal		
3.9	Interferogram Image	[InSAR]	Goal (Desired) RequirementsInterferogram image for each InSAR pair defined under 1.7.16. Indicate if theInSAR simulated ellipsoid and topographic phases have been subtracted.File format specifications/contents provided in metadata:- Measurement Type [Interferogram]- insarID number- Subtracted Earth curvature phase flag [True/False]- Data Format [GeoTIFF/HDF5/NetCDF,]- Data Type [Int/Float,]- Bits per Sample- Byte Order	<u>Other feedback:</u>

3.10	Unwrapped Interferogram Image	[InSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Unwrapped interferogram image for each InSAR pair defined under 1.7.16. File format specifications/contents provided in metadata: - Measurement Type [Unwrapped Interferogram] - insarID number - Component [Line of Sight, Vertical, East, North] - Data Format [GeoTIFF/HDF5/NetCDF,] - Bits per Sample - Byte Order	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
3.11	InSAR Displacement Image	[InSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Displacement map image(s) could be expressed as a single cumulative displacement map or a temporal series of incremental displacement maps. File format specifications/contents provided in metadata: - Measurement Type [InSAR Cumulative Displacement or InSAR Incremental Displacement] - Measurement projection [Line of Sight, Vertical, Horizontal, East, North] - Interval start time - Interval end time - Reference Polarization* [HH/HV/VV/VH/RH/RL/] - Data Format [GeoTIFF/HDF5/NetCDF,] - Data Type [Int/Float,] - Bits per Sample - Byte Order *In case of polarimetric data, indicate the reference polarization.	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

3.12	InSAR Displacement Residue Image	[InSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Displacement residue map images for each source acquisition generated from displacement model. File format specifications/contents provided in metadata: - Measurement Type [Displacement residues] - Measurement projection [Line of Sight, Vertical, Horizontal, East, North] - Source ID - Reference Polarization* [HH/HV/VV/VH/RH/RL/] - Data Format [GeoTIFF/HDF5/NetCDF,] - Data Type [Int/Float,] - Bits per Sample - Byte Order *In case of polarimetric data, indicate the reference polarization.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
3.13	InSAR Displacement Rate Image	[InSAR]	Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Mean linear displacement rate (velocity) estimate. File format specifications/contents provided in metadata: Measurement Type [Displacement rate] Measurement projection [Line of Sight, Vertical, Horizontal, East, North] Interval start time Interval end time Rate (velocity) units [mm/year, cm/year, mm/month,] Reference Polarization* [HH/HV/VV/VH/RH/RL/] Data Format [GeoTIFF/HDF5/NetCDF,] Data Type [Int/Float,] Bits per Sample Byte Order *In case of polarimetric data, indicate the reference polarization. 	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

			Threshold (Minimum) Requirements Not required. Goal (Desired) Requirements Goodness of fit for model defined in 3.13	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
3.14	InSAR Displacement Rate Model Fit Image	[InSAR]	 File format specifications/contents provided in metadata: Measurement Type [Model standard deviation, R-squared, RMSE] Measurement projection [Line of Sight, Vertical, Horizontal, East, North] Interval start time Interval end time Reference Polarization* [HH/HV/VV/VH/RH/RL/] Data Format [GeoTIFF/HDF5/NetCDF,] Data Type [Int/Float,] Bits per Sample Byte Order *In case of polarimetric data, indicate the reference polarization. 	

Geometric Corrections

Geometric corrections are steps that are taken to place the measurement accurately on the surface of the Earth (that is, to geolocate the measurement) allowing measurements taken through time to be compared. This section specifies any geometric correction requirements that must be met in order for the data to be analysis ready.

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
4.1	Geometric Correction Algorithm	[NRB] [POL] [ORB] [GSLC] [INSAR]	Streshold (Minimum) Requirements Not required. Goal (Desired) Requirements Metadata references, e.g.: - A metadata citable peer-reviewed algorithm, - Technical documentation regarding the implementation of that algorithm expressed as URLs or DOIs - The sources of auxiliary data used to make corrections. - Resampling method used for geometric processing of the source data. Note: Examples of technical documentation can include e.g., an Algorithm Theoretical Basis Document (ATBD), a product user guide.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
4.2	Digital Elevation Model	[NRB] [POL] [ORB] [GSLC] [INSAR]	 Threshold (Minimum) Requirements Usage: For products including land areas a) During ortho-rectification, the data provider shall use the same DEM that was used for the radiometric terrain flattening to ensure consistency of the data stack. b) Provide reference to the Digital Elevation Model used for geometric terrain correction. c) Provide reference to Earth Gravitational Model (EGM) if used for geometric correction. c) Provide reference to Earth Gravitational Model (EGM) if used for geometric correction. a) A DEM with comparable or better resolution to the resolution of the output CEOS-ARD product shall be used if available. Else, the upsampled DEM is identified. b) Resampling method used for preparation of the DEM. c) Method used for resampling the EGM. 	Achieved level: Threshold / Goal Explanation / Justification: Other feedback:

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
			Threshold (Minimum) Requirements Accurate geolocation is a prerequisite to radar processing to correct for terrain and to enable interoperability between radar sensors.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u>
4.3	Geometric Accuracy		The absolute geolocation error (ALE) for a sensor is typically assessed through analysis of Single Look Complex (SLC) imagery and measured along the slant range and azimuth directions (case A: SLC ALE).	<u>Other feedback:</u>
			The end-to-end "ARD" ALE of the final CEOS-ARD product could be measured directly in the final image product in the chosen map projection, i.e., in the map coordinate directions: e.g., Northing and Easting (case B: ARD ALE).	
		[NRB] [POL] [ORB] [GSLC] [INSAR]	Providing accuracy estimates based on measurements following at least one scheme (A or B or both) meets the threshold requirement.	
			Estimates of the ALE is provided as a bias and a standard deviation, with (Case A) SLC ALE expressed in slant range and azimuth, and (Case B) ARD ALE expressed in map projection dimensions.	
			For [InSAR] products, specify the SAR acquisition used for geocoding. SAR acquisition could be different from the two source acquisitions of the product when a stack of acquisitions is processed simultaneously.	
			Note 1: This assessment is often made through comparison of measured corner reflector positions with their projected location in the imagery. In some cases, other mission calibration/validation results may be used.	
			Note 2: The ALE is not typically assessed for every processed image, but through an ALE assessment by the data processing team characterizing all or (usually a subset) of the generated products.	
			Note 3: For new SAR missions, as long as calibration/validation reports are not available, values can be set to NaN and provide a DOI or URL link to pre-launch mission specification document.	
			Goal (Desired) Requirements Output product sub-sample accuracy should be less than or equal to 0.1 (slant range) pixel radial root mean square error (rRMSE).	

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
4.4	Geometric Refined Accuracy	[NRB] [POL] [ORB] [GSLC] [InSAR]	Threshold (Minimum) Requirements Not required.Goal (Desired) Requirements Values provided under 4.3 Geometric accuracy are provided by the SAR mission Cal/Val team.CEOS-ARD processing steps could include method refining the geometric accuracy, such as cross-correlation of the SAR data in slant range with a SAR scene simulated from a DSM or DEM.Methodology used (name and reference), quality flag, geometric standard deviation values should be provided.	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>
4.5	Gridding Convention	[NRB] [POL] [ORB] [GSLC] [INSAR]	 Threshold (Minimum) Requirements A consistent gridding/sampling frame is used. The origin is chosen to minimise any need for subsequent resampling between multiple products (be they from the same or different providers). This is typically accomplished via a "snap to grid" in relation to the most proximate grid tile in a global system*. * If a product hierarchy of resolutions exists (or is planned), the multiple resolutions should nest within each other (e.g., 12.5m, 25m, 50m, 100m, etc.), and not be disjoint. 	<u>Achieved level:</u> Threshold / Goal <u>Explanation / Justification:</u> <u>Other feedback:</u>

#	Parameter	CEOS-ARD product	Requirements	Self-Assessment
			Goal (Desired) RequirementsProvide DOI or URL to gridding convention used.When multiple providers share a common map projection, providers are encouraged to standardise the origins of their products among each other.In the case of UTM/UPS coordinates, the upper left corner coordinates should be set to an integer multiple of sample intervals from a 100 km by 100 km grid tile of the Military Grid Reference System's 100k coordinates ("snap to grid").For products presented in geographic coordinates (latitude and longitude), the 	

Summary Self-Assessment Table

			Threshold	Goal
1	CEOS-ARD product	General Metadata		
1.1	[ALL]	Traceability		
1.2	[ALL]	Metadata Machine Readability		
1.3	[ALL]	Product Type		
1.4	[ALL]	Document Identifier		
1.5	[ALL]	Data Collection Time		
1.6		Source Data Attributes		
1.6.1	[ALL]	Source Data Access		
1.6.2	[ALL]	Instrument		
1.6.3	[ALL]	Source Data Acquisition Time		
1.6.4	[ALL]	Source Data Acquisition Parameters		
1.6.5	[ALL]	Source Data Orbit Information		
1.6.6	[ALL]	Source Data Processing Parameters		
1.6.7	[ALL]	Source Data Image Attributes		
1.6.8	[ALL]	Sensor Calibration		
1.6.9	[ALL]	Performance Indicators		
1.6.10	[ALL]	Source Data Polarimetric Calibration Matrices		
1.6.11	[ALL]	Mean Faraday Rotation Angle		
1.6.12	[ALL]	Ionosphere indicator		
1.7		CEOS-ARD Product Attributes		
1.7.1	[ALL]	Product Data Access		
1.7.2	[ALL]	Auxiliary Data		
1.7.3	[ALL]	Product Sample Spacing		
1.7.4	[NRB] [POL] [ORB]	Product Equivalent Number of Looks		
1.7.5	[ALL]	Product Resolution		
1.7.6	[NRB] [POL] [ORB]	Product Filtering		
1.7.7	[ALL]	Product Bounding Box		
1.7.8	[ALL]	Product Geographical Extent		
1.7.9	[ALL]	Product Image Size		
1.7.10	[ALL]	Product Pixel Coordinate Convention		
1.7.11	[ALL]	Product Coordinate Reference System		
1.7.12	[ORB]	Look Direction Polynomials		
1.7.13	[GSLC] [InSAR]	Radar Unit Look Vector		
1.7.14	[GSLC]	Slant Range Sensor to Surface		
1.7.15	[NRB] [POL] [GSLC]	Reference Orbit		
1.7.16	[InSAR]	InSAR Pair		
1.7.17	[InSAR]	InSAR Pair Co registration		

			Threshold	Goal
1.7.18	[InSAR]	Coherence		
1.7.19	[InSAR]	Interferogram Filtering		
1.7.20	[InSAR]	Phase Unwrapping		
1.7.21	[GSLC] [InSAR]	Atmospheric Phase Correction		
1.7.22	[GSLC] [InSAR]	Ionospheric Phase Correction		
1.7.23	[InSAR]	Displacement Modelling		
2	CEOS-ARD	Per-Pixel Metadata	Threshold	Goal
	product			
2.1	[ALL]	Metadata Machine Readability		
2.2	[ALL]	Data Mask Image		
2.3	[ALL]	Scattering Area Image		
2.4	[NRB] [POL] [ORB] [GSLC]	Local Incident Angle Image		
2.5	[ALL]	Ellipsoidal Incident Angle Image		
2.6	[ALL]	Noise Power Image		
2.7	[NRB] [POL] [GSLC]	Gamma-to-Sigma Ratio Image		
2.8	[ALL]	Acquisition ID Image		
2.9	[NRB] [POL] [GSLC] [InSAR]	Per-pixel DEM		
2.10	[ORB]	Per-pixel Geoid		
2.11	[ORB]	Look Direction Image		
2.12	[GSLC] [InSAR]	Radar Unit Look Vector Grid Image		
2.13	[GSLC] [InSAR]	Slant Range Sensor to Surface Image		
2.14	[GSLC] [InSAR]	InSAR Phase Uncertainty Image		
2.15	[GSLC] [InSAR]	Atmospheric Phase Correction Image		
2.16	[GSLC] [InSAR]	Ionospheric Phase Correction Image		
2.17	[InSAR]	Simulated Topographic Phase		
2.18	[InSAR]	InSAR Perpendicular Baseline		
2.19	[InSAR]	InSAR Parallel Baseline		
2.20	[InSAR]	InSAR Displacement Model Points		
			Threshold	Goal
3	CEOS-ARD product	Radiometrically Corrected Measurements		
3.1	[ALL]	Backscatter Measurements		
3.2	[ALL]	Scaling Conversion		
3.3	[ALL]	Noise Removal		
3.4	[NRB] [POL] [GSLC] [InSAR]	Radiometric Terrain Correction Algorithms		
3.5	[ALL]	Radiometric Accuracy		
3.6	[ORB]	Mean Wind-Normalised Backscatter Measurements		
3.7	[NRB] [POL]	Flattened Phase		
3.8	[InSAR]	Coherence Image		
3.9	[InSAR]	Interferogram Image		
3.10	[InSAR]	Unwrapped Interferogram Image		

3.11	[InSAR]	InSAR Displacement Image		
3.12	[InSAR]	InSAR Displacement Residue Image		
3.13	[InSAR]	InSAR Displacement Rate Image		
3.14	[InSAR]	InSAR Displacement Rate Model fit Image		
			Threshold	Goal
4	CEOS-ARD product	Geometric Corrections		
4.1	[ALL]	Geometric Correction Algorithms		
4.2	[ALL]	Digital Elevation Model		
4.3	[ALL]	Geometric Accuracy		
4.4	[ALL]	Geometric Refined Accuracy		
4.5	[ALL]	Gridding Convention		

Guidance

This section aims to provide background and specific information on the processing steps that can be used to achieve analysis ready data for a specific and well-developed Product Family Specification. This Guidance material does not replace or override the specifications.

Introduction to CEOS-ARD

What is CEOS Analysis Ready Data?

CEOS-ARD are products that have been processed to a minimum set of requirements and organized into a form that allows immediate analysis with a minimum of additional user effort. In general, these products would be resampled onto a common geometric grid (for a given product) and would provide baseline data for further interoperability both through time and with other datasets.

CEOS-ARD products are intended to be flexible and accessible products suitable for a wide range of users for a wide variety of applications, including particularly time series analysis and multi-sensor application development. They are also intended to support rapid ingestion and exploitation via high-performance computing, cloud computing and other future data architectures. They may not be suitable for all purposes and are not intended as a 'replacement' for other types of satellite products.

When can a product be called CEOS-ARD?

The CEOS-ARD branding is applied to a particular product once:

- that product has been assessed as meeting CEOS-ARD requirements by the agency responsible for production and distribution of the product, and
- that the assessment has been peer reviewed by the relevant CEOS team(s).

Agencies or other entities considering undertaking an assessment process should consult the CEOS-ARD <u>Governance Framework</u>.

A product can continue to use CEOS-ARD branding as long as its generation and distribution remain consistent with the peer-reviewed assessment.

What is the difference between Threshold and Goal?

Threshold (Minimum) Requirements are the MINIMUM that is needed for the data to be analysis ready. This must be practical and accepted by the data producers.

Goal (Desired) Requirements (previously referred to as "Target") are the ideal; where we would like to be. Some providers may already meet these.

Products that meet all threshold requirements should be immediately useful for scientific analysis or decision-making.

Products that meet goal requirements will reduce the overall product uncertainties and enhance broad-scale applications. For example, the products may enhance interoperability or provide increased accuracy through additional corrections that are not reasonable at the *threshold* level.

Goal requirements anticipate continuous improvement of methods and evolution of community expectations, which are both normal and inevitable in a developing field. Over time, *goal* specifications may (and subject to due process) become accepted as Threshold requirements.

Reference Papers [CEOS-ARD for SAR]

ISO 19115-2 (2009) Geographic information -- Metadata -- Part 2: Extensions for imagery and gridded data, <u>www.iso.org/standard/39229.html</u>

Normalised Radar Backscatter [NRB]

Shiroma, G.H.X., M. Lavalle and S. M. Buckley, An Area-Based Projection Algorithm for SAR Radiometric Terrain Correction and Geocoding. IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-23, 2022, Art no. 5222723, doi: 10.1109/TGRS.2022.3147472.

Small, D. (2011) Flattening Gamma: Radiometric Terrain Correction for SAR Imagery, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 8, pp. 3081-3093. doi: 10.1109/TGRS.2011.2120616

Polarimetric Radar [POL]

Cameron, W.L., N.N. Youssef, and L.K. Leung (1996) Simulated polarimetric signatures of primitive geometrical shapes, IEEE Trans. Geosci. Remote Sens., vol. 34, no. 3, pp. 793–803.

Cloude, S.R. and E. Pottier (1996) A review of target decomposition theorems in radar polarimetry, IEEE Trans. Geosci. Remote Sens., vol. 34, no. 2, pp. 498–518.

Freeman, A. and S.L. Durden (1998) A three-component scattering model for polarimetric SAR data, IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 964–973.

Gens, R., D.K. Atwood and E. Pottier (2013) Geocoding of polarimetric processing results: Alternative processing strategies, Remote Sensing Letters, vol. 4, no. 1, pp. 38-44.

Krogager, E. (1993) Aspects of polarimetric radar imaging, Ph.D. dissertation, Tech. Univ. Denmark, Electromagn. Inst., Lyngby, Denmark

Lee, J.-S., J.-H. Wen, T.L. Ainsworth, K.-S. Chen, and A.J. Chen (2009) Improved Sigma Filter for Speckle Filtering of SAR Imagery IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 202-213.

Raney, R.K., J.T.S. Cahill, G.W. Patterson and D.B.J. Bussey (2012) The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters Journal of Geophysical Research: Planets 117(E5)

Toutin, T., H. Wang, P. Chomaz and E. Pottier (2013) Orthorectification of Full-Polarimetric Radarsat-2 Data Using Accurate LIDAR DSM, IEEE Trans. Geosci. Remote Sens., vol. 51, no. 12, pp. 5252-5258.

Yamaguchi, Y., A. Sato, W.M. Boerner, R. Sato and H. Yamada (2011) Four-Component Scattering Power Decomposition with Rotation of Coherency Matrix, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2251-2258.

Ocean Radar Backscatter [ORB]

Quilfen, Y., Chapron, B., Elfouhaily, T., Katsaros, K., and Tournadre, J. (1998) Observation of tropical cyclones by high-resolution scatterometry, J. Geophys. Res., 103(C4), 7767–7786, doi:10.1029/97JC01911

Vachon, P.W. and F.W. Dobson (2000) Wind Retrieval from RADARSAT SAR Images: Selection of a Suitable C-Band HH Polarization Wind Retrieval Model, Canadian Journal of Remote Sensing, 26:4, 306-313, DOI: 10.1080/07038992.2000.10874781

Geocoded Single-Look Complex [GSLC]

Zebker, H. A., S. Hensley, P. Shanker and C. Wortham (2010) Geodetically Accurate InSAR Data Processor, IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 12, pp. 4309-4321, Dec. 2010, doi: 10.1109/TGRS.2010.2051333.

Zebker, H. A. (2017) User-Friendly InSAR Data Products: Fast and Simple Timeseries Processing. IEEE Geoscience and Remote Sensing Letters 14(11): 2122-2126.

Zheng, Y. and H. A. Zebker (2017) Phase Correction of Single-Look Complex Radar Images for User-Friendly Efficient Interferogram Formation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10(6): 2694-2701.

Interferometric Synthetic Aperture Radar [InSAR]

Lanari, R., O. Mora, M. Manunta, J. J. Mallorqui, P. Berardino and E. Sansosti, "A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms," in IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 7, pp. 1377-1386, July 2004, doi: 10.1109/TGRS.2004.828196.

Ferretti, A., A. Fumagalli, F. Novali, C. Prati, F. Rocca and A. Rucci, "A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR," in IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 9, pp. 3460-3470, Sept. 2011, doi: 10.1109/TGRS.2011.2124465.

Annex 1

A1.1: General Processing Roadmap

The radiometric interoperability of CEOS-ARD SAR products is ensured by a common processing chain during production. The recommended processing roadmap involves the following steps:

- Apply the best possible orbit parameters to give the most accurate product possible. These will have been projected to an ellipsoidal model such as WGS84. To achieve the level of geometric accuracy required for the DEM-based correction, precise orbit determination will be required.
- Apply instrument calibration to produce Beta-Nought values with high fidelity.
- Convert Single-Look-Complex (SLC) radiometric channel(s) to intensity [NRB], [ORB] and [POL] and in addition for [POL], the cross-product element(s) of the covariance as shown in Annex 2.1.
- Perform radiometric terrain correction (gamma backscatter convention terrain-flattening) on the covariance matrix by applying the local surface normalisation factor to each backscatter measurement element (Small, 2011; Shiroma *et al.*, 2022).
- Perform polarimetric speckle filtering (optional for **[NRB]** and **[ORB]**), before geocoding, to optimally preserve the polarimetric information. Most popular polarimetric decomposition methodologies are incoherent in nature, which requires averaging the covariance matrix for stationarity. Depending on the application, a polarimetric filter that preserves local point targets and locally average extended targets may be used, e.g., Sigma Lee filter with 7x7 window and 3-point target (Lee *et al.*, 2009). Multi-looking could be performed to meet optimal output sample spacing before the geometric correction step. No speckle filtering or multi-looking is performed for **[GSLC]** products.
- For **[GSLC]** products, the topographic phase is estimated relative to a reference orbit and removed from the SLC data (Zebker *et al.*, 2010; Zebker, 2017) (see Annex A1.2)
- Geometric terrain correction (relative to geoid for **[ORB]**) is applied to the normalized backscatter measurement data. For **[POL]**, the resampling methodology should be nearest-neighbour, bilinear or average in order to preserve integrity of the covariance matrix as other resampling functions can introduce artefacts due to the mix of intensity and complex number elements in the matrix. Geocoding to a common grid structure with specified pixel spacings for true data cube format.
- Generate CEOS format metadata to accompany product layers.
- Optionally, a SpatioTemporal Asset Catalog (STAC) file is added to the product.

Table A1.1 lists possible sequential steps and existing software tools (e.g., Gamma software (GAMMA, 2018)) and scripting tasks that can be used to form the CEOS-ARD SAR processing roadmap.

Step	Implementation option
1. Orbital data refinement	Check xml date and delivered format. RADARSAT-2, pre EDOT (July 2015) replace. Post July 2015, check if 'DEF', otherwise replace. (Gamma - RSAT2_vec)
2. Apply radiometric scaling Look-Up Table (LUT) to Beta-Nought	Specification of LUT on ingest. (Gamma - par_RSAT2_SLC/SG)
3. Generate covariance matrix elements	Gamma – COV_MATRIX
4. Radiometric terrain normalisation	Gamma - geo_radcal2
5. Speckle filtering (Boxcar or Sigma Lee)	Custom scripting
6. Geometric terrain correction/Geocoding	Gamma – gc_map and geocode_back
7. Create metadata	Custom scripting

Table A1.1 SAR ARD processing roadmap and software options. RADARSAT-2 Example

A1.2: Topographic phase removal

InSAR analysis capabilities from CEOS-ARD SAR products are enabled with **[GSLC]** products, which is also the case when the Flattened Phase per-pixel data (item 3.7) are included in the **[NRB]** or **[POL]** products. This is made possible since the simulated topographic phase relative to a given reference orbit has been subtracted.

From classical approach with SLC data, interferometric phase $\Delta \varphi_{1-2}$ between two SAR acquisitions is composed of a topographic phase $\Delta \varphi_{Topo_1-2}$, a surface displacement phase $\Delta \varphi_{Disp_1-2}$ and other noise terms $\Delta \varphi_{Noise_1-2}$ (Eq. A1.1). The topographic phase consists to the difference in geometrical path length from each of the two antenna positions to the point on the SAR image (φ_{DEM_SLC}) and is a function of their orbital baseline distance (Eq. A1.2). The surface displacement phase is related to the displacement of the surface that occurred in between the two acquisitions. The noise term is the function of the radar signal interaction with the atmosphere and the ionosphere during each acquisition and function of the system noise.

$$\Delta \varphi_{1-2} = \Delta \varphi_{Topo_{-1-2}} + \Delta \varphi_{Disp_{-1-2}} + \Delta \varphi_{Noise_{-1-2}}$$
 Eq.

Where

$$\Delta \varphi_{Topo_{1-2}} = \varphi_{DEM_SLC_{1}} - \varphi_{DEM_SLC_{2}}$$
 Eq. A1.2

A1.1

Since CEOS-ARD products are already geocoded, it is important to remove the wrapped simulated topographic phase φ_{SimDEM_SLC} from the data in slant range (Eq. A1.3) during their production, before the geocoding step. The key here is to simulate the topographic phase relatively to a constant reference orbit, as done in a regular InSAR processing. There are two different ways to simulate the topographic phase:

- 1- The use of a virtual circular orbit above a nonrotating planet (Zebker et al., 2010)
- 2- The use of a specific orbit cycle or a simulated orbit of the SAR mission

In both cases, the InSAR topographic phase $\Delta \varphi_{Topo_OrbRef-2}$ is simulated against the position of a virtual sensor φ_{DEM_OrbRef} lying on a reference orbit, instead of being simulated relatively to an existing reference SAR acquisition ($\varphi_{DEM_SLC_1}$). The use of a virtual circular orbit is a more robust approach since the reference orbit is defined at a fixed height above scene nadir and assuming the reference orbital height constant for all CEOS-ARD products. While with the second approach, the CEOS-ARD data producer must select a specific archived orbit cycle of the SAR mission or define a simulated one, from which the relative orbit, matching the one of the SAR acquisitions to be processed (to be converted to CEOS-ARD), is defined as the reference orbit. With this second approach, it is important to always use the same orbit cycle (or simulated orbit) for all the CEOS-ARD produced for a mission, in order to preserve the relevant compensated phase in between them. Providing absolute reference orbit number information in the metadata (item 1.7.15) allows users to validate the InSAR feasibility in between CEOS-ARD products.

$$\varphi_{Flattened_SLC_2} = \varphi_{SLC_2} - \Delta \varphi_{Topo_OrbRef-2}$$
 Eq. A1.3

This procedure is equivalent to bring the position of the sensor platform of all the SAR acquisitions at the same orbital position (i.e., zeros baseline distance in between), which results in a Flattened phase $\varphi_{Flattened_SLC}$, independent of the local topography.

The phase subtraction could be performed by using a motion compensation approach (Zebker *et al.*, 2010) or directly on the SLC data. Then the geometrical correction is performed on the Flattened SLC, which results in a **[GSLC]** product.

[GSLC] can also be saved as a **[NRB]** product by including the Flattened Phase per-pixel data (item 3.7) as follows:

NRB:
$$\gamma_T^o = |GSLC|^2$$

Flattened Phase: $\varphi_{Flattened} = arg (GSLC)$

For the **[POL]** product, the Flattened Phase (item 3.7) is defined for a specific polarisation. Since offdiagonal elements of the covariance matrix contain the relative phase between two polarizations, other polarization(s) Flattened Phase can be estimated by subtracting the complex number phase of the off-diagonal elements from reference polarization Flattened phase. As for example, if the reference Flattened Phase is for HH polarization (φ HH), then the Flattened Phase for VV polarization is φ VV = φ HH - arg(HHVV*). Nonetheless, since the elements of the covariance matrix have been averaged, providing individual polarization Flattened Phase images under 3.7 is more accurate.

InSAR from [GSLC] Demonstration:

From CEOS-ARD flattened SAR products, InSAR processing can be easily performed without dealing with topographic features and orbital sensor position, as for example with two **[GSLC]** products

$$\varphi_{Flattened_GSLC_1} = \varphi_{SLC_1} - \Delta \varphi_{Topo_OrbRef-1} = \varphi_{SLC_1} - \varphi_{DEM_OrbRef} - \varphi_{DEM_SLC_1}$$

$$\varphi_{Flattened_GSLC_2} = \varphi_{SLC_2} - \Delta \varphi_{Topo_OrbRef-2} = \varphi_{SLC_2} - \varphi_{DEM_OrbRef} - \varphi_{DEM_SLC_2}$$
Eq. A1.4

The differential phase is

$$\Delta \varphi_{CARD_1 - CARD_2} = \varphi_{Flattened_GSLC_1} - \varphi_{Flattened_GSLC_2}$$
 Eq. A1.5

Which can be expanded using (Eq. A1.3)

$$\Delta \varphi_{CARD_1 - CARD_2} = (\varphi_{SLC_1} - \varphi_{DEM_OrbRef} - \varphi_{DEM_SLC_1}) - (\varphi_{SLC_2} - \varphi_{DEM_OrbRef} - \varphi_{DEM_SLC_2})$$
Eq. A1.6

$$\Delta \varphi_{CARD_1 - CARD_2} = (\varphi_{SLC_1} - \varphi_{SLC_2}) - (\varphi_{DEM_SLC_1} - \varphi_{DEM_SLC_2})$$
 Eq. A1.7

$$\Delta \varphi_{CARD_1 - CARD_2} = \Delta \varphi_{SLC_1 - SLC_2} - \Delta \varphi_{Topo_1 - 2}$$
 Eq. A1.8

Where $\Delta \varphi_{SLC \ 1-SLC \ 2}$ can be expressed as Eq. A1.1, which gives

$$\Delta \varphi_{CARD_{1}-CARD_{2}} = \left(\Delta \varphi_{Topo_{1}-2} + \Delta \varphi_{Disp_{1}-2} + \Delta \varphi_{Noise_{1}-2} \right) - \Delta \varphi_{Topo_{1}-2}$$
 Eq. A1.9

Consequently, the differential phase of two CEOS-_ARD products doesn't contain a topographic phase and is already unwrapped (at least over stable areas). It is only function of the surface displacement and of the noise term. Depending on the reference DEM and the satellite orbital state vector accuracies, some residual topographic phase could be present. Atmospheric (item 2.15) and ionospheric (item 2.16) phase corrections could be performed during the production of CEOS-ARD products, which reduces the differential phase noise in an InSAR analysis.

$$\Delta \varphi_{CARD_{1}-CARD_{2}} = \Delta \varphi_{Disp_{1}-2} + \Delta \varphi_{Noise_{1}-2}$$
 Eq. A1.10

Annex 2: Polarimetric Radar [POL]

A2.1: Normalised Covariance Matrices (CovMat)

In order to preserve the inter-channel polarimetric phase and thus the full information content of coherent dual-pol and fully polarimetric data, the covariance matrix is proposed as the data storage format. Covariance matrices are generated from the complex cross product of polarimetric channels, as shown in Eq. A2.1 for fully polarimetric data (C3) and in Eq. A2.2 for dual polarization data (C2). Since these matrices are complex symmetrical, only the upper diagonal elements (bold elements) need to be stored in the ARD database.

Fully polarimetric

$$C3 = \begin{bmatrix} |HH|^2 & \sqrt{2} \cdot HH \cdot HV^* & HH \cdot VV^* \\ \sqrt{2} \cdot HV \cdot HH^* & 2 \cdot |HV|^2 & \sqrt{2} \cdot HV \cdot VV^* \\ VV \cdot HH^* & \sqrt{2} \cdot VV \cdot HV^* & |VV|^2 \end{bmatrix}$$
Eq. A2.1

or

Eq. A2.2

Where HV = VH, under the reciprocity assumption. | | and * mean respectively complex modulus and the complex conjugate.

Dual polarization

HH-HV

VV-VH

$$C2 = \begin{bmatrix} |VH|^2 & VH \cdot VH^* \\ VH \cdot VH^* & |VV|^2 \end{bmatrix} \text{ or }$$

 $C2 = \begin{bmatrix} |HH|^2 & HH \cdot HV^* \\ HV \cdot HH^* & |HV|^2 \end{bmatrix}$

CH-CV

$$C2 = \begin{bmatrix} |CH|^2 & CH \cdot CV^* \\ CV \cdot CH^* & |CV|^2 \end{bmatrix}$$

Where CH and CV refer to dual polarization transmitting a circular polarized signal. [CH, CV] can be replaced by [LH, LV] or [RH, RV] for left (L) or right (R) hand circular transmission respectively, although RCM will offer only right-hand circular transmission. The coherent HH-VV configuration available on TerraSAR-X could also be represented as C2 format.

Polarimetric decomposition methods like Yamaguchi *et al.* (2011) for fully polarimetric, or m-chi (Raney *et al.*, 2012) for compact polarimetric data, can be applied directly on averaged (speckle filtered) C3 and C2 matrices respectively. These decompositions enhance scattering information, bring it to a more comprehensible level to end-users, and raise the performance of thematic classification methodologies. For SAR products that were acquired with single polarization the use of the covariance matrix does not result in superfluous storage requirements, since only the matrix elements that are populated are retained and the diagonal matrix elements are the backscatter intensities. Thus, a single channel intensity product would yield only one matrix element and the storage needs would not change.

In order to ease the data structure and the metadata in between C3 and C2, Eq. A2.1 should be redefined as Eq. A2.3. Users will have to take care of this non-standard representation when applying their polarimetric analytic tools. "< >" means that ARD matrix elements are speckle filtered. Eq. A2.3 is valid both for dual-linear and fully polarimetric dataquad polarization.

$$C3 \ modified \ C3m = \begin{bmatrix} \langle |HH|^2 \rangle & \langle HH \cdot HV^* \rangle & \langle HH \cdot VV^* \rangle \\ \langle HV \cdot HH^* \rangle & \langle |HV|^2 \rangle & \langle HV \cdot VV^* \rangle \\ \langle VV \cdot HH^* \rangle & \langle VV \cdot HV^* \rangle & \langle |VV|^2 \rangle \end{bmatrix}$$
Eq. A2.3

Furthermore, for compact polarimetric data, it is recommended to store them, by simple transformation, under the circular-circular basis, since RR and RL polarizations (Eq. A2.4) permit faster and more intuitive RGB visualizations (R=RR, G=RR/(RR+RL), B= RL).

CH-CV C2 circular
$$C2c = \begin{bmatrix} \langle |RR|^2 \rangle & \langle RR \cdot RL^* \rangle \\ \langle RL \cdot RR^* \rangle & \langle |RL|^2 \rangle \end{bmatrix}$$
 Eq. A2.4

A2.2: Polarimetric Radar Decomposition (PRD)

Different methodologies allow decomposition of coherent dual-polarization data or fully polarimetric data to meaningful components summarizing the scattering processing with the interacting media. Decomposition techniques are divided in two categories: Coherent and incoherent.

- Coherent decompositions express the scattering matrix by the summation of elementary objects of known signature (ex.: a sphere, a diplane, a cylinder, a helix, ...). They are used mainly to describe point targets which are coherent. As for examples, coherent PRD could be (but not limited to):
 - a. Pauli decomposition (3 layers)
 - $|\alpha|^2$: sphere (odd-bounce interaction) [Intensity]
 - $|\beta|^2$: 0° diplane (even-bounce interaction) [Intensity]
 - $|\gamma|^2$: 45° diplane (volumetric interaction) [Intensity]
 - b. Krogager decomposition (5 layers) (Krogager, 1993)
 - $|\kappa_\sigma|^2$: sphere (odd-bounce interaction) [Intensity]
 - $|\,\kappa_\delta|^{\,2}$: diplane (odd-bounce interaction) [Intensity]
 - $|\kappa_{\eta}|^2$: helix [Intensity]
 - θ : orientation angle [degrees]
 - ϕ_s : sphere to diplane angle [degrees]
 - c. Cameron (nine classes) non-dimensional layers (Cameron *et al.*, 1996)

Table A2.1

Classes	ID
Trihedral	1
Dihedral	2
Narrow Dihedral	3
Dipole	4
Cylinder	5
¼ wave	6
Right Helix	7
Left Helix	8
Asymmetrical	9

- 2. **Incoherent decompositions** describe distributed targets in terms of scattering mechanisms and their diversity. They are generated from averaged Covariance, Coherence or Kennaugh matrices. As for examples, incoherent PRD could be (but not limited to):
 - a. Based and saved on intensity of scattering mechanisms can be (Freeman and Durden, 1998; Yamaguchi *et al.*, 2011; Raney *et al.*, 2012)

Level 2b - Layers [Intensity]	Incoherent Decompositions		
	Freeman- Durden	Yamaguchi	m-chi
Odd-bounce (surface/trihedral)	х	х	х
Even-bounce (dihedral)	х	х	х
Random (volumetric)	х	х	Х
Helix		х	

Table A2.2

b. Based on eigenvector-eigenvalue decomposition expressing the diversity of scattering mechanisms (Cloude and Pottier, 1996) and types:

H : Entropy [] is the polarization diversity

A : Anisotropy [] is weighted difference between the 2^{nd} and 3^{rd} eigenvalues

- α : Odd-even bounce angle [Degrees]
- β : orientation angle [Degrees]
A2.3: Polarimetric Radar Decomposition Product Examples

From fully polarimetric covariance matrix ARD format **[CovMat]** (Level-2a), it is possible to apply any version of the popular Yamaguchi methodology, which decomposes the polarimetric information under relative intensities of 4 scattering types: Odd bounce, Even bounce, Random (volume) and helix. Figure A2.1b) shows HH intensity of a RADARSAT fully polarimetric acquired over a Spanish area. Decomposition using Yamaguchi methodology (Yamaguchi *et al.*, 2011) can be expressed in RGB colour composite (Figure A2.1c) where Red channel refers to even bounce scattering like urban area; Green channel is random scattering like vegetation; and Blue channel is odd bounce scattering like bare soil. Figure A2.1d) is equivalent to c) where radiometric normalisation (terrain flattening) has been applied with the help of the DEM of the scene (Figure A2.1a).

Figure A2.1 Example of polarimetric decomposition generated from ARD covariance format. **a)** Shaded DEM of the area; **b)** RADARSAT-2 HH intensity; **c)** Yamaguchi decomposition colour composite (Red: even bounce, Green: random, Blue: odd bounce); **d)** Same as c) with terrain flattening option. Generated from Radarsat-2 FQ18W acquired over Murcia, Spain on 18 June 2014 ©MDA 2014

Figure A2.2 is a **[PRD]** compact polarimetric m-chi decomposition (Raney *et al.*, 2012) simulated from two Canadian prairies Radarsat-2 fully polarimetric scenes acquired in May and June 2012. In May, before the growing season (Figure A2.2a), m-chi shows mainly surface scattering from bare soil (blue channel) and vegetation interaction from forested areas (green channel), while in June (Figure A2.2b) growth of vegetation modifies the radar signal with interacting media function of the vegetation density and geometry which increase the amount of even bounce (red channel) and random scattering.

Figure A2.2. m-chi decomposition colour composite of simulated compact polarimetry from Radarsat-2 over an agriculture area. RGB representation: Red: even bounce, Green: random, Blue: odd bounce. *a*) 3 May 2012; and *b*) 18 June 2012. Generated from Radarsat-2 FQ6W acquired over SMAPVEX12 campaign Manitoba, Canada on 3 May and 20 June 2012 ©MDA 2012

Annex 3: Ocean Radar Backscatter [ORB] example

In contrast to [NRB] and [POL], CEOS-ARD Ocean Radar Backscatter [ORB] products are geoid corrected and are provided in the Sigma-Nought (σ_E^0) backscatter convention (Figure A3.1a), which is recommended for most ocean applications. In addition, availability of the "Local (or Ellipsoidal) Incidence Angle Image" (Figure A3.1d) and "Look Direction Image" per-pixel metadata are highly recommended (otherwise the general metadata "1.7.12 Look Direction Polynomials") since they required for operational applications like ocean wind field estimates.

a)

Figure A3.1 Sentinel-1 [ORB] product. Tropical Cyclone Harold passing Vanuatu on April 6, 2020. a) VV intensity **b)** VH intensity **c)** Data mask image **d)** Local incident angle. Processing: A. Rosenqvist (soloEO).

Another useful file is the "Mean Wind-Normalised Backscatter Measurements" (Figure A3.2b) which efficiently attenuates intensity variation along range and visually enhances oceanic features. This file is calculated as the ratio between the backscatter intensity and a simulated backscatter intensity image generated using an ocean surface wind model, like CMOD_IRF2 (Quilfen *et al.*, 1998) for VV polarization or CMOD_IRF2K (Vachon and Dobson, 2000) for HH polarization, and the SAR local incidence angle and the look direction information.

a)

b)

Figure A3.2 Sentinel-1 EW [ORB] product. **a)** ORB intensity (Sigma-Nought); **b)** Intensity compensated with the "Mean Wind-Normalised Backscatter Measurement" (i.e., not Sigma-Nought) and geocoded. Processing: G. Hajduch (CLS).

Annex 4: Geocoded Single-Look Complex [GSLC] example

In contrast to basic **[NRB]** and **[POL] products**, CEOS-ARD Geocoded SLC **[GSLC]** products are kept close to the native resolution in complex data format for which local topographic InSAR phases, relative to a reference orbit (Zebker *et al.*, 2010; Zebker 2017), have been removed. Having a volume of **[GSLC]** products acquired over repeat cycles, already radiometric and phase terrain corrected and geocoded (Figure A4.1a) and Figure A4.1b), allows user-friendly production of a first iteration of the InSAR coherence (Eq. A4.1 and Figure A4.1c) and differential phases (Eq. A4.2 and Figure A4.1d) in between **[GSLC]** pairs, simply by applying local averaging window over the product of a **[GSLC]** product (GSLC1) with the complex conjugate of a second **[GSLC]** (GSLC2) divided by their local averaged intensities. These intermediate files could be used for coherent change detection analysis and surface displacement monitoring.

Complex coherence:
$$\rho = \frac{\sum [GSLC_1 * conj(GSLC_2)]}{\sqrt{\sum |GSLC_1|^2 * \sum |GSLC_2|^2}}$$
Eq. A4.1

The InSAR differential phase (Eq. A4.2) is the argument of the complex coherence estimated with Eq. 4.1.

InSAR differential phase:
$$\varphi = \arg(\rho)$$
 Eq. A4.2

Some advanced [NRB] or [POL] products could include per-pixel "Flattened Phase" data (item 3.7). This "Flattened Phase" enables the possibility to perform InSAR analysis as with two [GSLC] products. As for example, from two different [NRB] products (NRB1) and (NRB2), acquired over repeat cycles (i.e., on the same relative orbit), containing γ_T^0 and their corresponding "Flattened Phase" (FPh1) and (FPh2) per-pixel data, the complex InSAR coherence (Eq. A4.3) can be estimated in the similar manner as Eq. A4.1 for [GSLC] products.

Complex coherence:
$$\rho_{NRB} = \frac{\sum [(\sqrt{NRB_1} \cdot e^{i \cdot FPh_1}) \cdot conj(\sqrt{NRB_2} \cdot e^{i \cdot FPh_2})]}{\sqrt{\sum NRB_1 * \sum NRB_2}}$$
 Eq. A4.3

Figure A4.1 Sentinel-1 [GSLC] products example over Death Valley National Park, California, US. *a*) GSLC1: Intensity data of the first [GSLC] product (2017-05-27); *b*) GSLC2: Intensity data of the second [GSLC] product (2017-06-08); *c*) InSAR coherence map generated directly from A4.1a) and b); *d*) InSAR differential phase map generated directly from A4.1a) and b).

Some advanced [GSLC] product can be provided with "2.12 Radar Unit Look Vector Grid Image" perpixel metadata (Figure A4.2) which gives the accurate 3-D components radar unit look vector used as for example in decomposing the vertical and horizontal component of an InSAR surface displacement estimate.

Figure A4.2 3-D components radar unit look vector of the [GSLC] product in Figure A4.1. a) x unit component; b) y unit component; c) z unit component.