Use of C-band SAR for Global Forest Monitoring?...Yes!!

Marco van der Kooij, MDA SDCG, March 6, 2012 mvanderkooij@mdacorporation.com

© MDA Geospatial Services Inc. 2009 – All Rights Reserved

Content

- SAR and C-Band SAR for forest applications: limited benefit?
- Approach for extracting change and canopy texture information
 - Use of exactly repeated SAR acquisition geometries
 - Use of stack processing methods
 - Powerful change detection methods
- Examples Brazil
- RADARSAT-2 new wide swath (up to 180 km) high/medium resolution (3-10 m) image modes and capacity
- <u>"The Change Detection Machine":</u> frequent high resolution monitoring of forests

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

3

Stacking... Exactly repeated SAR images

SAR Stacking... How and Why...

approx 1 x 1 km typical forested terrain (SAR image RADARSAT-2 MF, 5 m resolution)

The benefit of stack-based archive imagery an example of use of ~20 archive scenes at 5 m resolution

individual trees, fields, variations in texture of vegetation

Canopy texture in stacked C-band SAR images/DA

UFW, HH, Feb 17, 2012 (45 km swath, 3 m resolution)

Texture (from 2 scenes of UFW)

20-40 m

в

Spatial texture map from SAR

Quality depends on spatial and radiometric resolution

Rorainopolis (Northern Brazil)

Dec 27 2011, Jan 20 + Feb 13, 2012, MFW22, HH, res: 5 m, swath: 90 km

Use of Spatial texture Mapping of clearings and natural terrain Savannas and wetlands Temporal average of 3 scenes MFW (5 m resolution) **Spatial** scales < 9 m в G 9-15 m 15-30 m 15 ent. Use, duplicat

SAR Stack-based Forest Change Detectio MDA

Repeat of identical or nearly identical geometry

"punched holes" in the forest

Examples of change detection MFW 5 m resolution DA

"punched holes" in the forest

Overview of cuts

December 27, 2011 – February 13, 2012

Construction or widening of logging road

Very many small cuts that are close to or **below modis detection limit**

Construction or widening of logging road

Large recent clearcuts

season with modis

difficult to detect in rain

Overview of cuts

December 27, 2011 – February 13, 2012

Combined visualization with vector data bases (rural and municipal boundaries, DETER alerts (pink, Modis)

Sub-area 1, example of large recent cut

Sub-area 2, example of detection of patterns of small-scale activity

Sub-area 3, example of new road (or widening of road) to nearby creek

RADARSAT-2, new wide image modes MDA

Summary of New image modes introduced in

2011

	Resolution	Resolution New Swath Width		
Wide Ultra-Fine	3 m	38-54 km (from 20 km)		
Wide Multi-Look Fine	5 or 10 m (1 or 4 looks)	90 km (from 50)		
Wide Fine	10 m	120-180 km (from 50 km)		
Wide Fine Quad-Pol	10 m	50 km (from 25 km)		
Wide Standard Quad-Pol	20 m	50 km (from 25 km)		

New XF (Extra Fine) image mode: 24 day repeat complete coverage (ascending + descending) of very large areas: to be released in June 2012

	Resolution	New Swath Width
XF-1, 2, 3, 4 Inc. angles 20 ^o - 50 ^o	5 m (1 look)	110-180 km

Great acquisition capacity for RADAR monitoring

An example at 5 m resolution Performance measure = km^2 / day

Satellite	Resolution	Swath width	Estimated Maximum Commercial Capacity	Performance measure (km ² / orbit)	Performance measure (km ² / day)
RADARSAT-2 XF (SLC)	5.0 m	150 km	24.5 minutes/orbit	1,540,000 km ²	22,100,000 km ²

RADARSAT-2 has excellent coverage performance and is suitable for large area repeat monitoring

Conclusions

- C-band SAR is excellent and suitable for forest monitoring by using stack-based acquisition, processing and detection methods
- RADARSAT-2 high resolution (5 m) wide swath (150 km) modes are an EO breakthrough
- Wall-to-wall texture maps of the forest canopy might be obtained e.g. on a yearly basis for purpose of land use, forest regeneration mapping at resolutions of 25-50 m.
- Precise forest change detection can be obtained frequently and reliably (e.g. 1/month) for forest cut alerts.
 - Resolutions (MMU 0.1 to 1.0 Ha) are 1 to 2 orders of magnitude better than current systems
 - Wall-to-wall change detection and data mining
- R-2 capacity sufficient for wall-to-wall monitoring at 5 m. Local downlink capacity required