# Developing a Sampling Strategy: Examples from Phase 1 using multi-source remotely sensed data



#### **Current Status**

- Initial piloting leveraging existing projectsdemonstrating feasibility
  - Argentina
  - US
  - Canada
  - Australia
- Need discussion on next steps
  - Currently IP states a global sampling approach for main producer countries

#### Generic multi-source approach

Wall to wall is not always feasible, however sampling frames may provide statistically viable data at a fraction of the cost and effort

- Philosophy integrate time-series multi-spectral, multi-resolution remote sensing data streams to improve cropland characterization for area estimation
- National-scale indicator mapping with coarse res MODIS data by crop type for targeted stratification, calibrated by Landsat cover characterizations
- Samples of Landsat and RapidEye to derive cultivated area estimation
- Incorporation of national-scale indicator maps in a regression estimator procedure

### Sampling Strategy

A nested stratified, multi-resolution sampling approach is a complementary approach which allows for more frequent acquisitions over selected sites that are statistically representative of entire area, often at higher resolution

#### **Nested Scales:**

- S1: Moderate res sample blocks
  - Number of sample blocks depends primarily on variability of crop types, of crop rotations, size of region, desired standard error
  - Blocks should be quite small (~20km)
- Frequency of acquisition, will depend on the complexity of the cropping system- approximately 5 scenes per growing season; 1-2 out of season
- S2: Fine res sample blocks
  - Smaller Subset of sample blocks requested for fine res with same acquisition frequency as S1 blocks

## Multi-Resolution Data for developing a generic approach to crop type area estimation



5km x 4.7km near Stuttgart, Arkansas



250 meter MODIS data used to identify the study area and samples, Landsat for mapping each sample rapideye for calval

### High Temporal Frequency is Critical for Crop Type Discrimination



## Sample population – MODIS percent soybean per 40km block, 2007 to 2010



#### High, medium and low soybean strata



Red=high (>19.8%), orange=medium (7.2-19.8%), yellow=low (0.5-7.2%)

### Landsat sample blocks



Red=high (>19.8%), orange=medium (7.2-19.8%), yellow=low (0.5-7.2%)

### RapidEye locations



Red=high (>19.8%), orange=medium (7.2-19.8%), yellow=low (0.5-7.2%)

#### SW Minnesota Landsat 5-4-3



24km x 20km, centered on 95 35 24W, 44 19 38N

SW Minnesota RapidEye 4-5-3











### Field-Scale Classification Comparison



RapidEye

Field

|          | Landsat |      |       |  |  |
|----------|---------|------|-------|--|--|
|          |         | No   | Yes   |  |  |
| RapidEye | No      | 0.2% | 2.5%  |  |  |
|          | Yes     | 0.4% | 97.0% |  |  |

|          | CDL |      |       |  |  |
|----------|-----|------|-------|--|--|
|          |     | No   | Yes   |  |  |
| RapidEye | No  | 0.0% | 2.7%  |  |  |
|          | Yes | 0.1% | 97.2% |  |  |

### Argentina RE Sample Blocks



## Sampled Fields visited for Validation within a block



### Argentina 2011-12 Field Campaign









#### Example results to date for 2011

#### Argentina

- USDA estimate 178,000km2
- MODIS/Landsat estimate 117,800km2 +/-6,502 SE

#### USA

- USDA estimate 298,600km2
- MODIS/Landsat estimate 212,324km2 +/-6,645 SE

#### Brazil

- USDA estimate 250,000km2
- MODIS/Landsat estimate 171,000km2 +/-9,064 SE

## Landsat tile selection based on a general croplands mask and available cloud free scenes



## Three Landsat scenes chosen for training: before peak, peak, and after peak

May 9<sup>th</sup> 2012 September 14<sup>th</sup> 2012 November 1<sup>st</sup> 2012

## Final MODIS level wheat mask for Australia expanded out beyond initial training Landsat tiles



#### **Conclusions**

- Still R&D mode- objective is to evaluate operational feasibility
- For area estimation of crop type using earth observations, sampling is a viable option
  - In most cases, there are not sufficient time-series observations at an appropriate spatial resolution to perform wall-to-wall mapping of crop type
- Developing a sound sampling strategy is complex and costly!
- Scale must be considered per agricultural growing region
  - Can MODIS be used for a stratification or does landsat need to be used?
  - can Landsat or RapidEye provide reliable area estimation in China for soybean cultivated area? How many within-season images are needed for more complicated early/late planting systems as in Argentina?
- Validation of sample block data is critical!!
  - Crop type identification (per field classification)
  - Field extent (pixel counting and possible bias in area mapped per field)
- Coarse Res (MODIS) is important
  - Used to stratify regions to improve sampling efficiency
  - Used as a within-season crop indicator auxiliary variable in a regression estimator procedure to reduce uncertainty
- Generic methods that can be ported globally are possible
  - Will provide internally consistent comparisons for global production estimation
- GEOGLAM needs to develop requirements for sampling this calendar year- commentary to requirements developed within JECAM