Status Report for DI-06-09

Use of Satellites for Risk Management

Guy Seguin (CSA), Chair, CEOS Disaster SBA Team, PoC for DI-06-09 and DI-09-02B

Slide: 1 GEO Workplan Symposium, Pretoria, 17-19 May, 2010

DI-06-09 – Use of Satellites for Risk Management

- 1. Define and facilitate implementation of satellite constellations for risk management from a multi-hazard perspective.
- 2. Undertake the consolidation of the validated requirements and examine options for system development and implementation
- Work on first draft of architecture report (gaps and analysis), with initial focus on floods, to be followed by a multi-hazard analysis,
 - Q4-fall 2010
- Development of plan for satellite data use by disaster management community
 - Q2-2011
- Recommendations for future satellite systems and final plan for satellite data use
 - Q4-2011

Flood Hazards Deciles

DI-06-09 – Approach

- Consolidated user requirements developed with UNOOSA in 2008
- Examine high level conclusions from user needs
- Derive architecture/measurement requirements
- Perform gap analysis and examine results
- Review GEOSS 10-year objectives
- Establish roadmap for improved activities for each disaster cycle phase
 - mitigation
 - warning
 - response
 - recovery
- Develop disaster video (tbc)

Flood Disaster Cycle Phases

Phase Requirements	Mitigation	Warning	Response	Recovery
Target	Topography Hydrological models Historical atlas of floods Flood models/simulations New infrastructure, houses Land-use classification Monitoring of dikes and dams	Precipitation Water level (rivers, lakes) Weather forecast Soil moisture Snow-water equivalent Signs of catastrophic infra failure	Water level (rivers, lakes) Extent of flood Status of critical infrastructure Weather forecast	Status of critical infrastructure Damage assessment Flooded areas
Revisit	1 to 3 years (imagery) 5 to 10 yrs (topography)	Daily or better during high risk period	Daily in early morning; twice daily if possible	Weekly (major floods) for several weeks to several months
Timeliness	Weeks	Hours	Hours (2-4 max)	1 day
End use	Integration in land use planning/zoning Baseline for response	Decision support for warnings & evacuation	Situational awareness Resource allocation support Initial damage assessment	Tracking affected assets Charting progress

Systems Approach to Disasters

6

Satellites for Risk Management: Measurements and CE Gap Analysis

Disaster SBA Information

- Current SEO database contains shows 339 (of 415) missions, 391 (of 984) instruments and 88 (of 146) measurements relevant to Disasters.
- These measurements are a mixture of atmosphere, land and ocean parameters.
- Measurement requirements are based on the GEOSS 10-Yr Implementation Plan.

"Stop-Light" Chart RED = 0 missions YELLOW = 1 to 5 missions WHITE = > 5 missions

Next Steps

Floods Requirements Development

- Verification of identified models and products
- Identification of new models and products
- Identify required measurements and associated detailed parameters need documents, contacts, etc
- Check against matrix to identify missing floods related measurements
- Run a high level gap assessment to identify missions and instruments

Mission and Instrument Details

- For identified missions/instruments, populate the mission and instrument detailed parameters
- Without this information, online automation of the gap analysis process is not possible.

Gap Analysis Capability

- Will be able to run gap analysis against products, models, or requirements
- Gap analysis will produce timeline charts of missions/instruments

Measurement requirements Gap analysis Presentation to CEOS Plenary

04/10

06/10

Gap Analysis

User requirement product identification

10/10

Χ

GEOSS Targets and Achievements

By 2015

More timely dissemination of data in support of full cycle of disaster management at local, national and regional levels

Development of a multi-hazard, end-to-end approach for disasters

Support implementation of Hyogo Framework

2010 Potential CEOS Contribution to GEO Disaster Tasks

- DI-06-09: Use of Satellites for Risk Management
 - DI-09-01: Systematic Monitoring for Geohazards Risk Assessment
 - o a) Vulnerability Mapping and Risk Assessment
 - **o** b) Seismographic Networks Improvement and Coordination
- DI-09-02: Multi-Risk Management and Regional Applications
 a) Implementation of a Multi-Risk Management Approach
 - o b) Regional End-to-End Disaster Management Applications
 - DI-09-03: Warning Systems for Disasters
 - o a) Tsunami Early Warning System of Systems
 - o b) Implementation of a Wildland Fire Warning System at Global Level

Thank you...

Slide: 13 GEO Workplan Symposium, Pretoria, 17-19 May, 2010