

Updated Status of CMA Satellite Programs

Jun Yang, Shihao Tang, Xiuqing Hu

National Satellite Meteorological Center, CMA

CEOS Plenary 2017

Agenda Item # 4.15

Rapid City, South Dakota, USA

19 – 20 October 2017

Current Status

GEO Programs

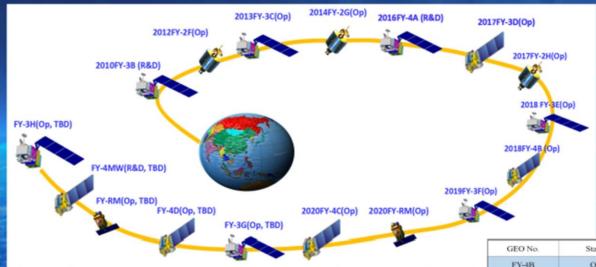
- FY-2D/E/F/G(op.)
- FY-4A(R&D), new generation!

LEO Programs

- FY-3A/B(R&D)
- FY-3C(op.), AM
- FY-3D(op.), PM, coming soon!

Others (cooperative missions)

- TANSAT(R&D),CO2 & aerosol led by MOST
- GF-4 (R&D), High Spatial Res. Imaging In GEO led by CNSA



Future Satellite Programs

Future Plan: National Space Infrastructure Plan (NSIP)

In 2015, the Chinese government has approved an extensive plan called NSIP, which will cover a number of earth observation satellite series including atmosphere, land, and ocean satellites in period of 2015-2025.

Atmosphere Observation (12+2 satellites in coming decade)

- Climate & Environment Monitoring Satellite series: FY-3 low earth orbit series (7)
- Weather Monitoring Satellite series: FY-4 geostationary orbit series (5)
- Air Quality Monitoring Satellite series: New Series (2)

GEO No.	Status	Launch
FY-4B	Op.	2018
FY-4C	Op.	2020
FY-4D	Op.	2021-2025 (TBD)
FY-4MW	R&D	2021-2025 (TBD)

LEO No.	Orbit	Status	Launch
FY-3D	PM	Op. planed	2017
FY-3E	EM	Op, planed	2018
FY-3F	PM	op., planed	2019
FY-RM	Inclined	R&D, Planed	2020
FY-3G	TBD	Op., planed	TBD
FY-3H	TBD	Op., planed	TBD

Latest progress on CMA satellite programes

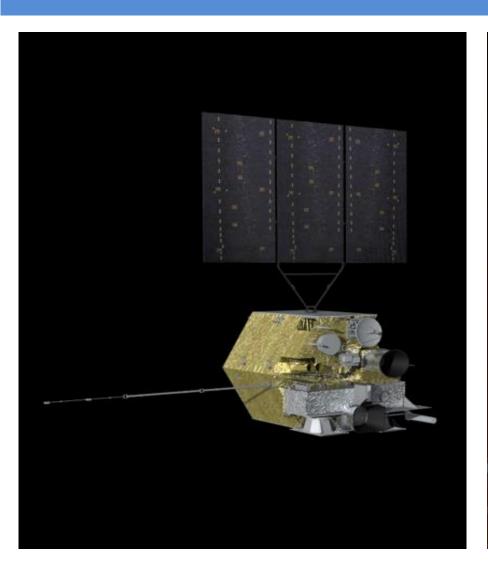
1. FY-4A

- The first GEO. meteorological satellite of new generation
- Launched on Dec.11, 2016

2. FY-3D

- The operational afternoon orbit LEO. satellite, will co-work with FY-3C in morning orbit.
- Launch date is scheduled in coming Nov. 2017!

3. TANSAT


- A joint R&D satellite program initiated by MOST, and supported by CMA which is responsible for data reception, processing and distribution, taking advantage of current FY-3 ground segment resources.
- Launched successful On Dec.22, 2016

4. GF-4

- The 4th satellite in High res. Earth Obs. Satellite Project led by CNSA, while CMA is responsible for data reception, transmission and preprocessing of MET mode.
- Launched in Dec. 29,2015
- Commissioning test finished and handover declared on June 1st, 2016

FY-4A: The First CMA New-generation Geostationary Meteorological Satellite

Launched on Dec.11,2016,Located at 105E, will be ready for operation soon!

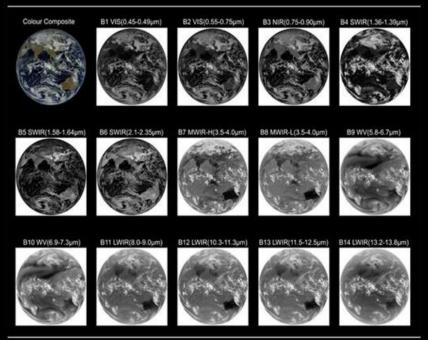
4 brand-new instruments on board FY-4A

Instrument		Purposes	
	AGRI: Advanced Geosynchronous Radiation Imager	14 -channel Earth images	
	GIIRS: Geostationary Interferometric InfraRed Sounder	Clear-sky atmospheric temperature and humidity profiles	
	LMI: Lightning Mapping Imager	Lightning distribution map in China area	
	SEP: Space Environment Package	Space electric and magnetic environment information	

First image of AGRI

FY-4A GEOSTATIONARY METEOROLOGICAL SATELLITE

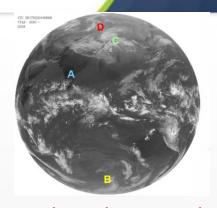
The First Colour Composite Image of FY-4A AGRI

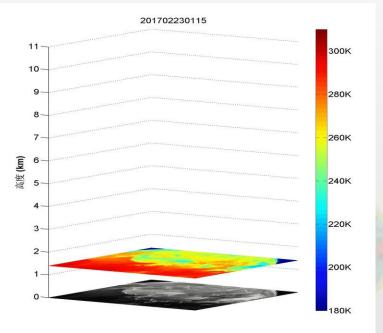


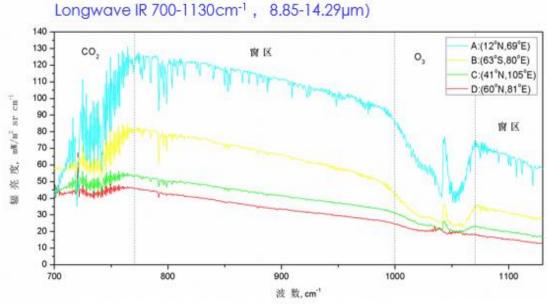
February 20th, 2017 05:15 (UTC)

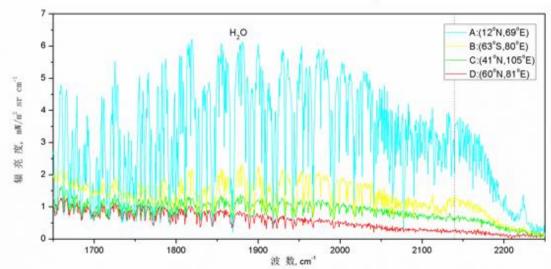
FY-4A GEOSTATIONARY METEOROLOGICAL SATELLITE

The First Images of FY-4A AGRI

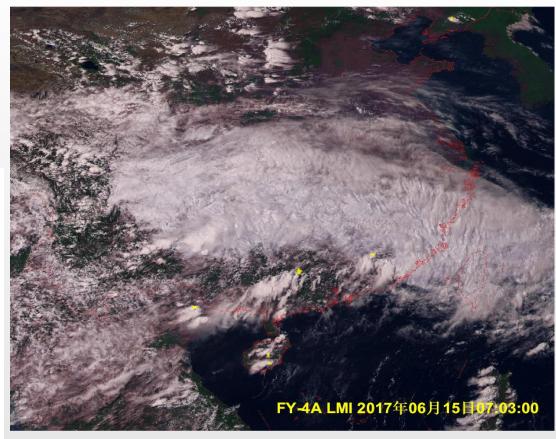

February 20th, 2017 05:15(UTC)




GIIRS: Geo. Interferometric Infrared Sounder



Spatial resolution: 16km, Spectral resolution 0.625


LMI: lightening Mapping Imager

LMI

Acquire lightning distribution maps over china region

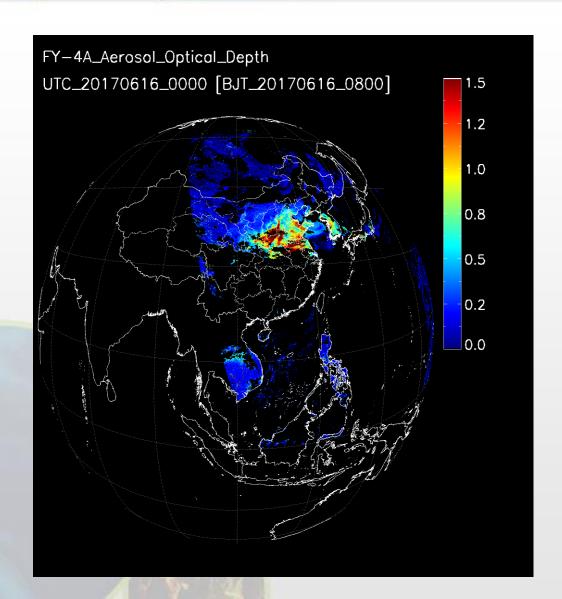
Spatial resolution	about 7.8 km at SSP	
Wave-length at center	777 4nm	
Band-width	1nm±0.1nm	
Detection efficiency	>90%	
False-alarm ratio	<10%	
Dynamic range	>100	
5NR	>6	
Frequency of frames	2ms (500 frames per sec.)	
Quantization bits	12	
Measurement error	10%	

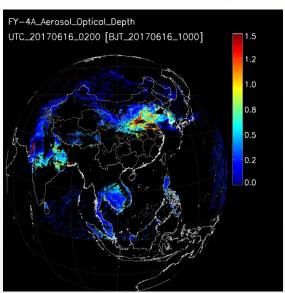
FY-4 Baseline Products

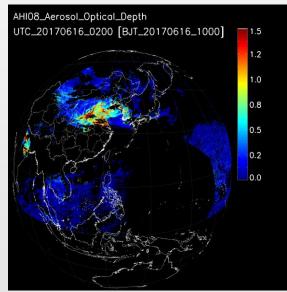
AGRI baseline products (25)
Clear Sky Masks
Cloud Type
Cloud Optical Depth
Cloud Liquid Water
Cloud Particle Size Distribution
Cloud Phase
Cloud Top Temperature
Cloud Top Height/Pressure
Fog Detection
Aerosol Detection
Aerosol Optical Depth
Tropopause Folding

AGRI baseline products
(cont.)
Surface Solar Irradiance
Blackbody Brightness Temp.
Outgoing Longwave
Radiation
Downward Longwave
Radiation
Upward Longwave Radiation
Reflected Shortwave
Radiation
Land Surface Temperature
Sea Surface Temperature
Land Surface Temperature
Land Surface Albedo
Land Surface Emissivity
Snow Cover
Fire/Hot Spot

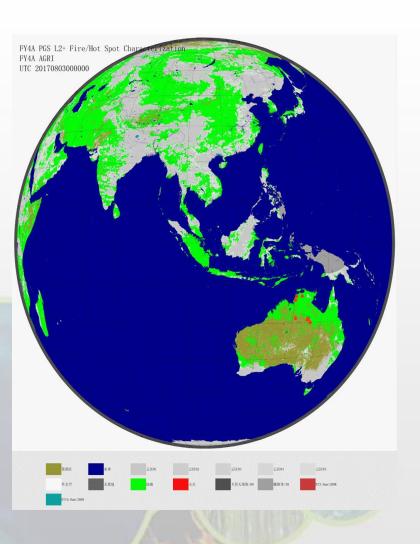
GIIRS baseline products (10)**Temperature Profile Moisture Profile Ozone Profile Total Ozone Total Precipitable Water Lifted Index CAPE** index K index SI index TT index LMI baseline products (3) Flash


Group

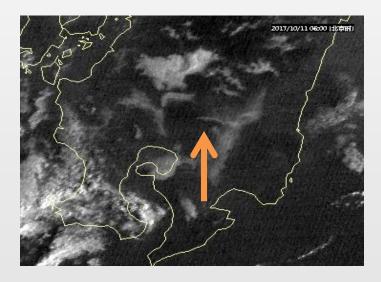

Event



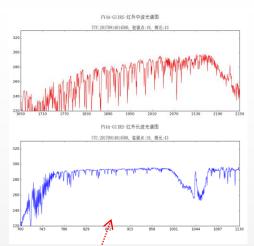
Examples of applications

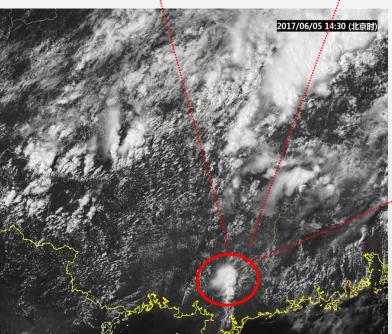




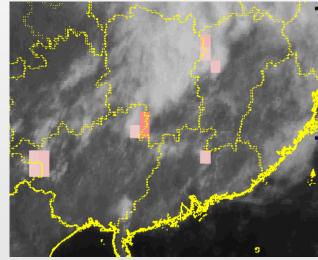


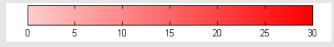
Examples of applications





Synergic application





- 1. FY-4A lightning frequency map: strong convective cloud clusters often acompany with obvious lightnings.
- 2. FY-4A high spatial resolution imager: finer structure and texture of strong convective cloud cluster; and clearer small scale cumulus line.
- 3. Cloud free atmospheric profile acquired from GIIRS can be used for nowcast warning.

LEO: The coming new satellite FY-3D

-- to be deployed in afternoon orbit

10 instruments on borad FY-3D:

□ Successive instruments:

MWTS-II: Microwave Temperature sounder

MWHS-II: Microwave Humidity sounder

MWRI: Microwave Radiation Imager

GNOS: Global Navigation Occulation Sounder

SEM: Space Environment Monitor

□ Improved instruments:

MERSI-II: Improved from MERSI

HiRAS: Upgraded from filter-type spectrometer

IRAS

□ New Instruments:

GAS: Greenhouse gases Absorption

Spectrometer

WAI: Wide-angle Aurora Imager

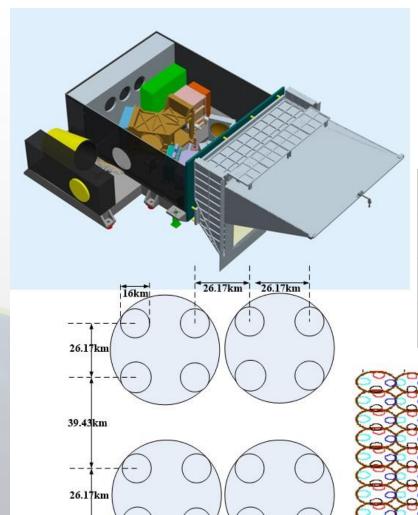
IPM: Ionospheric Photometer

MERSI→MERSI-II continuity and Evolution

MERSI-2 Improvement:

- Cover all bands in FY-3A/B/C MERSI
- Five more IR bands
- Circurrus cloud band 1.38um
- Water vapor bands In NIR and 7.2um
- Two IR split windows with 250m spatial resolution
- Higher accuracy from onboard calibration
- Lunar Calibration capability

Band	SNPP VIIRS	FY-3D MERSI-II	FY-3A/B/C MERSI
1	DNB	0.470	0.470
2	√	0.550	0.550
3	√	0.650	0.650
4	√	0.865	0.865
5	×	1.03	11.25
6	√	1.64	1.640
7	√	2.13	2.130
8	$\sqrt{}$	0.412	0.412
9	√	0.443	0.443
10	√	0.490	0.490
11	√	0.555	0.520
12	√	0.670	0.565
13	√	0.709	0.650
14	√	0.746	0.685
15	√	0.865	0.765
16	×	0.905	0.865
17	×	0.936	0.905
18	×	0.940	0.940
19	√	1.38	0.980
20	√	3.8	1.030
21	√	4.05	
22	×	7.2	
23	V	8.550	
24	√	10.8	
25	√	12.0	


□ 250 m
□ 1000 m

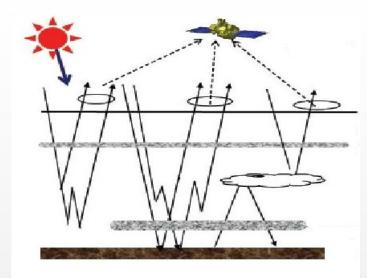
HIRAS Hyperspectral sounder

-- comparable with CrIS & IASI

Items	Specification	
Scanning cycle	10 s (33 FORs)	
FOV	1.1° (16Km)	
Scanning Line	29*4 FORs	
Max Scanning Range	± 50.4°	

Band	Spectral range (cm-1)	Resolution (cm-1)	NE∆T @250K	chs
Longwave	650 *– 1136 (15.38 μm-8.8 μm)	0.625	0.15K	778
Midwave1	1210 – 1750 (8.26μm-5.71 μm)	1.25	0.1K	433
Midwave2	2155-2550 (4.64μm-3.92 μm)	2.5	0.3K	159

GAS: Greenhouse gases Absorption Spectrometer

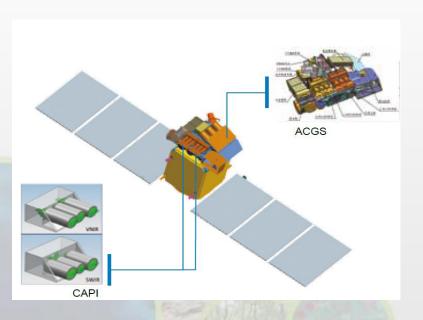

 Objectives: to measure CO₂ and CH₄ column density by using a SWIR Interferometer

• Spectral res.: 0.2 cm⁻¹

Spatial res.: 13km

Number of Bands: 4

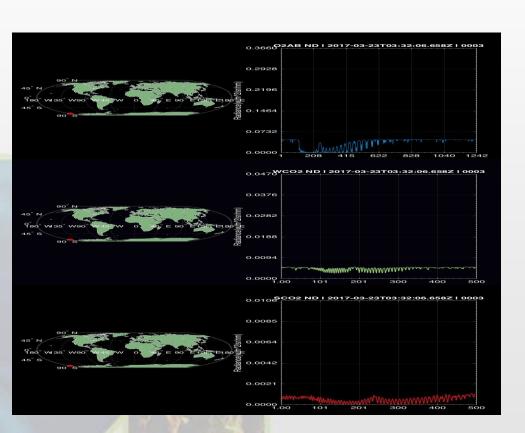
Specifica	ation	FY-3D GAS	FY-3G GAS-II	TanSat	осо
	0.76	\checkmark	√	\checkmark	√
Spectral bands	1.6	\checkmark	√	\checkmark	\checkmark
(µm)	2.0	√	√	√	√
	2.3	\checkmark	√	_	_
Spectral Resolution	<u>(nm</u>) @1.6µm	0.073	0.07	0.12	0.0757
Spatial Resolu	tion (km)	13.2	< 3	2	1
Swath(k	(m)		>100	20	10
Sample p	oints	7		9	8
Sample interval (S)		2.2		0.3	0.333

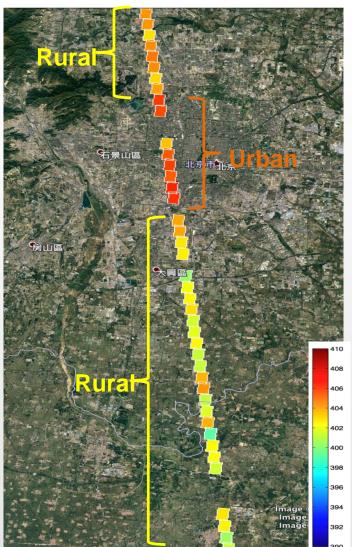


TANSAT: Chinese Carbon satellite

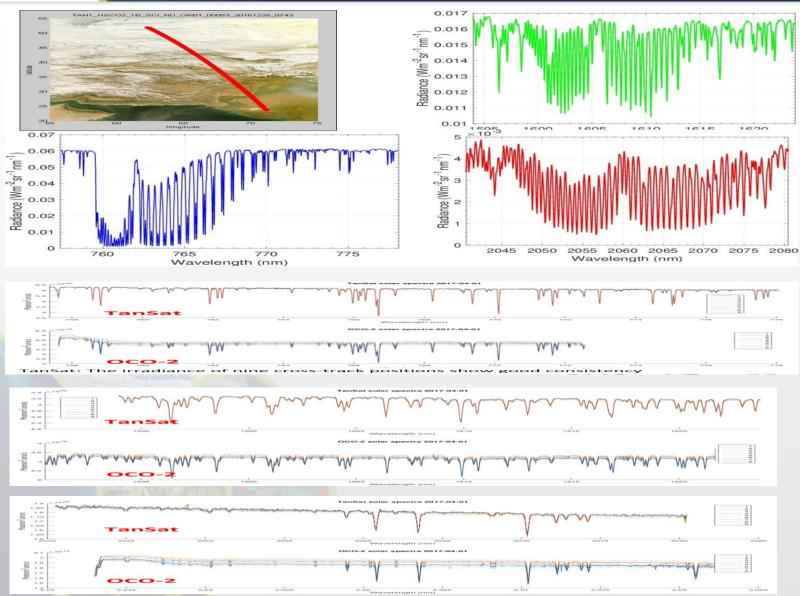
TANSAT A joint mission by: MOST(Ministry Of Science and Technology), CAS(Chinese Academy of Science), and CMA. Mission objective: *To retrieve the atmosphere column-averaged CO2 dry air mole fraction (XCO2).*

TANSAT satellite was successfully Launched in Dec. 22, 2016

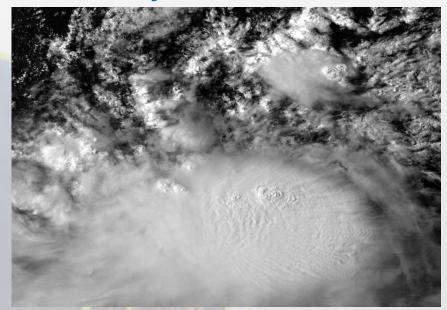

1)ACGS(Atmospheric CO2 Grating Spectrometer) is mainly used to measure atmospheric CO2. It has three spectral bands. One is the oxygen A-band with a centroid wavelength of 760nm. The other two are weak and strong carbon dioxide absorbing bands with centroid of 1610nm and 2060nm.

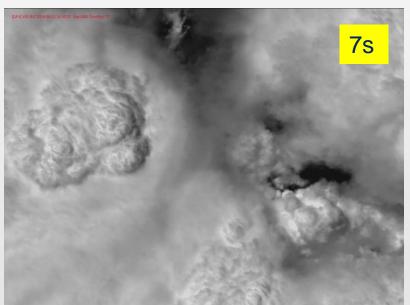

2)CAPI(Cloud and Aerosol Polarization Instrument) is a 5-channel UV/VIS/NIR/SWIR radiometer with three polarizations in two channels

- > TANSAT was successfully launched on Dec. 22,2016.
- Commissioning test has been finished by June,2017, and the Satellite was handed over to NSMC/CMA for operation
- All the data and products will be available soon.



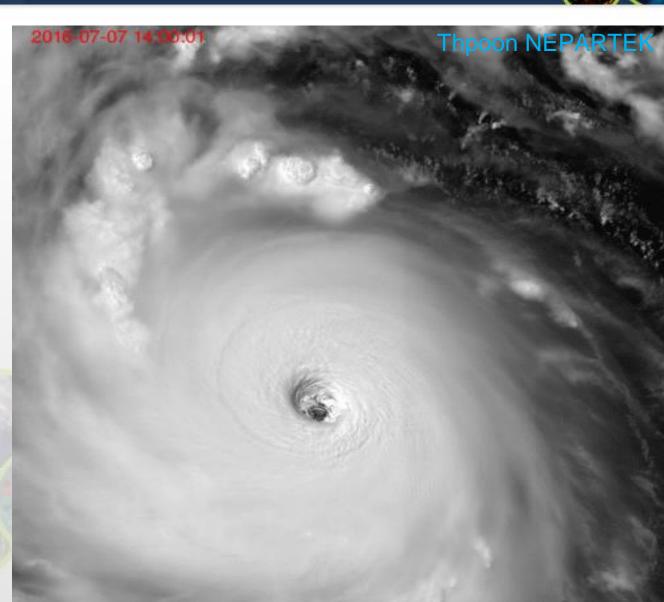
The first spectra of TanSat





Status of GF-4

- Launched on 29 December 2015, Location at 105.6°E
- GF-4 is China's first high resolution geostationary satellite. Its spatial resolution is 50m at visible and near infrared band, and 400m at midinfrared band. Its temporal resolution can reach several seconds.
- Useful for the monitoring of rapid growing meco-or small scale convective system.



GF-4: New eyesight from GEO orbit

Detector 10,000X10,000 Spatial res. 50 meters Temporal res. 10, 20, 60s

Thank you for your attention

