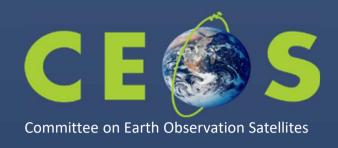


Proposals for Plenary 2023

- Volcano Monitoring: G-VEWERS
- Recovery Observatory: pre-operational RO 2024-26

Hélène de Boissezon, CNES Chair, WG Disasters Laura Frulla, CONAE Vice-Chair, WG Disasters


CEO\$ Plenary 15-17 November, 2023

Overview

- Two new activities put forward for approval in principle (data quotas to be established by Data Coordination Team within WG)
- **❖** G-VEWERS
- Pre-operational RO
- Use cases for operationalisation of EO at local level report (**for information**) will be available in December highlights presented
- CONAE (Laura Frulla) is incoming WG Disasters Chair.
 She is seconded by incoming Vice-Chair from UNOOSA (Lorant Czaran).
 Secretariat for the WG is provided by Andrew Eddy (Athena Global).

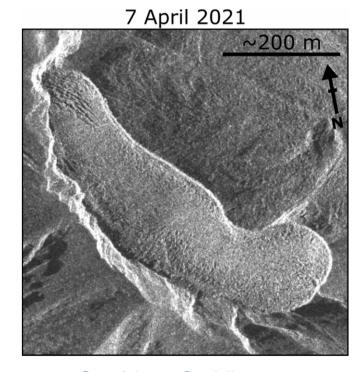
G-VEWERS:

Global Volcano Early Warning and

Eruption Response System Proposal

Volcano Monitoring: The Problem

- Volcanic eruptions threaten life, infrastructure, and the global economy, but eruptions can be forecast if monitoring data are recorded and analyzed before the onset of unrest
- Only about 35% of the ~ 600 volcanoes that have erupted since 1500
 CE have continuous ground monitoring
- Satellite data can make up for some of this gap, BUT:
 - We need the right data at the right volcanoes at the right times
 - Data should be freely accessible
 - Acquisition plans should be flexible (especially during a crisis)
 - Data latency should be low
 - Capacity building is critical
- The CEOS Volcano Pilot (2014–17) and Demonstrator (2019–23) are a blueprint for global volcano monitoring and early warning



Proposal: G-VEWERS

- Q: How do we achieve the goals of the global volcanology community to better monitor volcanoes and mitigate their hazards?
- A: Create a permanent Global Volcano Early Warning and Eruption Response System (G-VEWERS)
 - Permanent virtual facility for remote volcano monitoring
 - Biennial renewable quotas (akin to Supersites)
 - Made possible by best-effort contributions from academic institutions, volcano observatories, and space agencies
 - Leverage local capacity for monitoring and support local needs
 - Timely response to hazardous volcanic eruptions (dozens per year, daily monitoring needed)
 - Tracking of restless volcanoes (~200 per year, weekly monitoring needed)
 - Background monitoring of quiescent volcanoes (~1400, quarterly to every few years needed)

G-VEWERS: Partners and Management

- G-VEWERS is a partnership
 - Space Agencies (provide data and expertise)
 - Academic institutions (develop new derived products and conduct capacity building)
 - Volcano Observatories (utilize data products and build capacity to aid volcanic hazards mitigation)
- Management will be provided by an advisory panel composed of scientists representing the above institutions
- USGS will provide operational support

Soufriere St. Vincent

10x increase in extrusion rate

~48 hours before onset of
explosive eruption

Dualeh et al. (2023)

G-VEWERS: Requested Data Contributions from CEOS agencies

(indicative only – exact quotas to be agreed by DCT)

- 4000 scenes/year each for **TSX and CSK** for global volcano monitoring and early warning, provides for:
 - Daily monitoring of erupting volcanoes (30 VEI2 eruptions per year, averaging 75 days each is 2300 scenes per year)
 - Weekly monitoring of restless volcanoes (230 average restless volcanoes is 6000 scenes per year)
 - Background monitoring of quiescent volcanoes (quarterly to every few years is 300 scenes per year)
- TDX access for DEM generation
- 1000 scenes/year for **SAOCOM** (L-band for vegetated volcanoes)
- 20,000 km²/year for **Pleiades** (DEMs and change detection)
- Access to SPOT6–7 (high-res change detection)
- Archived SAR scenes as needed (hundreds per year)
- Other data to be requested periodically through WG Disasters on as required basis (biannual quota)

G-VEWERS: Outcomes

Outcomes:


- Showcase how CEOS data can be used to enhance public safety around the world
- Empower local volcano observatories and academic institutions to develop new skills and capabilities
- o Create a new community of active users of satellite data
- o Serve as a model for hazards assessment and mitigation

Deliverables:

- Biennial report documenting responses to active eruptions
- Academic presentations and publications
- Capacity building (site visits, workshops, students)

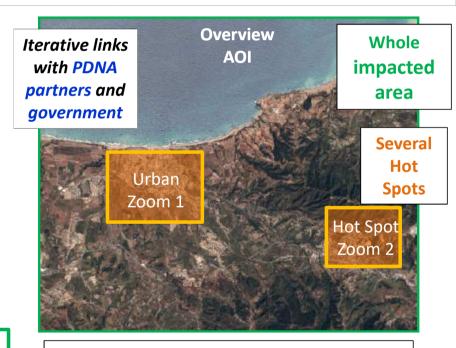
Ultimate goal is a safer global society due to better monitoring and forecasting volcanic activity

Proposal to establish a pre-operational

Recovery Observatory 2024-2026



Recovery Observatory (RO) A partnership between CEOS-World Bank-UNDP-EU



Satellites have become critical for Response to disasters ... but what about Recovery?

"Recovery Observatory": Process allowing operational use of EO for PDNA, Recovery Planning, then M&E

Collection of satellite images and maps at several scales during ~ 6 months after a major disaster

Ancillary data are indispensable: terrain validation data, aerial and drone data, statistics, cartography,

Summary of RO Demo activations

Activation	Pros	Cons	Comments
1. Beirut blaze	Synthetic update of situation	Very small area not representative of typical activation	Coordination with Copernicus but no other added CEOS value
2. Eta-lota hurricanes	Excellent. Multinational coordination. Innovative products (e.g. interferometry Sula Valley)	Request came months after events; no direct impact on early recovery	Demonstrated need for increased tripartite coordination
3. Haiti EQ	Activation in days; results in PDNA only input for agriculture and environment	None	Excellent showcase Successful Capacity Building example
4. Pakistan floods	Excellent quality of CEOS products for two areas retained for Phase 1; strong interest in DRF products (agriculture)	Lack of coordination; evolving need analysis led to gaps in EO products; poor uptake in PDNA	Large events (Pakistan, Nepal EQ,), pose unique coordination challenges
Turkey/Syria EQ	Strong willingness of CEOS to contribute; linkages to GSNL	Complex political situation postponed decision to activate indefinitely	No activation but support provided in determining all remote sensing data available
Myanmar Mocha hurr.	Strong technical case for quality product	Impossible to fit with timeline	Need to fast-track activation requests
	Libya floods: activated 13th Oct. for PDNA 25th Oct. 2023		

Accomplishments

- After nearly 3 years of activity, an efficient RO Demonstrator community working in best effort mode :
 - ✓ **Data providers**: ASI, CNES, ESA/Copernicus, DLR, International Charter Space & Major Disasters
 - ✓ Value adder contributors: Copernicus EMS, BGC, NASA, CIMA, LIST, CNIGS, ICube-SERTIT
- Operational results :
 - ✓ Lebanon : reconstruction monitoring regularly provided to Reform, Recovery & Reconstruction Framework (3RF)
 - ✓ **Eta-lota**: demonstration that very complex products can be delivered and used for improved understanding of long-term recovery (interferometric SAR for mm level subsidence analysis)
 - ✓ Haiti EQ: first products delivered in a relative rush mode that directly inform the PDNA with quantitative data (environmental and agricultural damage)
 - ✓ Pakistan: first products delivered in rush mode; some critical areas not addressed; coordination issues with broader recovery effort; better coordination of resources could have provided more comprehensive results.
- Various products generated and diverse types of satellite made available
- Excellent **collaboration** between the **stakeholders** and the **RO team**; RO team responsive to the emergence of new needs. Products welcomed by the recovery community to help reconstruction and better prepare to future events

RO Demo partner contributions

Openly available response data and products

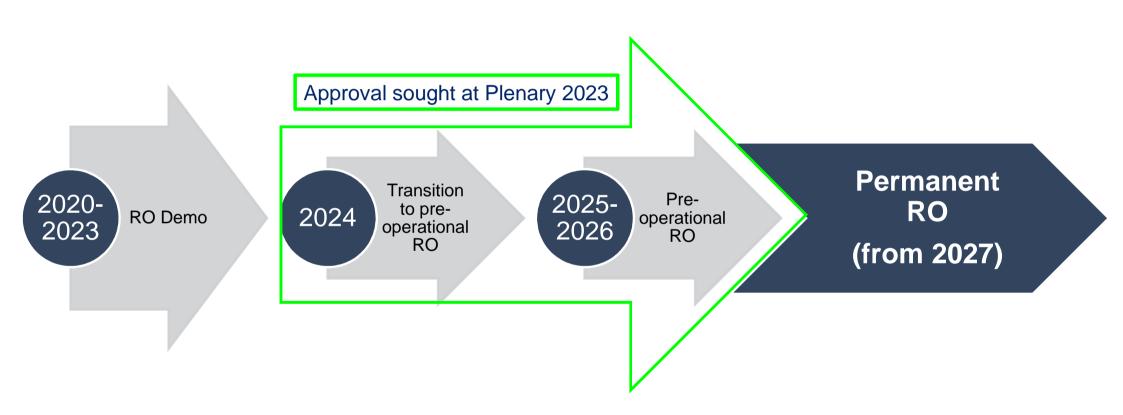
- International Charter Space and Major Disasters
- Copernicus EMS RM
- Sentinel-Asia
- UNOSAT
- Open-source sat data (Landsat, Sentinels, DTM)
- Data bases (landcover, population...)

CEOS best efforts RO data and products

- Dedicated acquisitions of commercial data
- Complex satellite products (e.g. SAR interferometry)
- RO liaison officer and overall coordination
- Value adding services
- Capacity building

Ad hoc contributions: academia, international organizations (e.g. CEMS RRM, FAO, UN)

- Linkages to Copernicus Risk and Recovery Mapping
- Value adding services
- Expert analysis
- Integration of other advanced data sources (e.g. social media, drones, ...)


Integrated Situational Awareness

to support recovery:

- Inform PDNA;
- Pre and post disaster baselines;
- Recovery Framework;
 - Medium term monitoring;
 - Capacity Building assessment & plan.

Establishment of Pre-operational RO Implementation Timeline

Necessary "Core" RO Establishment of pre-Operational RO

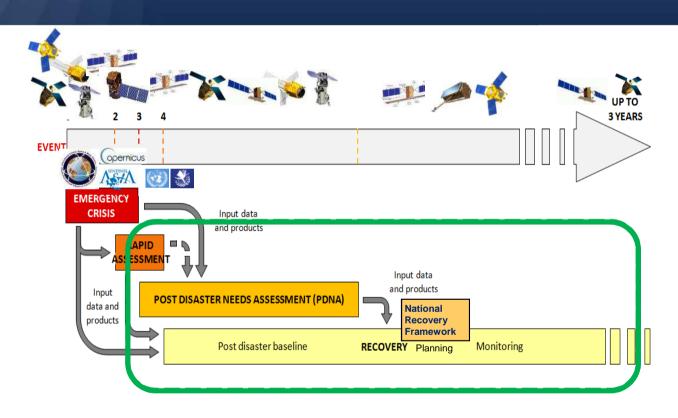
RO Secretariat and RO Liaison functions (transition by 2025/2026 to recovery stakeholders)

- Secretariat:
 - Identify dedicated RO funds that can be activated on demand WB/GFDRR and GDA, EU PDNA support, UNDP SOP for UNOSAT, etc
- Liaison:
 - Document and encourage satellite and value adding contributions from wide array of sources
 - Understand needs and coordinate tasking of CEOS satellites
 - Prepare dedicated PDNA contribution (rapid phase 1 for each activation)
 - Serve as **principal PoC for satellite community** with recovery stakeholders
- Capacity building assessment and involvement: involve local, national and regional technical expertise and propose reinforced capacity after each activation, in conjunction with EU Copernicus, WB, & CEOS WGCapD

CEOS data contribution Establishment of pre-Operational RO

- Assume 2 to 4 activations per year for 2024-2026
- Imagery requirements:
 - VHR optical: ~2,000 sq km per activation
 - **X-band SAR:** dedicated acquisitions to provide change detection products; hundreds of images (archived and new) per activation if interferometric analysis is useful
 - **L-band SAR:** dedicated acquisitions to provide change detection products
- Not significantly higher than existing RO Demo contribution, from same agencies (CNES, ASI, DLR, CONAE)
- Transition from VHR data provided by CEOS agencies to commercial data provision after 2026

Action plan proposal for 2024-26 Establishment of pre-Operational RO


Establish a capacity to provide 2 to 4 RO / year for the next three years, beginning in 2024:

- Target :
 - > one event per semester in 2024;
 - > one event per quarter in 2025 and 2026;
- Initially provide resources through ad hoc best efforts mechanisms (as in demonstrator);
- Q1/Q2/Q3 2024 work with partners to establish mechanisms for private sector and intergovernmental organisation RO activation (operational Q1 2025)
 - > WB/GFDRR mechanism to activate pre-qualified private sector support in conjunction with CB in country
 - Work with **UNDP and UNDP Crisis Bureau** to activate **UNOSAT** on regular basis for RO activations
 - Work with EU to task Copernicus EMS RRM to rapidly respond to recovery intervention requests, and to liaise with Copernicus Hubs
 - Work with EU to access existing EU framework contracts on PDNAs to ensure PDNAs benefit from satellite support

Outcome: RO integrated into Recovery process

"Recovery Observatory" allowing operational use of EO for PDNA, Recovery Planning & Recovery Monitoring & Evaluation

Report (DIS-22-03) on "Use Cases for the operationalisation of EO at the local level"

- Review activities to establish lessons learned in the operationalization of EO at the local level
- Specific examples from the Volcano Demonstrator, the RO Demonstrator and the Flood Pilot; input from the Sustainability sub-team (2022)
- * Key conclusions:
 - Local uptake on an operational level relies on strong user engagement within community of practice (CoP);
 - Challenges to user engagement include lack of awareness of specific EO benefits; insufficient capacity to exploit dedicated tools or data sets; insufficient applicability of global systems to local issues/resolution; insufficient funding for value-adding.
 - Partnerships within CoP or with international donor institutions can partially address some challenges.
- ❖ Paper being drafted and will be posted to website in December

New Chair team

WGDisasters Chair
 Nomination received from
 CONAE - Ms. Laura FRULLA

 Vice-Chair nomination from UNOOSA – Mr Lorant CZARAN

WGDisasters Incoming Chair Priorities CE 5

- ✓ Support Disasters activities totally aligned with CEOS SIT & Chairs priorities
 - Continue supporting existing pilots and demonstrators in the WGDis
 - Strengthen links between the WGDisasters and CEOS Working Groups, Virtual Constellations and Task Teams, and GEO
 - Continue activities related to SENDAI framework
- ✓ Explore and encourage new topics to add projects to the WGDis
- ✓ Continue supporting and enhancing the use of Al in image processing
- ✓ Support UNOOSA initiatives and UN SPIDER missions
- ✓ Promote and carry out outreach and training activities

Thank you!