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1.  Key objectives 
To provide a framework for long-term (+15 years) coordination of Committee on Earth Observation 
Satellites (CEOS) agency observing programmes in support of the needs of society for Agriculture, Forestry 
and Other Land Use (AFOLU)-related information, with a particular focus on the needs and ambition cycle 
of the Global Stocktake of the 2015 Paris Climate Agreement.  
 
To serve as a guiding vision for long-term space agency coordination around AFOLU. The Roadmap will 1) 
characterize the needs, services and applications required and 2) the products and observing systems that 
it can support; and 3) explain the need to plan for ground segment, space segment and services.  
 
An effective means for communicating the intentions of CEOS to society, the United Nations Framework 
Convention on Climate Change (UNFCCC) and the national inventory community to provide remote 
sensing observations to inform AFOLU-related greenhouse gas emissions and removals. 
 
Address basic observation continuity and the necessary agency coordination to achieve goals of sustained 
land-imaging of land-use and land cover change (i.e., activity data) and biomass estimates (to support the 
definition of emissions factors). 
 

Box 1: Greenhouse-gas emission and removal measurements covered by AFOLU reporting includes 
carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The measurement process estimates 
separately the emissions and removals of each gas from AFOLU activity data and emissions factors. The 
guidelines provided by the Intergovernmental Panel on Climate Change (IPCC) describe in detail the 
process of integrating activity data with emissions factors to estimate, for each sector, emissions and 
removals. The IPCC guidelines provide an approach that contributes aggregated information (i.e., by 
country) with generalized emissions factors that are representative of large regions, and activity data 
generated by statistical sampling of landscapes. The CEOS AFOLU roadmap provides traceability 
between remote-sensing derived spatially disaggregated activity data and emissions factors to be used 
to support estimating emissions and removals for national greenhouse gas inventories and for 
comprehensive monitoring of AFOLU-related greenhouse gases. 

 

The Roadmap has used expert opinion to define the policy needs and assumed AFOLU information needs 
for the Paris Agreement and the first Global Stocktake (2023) to the 2035+ timeframe on the assumption 
that this can inspire and drive the generation of a space agency response to define and plan for the 2035 
observing system that can: 

● Generate the 2035 observing system required to address the AFOLU information needs of society, 
e.g., the Paris Agreement and the ‘modalities, procedures and guidelines (MPGs)’ to 
operationalize it.; 

● Integrate AFOLU with top-down Greenhouse Gas (GHG) approaches for seamless Measurement, 
Reporting and Verification (MRV) support; 

● Consider the technologies and systems needed to realize this observing system; 
● Identify the stakeholders required at different stages of the value chain to ensure it can be 

sustained in the long-term (i.e. users, service providers, data product producers, observation 
providers); 

● Determine the technology development programmes and investments needed by space agencies 
to achieve them; and  

● Consider the programmatic commitments that will be needed to get there. 
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2.  Introduction 
Parties to the UNFCCC came together at their annual Conference of Parties in 2015 (COP21) in Le Bourget, 
Paris, and signed an accord that recognised the need for action by humanity to reduce the increase in 
greenhouse gases through a cooperative and constructive framework. This accord is known as the Paris 
Agreement[1]. The Paris Agreement aims to strengthen the global response to climate change in the 
context of sustainable development and efforts to eradicate poverty through addressing mitigation, 
adaptation and finance by: 
  

●  Holding the increase in global average temperature to well below 2 °C above pre-industrial levels 
and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels, 
●  Increasing the ability to adapt to the adverse impacts of climate change and foster climate 
resilience and low greenhouse gas (GHG) development 
●  Making finance flows consistent with a pathway towards low GHG emissions and climate resilient 
development. 

  
The Paris Agreement will also be implemented to reflect equity and the principle of common but 
differentiated responsibilities and respective capabilities in the light of different national circumstances. 
  
The mechanisms of the agreement were quite different from those considered at previous meetings of 
the Parties. Individual countries would be required to submit their anthropogenic emission reduction 
goals as part of their Nationally Determined Contributions (NDCs) every five years. Progress in reducing 
emissions would be measured through an Enhanced Transparency Framework (ETF) and stocktaking 
process, with a view to achieving the ambitions of the Agreement set out above. 
  
It is worth noting in passing that there is already a very strong implied requirement for systematic 
observations in the aims set out above through the explicit link of future temperature rise to current GHG 
emissions. This is explored further in Section 4 concerning the IPCC and its procedures. 
 
The biosphere plays a critical role in climate change by cycling greenhouse gases (GHGs) between the land 
and atmosphere. Each year, terrestrial ecosystems remove an amount of carbon dioxide (CO2) that is 
roughly the equivalent of one third of annual fossil fuel emissions, thus mitigating the rise in atmospheric 
CO2 emissions. However, agricultural activities are also responsible for methane emissions from livestock 
and manure management and rice agriculture, and nitrous oxide emissions from fertilizer applications. 
When the three gases are combined, emissions from forestry and agriculture are larger than CO2 removals 
and contribute to 15-25% of total GHG emissions. 
 
The monitoring of terrestrial GHGs is key to understanding the Earth system and also for mitigating climate 
change. Since 2010, the Global Carbon Project (GCP) has carried out carbon, methane and nitrous oxide 
budget activities to document all natural and anthropogenic sources and removals. Every five years, the 
IPCC Assessment Report (AR) reviews the literature to review how well we understand the fluxes of CO2, 
CH4, and N2O in explaining changes and trends in atmospheric growth rates. These assessments address 
uncertainties in GHG sources and sinks by comparing the estimates with the growth of concentrations in 
the atmosphere. 
 
For policy purposes, Parties to the UNFCCC are required to submit statistics on anthropogenic GHG 
emissions and removals. Annex 1 countries provide these emissions annually in National Inventory 
Reports that follow a Common Reporting Format (CRF) for energy, Industrial Processes and Product Use 
(termed IPPU), agriculture, land-use, land-use change and forestry (termed LULUCF), and waste. Non-
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annex countries provide summaries of emissions and removals less frequently in their Biennial Update 
Reports (BUR). The parties follow the IPCC Guidelines (established in 2006 and most recently updated in 
2019) that describe how to combine activity data and emission factors with three ‘Tiers’ of uncertainty 
(i.e., 1, 2, or 3). A major difference between the UNFCCC inventory approach and the IPCC AR and GCP 
reports is that the countries provide estimates for managed lands given that the reporting is specific for 
anthropogenic activities. 
 
Since the Paris Agreement went into effect in 2016, there is an increasing need to provide more accurate 
and precise GHG inventories, provide support to non-Annex 1 countries committed to the Enhanced 
Transparency Framework (ETF) reporting, and better understand differences between non-inventory and 
inventory-based approaches. Part of this urgency is that GHG concentrations are rising at increasing rates 
and the capacity for the carbon budget to ensure global temperatures stay below 2oC warming above pre-
industrial levels is being rapidly depleted with 1.5oC  warming expected to be exceeded by 2030. At the 
same time, countries have pledged to a 50% reduction in GHG emissions by 2030 in order to reach net-
zero emissions by 2050. Hence, improved measurement, reporting and verification (MRV) is essential to 
meeting these targets. The Paris Agreement also implemented a mechanism called the Global Stocktake, 
the first of which will take place in 2023 and every five years thereafter. This will provide the opportunity 
to assess global collective progress in three thematic areas; mitigation, adaptation, and the financial 
means of implementation and support. The Global Stocktake provides the 'ratchet mechanism' to 
evaluate whether nationally-determined contributions are sufficient to reach the goals of the Paris 
Agreement.  MRV will play an essential role in the process. 
 

Box 2: When used in the context of the UNFCCC, MRV refers to the framework for ‘measurements, 
reporting and verification’ which will be superseded by the ETF, and is defined by a set of specific 
guidelines. These guidelines are designed to measure greenhouse-gas reductions from specific 
mitigation activities. In contrast, the atmospheric greenhouse gas observation community uses in-situ 
or satellite retrievals of greenhouse gas concentrations to estimate and monitor land-atmosphere fluxes 
and their changes from year-to-year and over time. We distinguish the two uses of MRV by using MRV 
for UNFCCC and GHG+ in the context of top-down approaches. 

 
With this background, we provide a roadmap that describes how satellite remote sensing can support 
GHG information needs for inventories and GHG+. The roadmap was initiated in 2020, following the Global 
Stocktake Strategy document endorsed by the CEOS. The Strategy document made a series of 10 
recommendations, including one for a GHG roadmap that describes how atmospheric inversions can 
support the inventory process. A discussion paper (Ochiai et al 2023) prepared by the Land-Surface 
Imaging Virtual Constellation (LSI-VC) Forests and Biomass Team following CEOS SIT35 provided further 
guidance. The roadmap presented here, the CEOS Agriculture, Forestry and Other Land Use (AFOLU) 
Roadmap, provides a 'bottom-up' perspective through identifying opportunities for satellite-based activity 
data and emission factors to estimate CO2, CH4, and N2O emissions and removals. 
 
This roadmap identifies key remote sensing based products developed primarily from satellite missions 
led by space agencies and the private sector that are being used or have potential to be used for GHG 
emissions and removals reporting (Figure 1). Satellite observations from optical missions are particularly 
useful as they provide time series on spatial patterns of land use and land cover change over at least four 
decades. Existing and planned radar and lidar missions are allowing the retrieval of vegetation biomass 
and gridded products are providing useful in documenting global patterns in biomass stock change. These 
products have potential to support national GHG inventories that need to adhere to IPCC guidelines using 
stock-change or gain-loss methodologies and can also provide spatially disaggregated independent 
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estimates of emissions and removals. The remote sensing products are global in scope and can play an 
important role in capacity building for developing countries involved in Reduced Emissions from 
Deforestation and Forest Degradation (REDD+). 
 

 
Figure 1: Reproduced from Ochiai et al., (2023) showing the development of radar, optical and lidar 
instruments to retrieve emission factor and land cover change data from the 1990s to planned missions. 
Following the decommissioning of MODIS, the Visible Infrared Imaging Suite (VIIRS) aboard NOAA 
operational satellites will play a key role in sustained observations. 
 
Following the presentation of remote-sensing activity data and emissions factors, the roadmap provides 
a guide for how AFOLU and GHG roadmaps can be further integrated to support a full GHG+ perspective 
which itself is a vision for 2035+ and integrates initiatives underway by other public and private 
organizations to better coordinate GHG observations and monitoring. These include integrating remote 
sensing observations with in-situ monitoring networks, process models and inventories to produce low-
latency, spatially disaggregated, and high accuracy and precision estimates of the role of the biosphere in 
determining GHG emissions and removals. 
  
Finally, a series of recommendations are provided to help initiate the roadmap and to serve as a guide for 
active implementation by the CEOS agencies and partners (see Annex A). These recommendations are 
intended to be revisited and evaluated with regular cadence at CEOS-supported technical workshops and 
plenaries. 
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3.  Remote sensing contribution 
3.0 Cross-walking land cover definitions 
UNFCCC and IPCC definitions of anthropogenic GHG emissions include three categories: Fossil Fuel 
Emissions (FFEs; i.e. emissions resulting from all forms of combustion of fossil fuels, for whatever 
purpose), Industrial Processes and Product Use (IPPU) and emissions and removals arising from changes 
in land cover in ‘managed landscapes’. For GHG inventories, following the IPCC guidelines, the concept of 
‘managed land’ is used as a proxy for anthropogenic effects. 
 
In the IPCC inventory process, FFEs are derived from detailed bottom-up estimates of fuel consumption 
and are calculated at a national level considering the consumption of all mined and imported fossil fuels 
(coal, oil, gas etc.). Emissions and removals from LULUCF, within AFOLU, are computed from two major 
input variables namely: 
 

a) The extent of observed or reported changes in land use within and between six categories 
(forestlands, croplands, grasslands, wetlands, settlements and other lands) defined in the IPCC 
guidelines 

b) GHG emissions factors (i.e., the amount of GHGs emitted or removed from the atmosphere per 
unit area of change of land use between the categories defined in a). 

 
Land use and land-cover change can be derived from one of three sources: (i) statistical data from the 
national agency, (ii) statistical aggregates from a sample of geolocated points, extrapolated to the national 
coverage or (iii) by comprehensive and inclusive land use maps, geospatially disaggregated, derived from 
local survey or from satellite imagery by whatever means (interpretation, classification methods). There 
are also several levels of detail which can be reported (so-called Tiers) that carry increasing detail about 
the land transformations. 
 
At the most general level (Tier 1), land cover is divided between the set of six IPCC land use categories. 
Emissions factors resulting from transitions between these classes are based on IPCC prescribed values 
and do not reflect subtleties, e.g., changes in local varieties of crops or local growing conditions that may 
be reflected in higher level Tier 2 or Tier 3 data. At the level of detail required by Tier 1, and indeed beyond, 
relevant data on land use and land cover can be supplied from satellite observations and to levels that are 
considered sufficiently accurate, reliable and repeatable.  
 
The six land use classes used by the IPCC are quite broad, and direct mapping from satellite sensor land 
cover data is often problematic as the states and dynamics of the constituent classes are often complex 
and diverse. Arguably the most complex is wetlands, which in the context of the roadmap can occur under 
any IPCC land use category, across all major biomes, from the wet and dry tropics to deserts, high 
mountains and the arctic, and in settings ranging the intertidal zones of coastal landscapes (e.g., 
mangroves, saltmarshes) to high mountain regions (e.g., bogs, fens).  As a result of this complexity, the 
taxonomies used for targeting the mapping of land covers often do not align directly with the IPCC 
categories, with this reducing the capacity to document from satellites.  However, one exception is the 
Food and Agriculture Organisation (FAO) Land Cover Classification System (LCCS; Figure 2), which is a 
globally applicable but locally relevant and has 10 classes at the broadest level that can be translated 
directly into the six IPCC land use categories (Figure 3; see Lucas et al., 2022). The FAO LCCS is widely used 
as the default taxonomy in Earth observation science, and its use in national to global mapping has been 
demonstrated for multiple years for Wales (Planque et al., 2020) and Australia (Owers et al., 2022), but 
its standardized use for IPCC reporting has yet to be fully recognised. 
 



 

7 

 

Figure 2.  The Food and Agriculture Organisation (FAO) Land Cover Classification System (LCCS) 
Version 2.0, differentiating between overarching environmental descriptors (broad land cover classes) 
and those that are essential for constructing the taxonomy or providing additional information (e.g., 
on vegetation biomass, canopy cover or height, crop type or water temperature). 

 
 

 
 
 
 
 

 

c) 
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Figure 3:  The translation between the Food and Agriculture Organisation (FAO) Land Cover 
Classification System (LCCS) taxonomy (a) and the IPCC AFOLU Classes (b).  c) Maps of the same LCCS 
classes generated for Wales (UK) for 2017, 2018 and 2019 using a globally applicable approach and 
highlighting capacity to generate IPCC transition matrices at a national level (See b) for legend) (Lucas 
et al., 2022). Note that cultivated aquatic vegetation is not included in the maps as an uncommon and 
non-extensive class. 

 
Once mapped or quantified (by area), these land cover data can be combined with emissions factors to 
allow GHGs due to LULUCF to be computed and included in the national inventories. Moreover, the 
changes in the standing above ground biomass (AGB) between land cover classes can increasingly be  
assessed from satellite sensor data, with this complementing or potentially supplementing prescribed 
values. In such cases, the change in AGB that relates directly to GHG emissions or removals between any 
two epochs of observation can be directly inferred, and need not be taken from default values, which 
these are often derived from more general statistical data. In such cases, the change in AGB that relates 
directly to GHG emissions or removals between any two epochs of observation can be directly inferred, 
and need not be estimated based on generalized statistics. 
 
3.1   Key products  
Land cover and change data are essential for national GHG inventories, estimating activity data and to 
global AFOLU modelling and assessments. Several space agencies and programs are producing relevant 
data and products with different characteristics and for various purposes. For improved global AFOLU and 
modelling assessments using long-term harmonized land cover change data, and for enhancing 
consistency and comparability of national GHG inventories and global GHG estimates for the UNFCCC 
Global Stocktake. 
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In support of Global Stocktake activities, different land cover products are being developed. The land 
cover products vary from one another in terms of the time period they represent, the spatial resolution, 
the frequency of observations, and the thematic classes used to define land cover. Thus the choice of land 
cover data used to inform greenhouse gas emission analysis for AFOLU depends on user needs, such as 
the scale of analysis (local to global), the type of approach used (i.e., stock change versus gain-loss), the 
Tier requirements, and other factors. 

For example, the Worldcover dataset is characterized by having the most detailed spatial resolution 
available globally (10 m) and independently validated. It can contribute to detailed land cover and 
landscape studies, and for climate change adaptation assessments. Worldcover is currently available for 
the year 2020 and being updated for 2021. The Copernicus Land Cover dataset (C3S) is available globally 
at 100-m resolution, from 2015-2019, and is supported by the Copernicus Land Monitoring Service and 
suitable for regional AFOLU analyses. Further updates are expected over the course of 2022. The ESA CCI-
LC provides 300-m resolution information on annual land cover from 1992-onwards, developed as part of 
the Copernicus Climate Service to support climate and Earth system modeling needs. The HILDA+ dataset 
is available at 1-km resolution, annually from 1960-2020, and combines FAO statistics with multiple 
remote sensing sources of data to provide global AFOLU land cover change information (i.e. for use in 
climate and earth system models). More detailed information is provided in the following on the CEOS 
Global Stocktake (GST) portal (https://ceos.org/gst/land.html), describing the methodologies used for 
each land cover product, their uncertainties, applications, plans for continuity, and data access. Other 
land cover datasets discussed in the roadmap include Google Dynamic World, ESRI Global Land Cover 
Map, Global Forest Watch, Global Land Cover 10-m (GLC10), and Global Land Cover Mapping and 
Estimation (GLANCE). 

In light of the current status of land cover data, the following community activities are proposed to 
enhance the use of land cover data for AFOLU assessments and the GST: 

1.  Improved global land cover/use change data for AFOLU assessments and the GST: this is to 
stimulate further investments in global and national level land cover analysis and assessments. 
Aim is to improve available global land cover and use change datasets, to ingest them in global, 
regional and national AFOLU assessments and aid the Global Stocktake processes by harmonizing 
between national and global-level estimation. There should be a focus on including more land use 
and land management categories with consideration given to the use of structured taxonomies 
such as the FAO LCCS. 

2.  Combining land change and biomass map data for GHG flux estimation: there is need for a 
more stringent approach incorporating different data sources from Earth Observations, on-the 
ground and statistical data sources. The World Resources Institute’s (WRI) Harris et al., (2021) 
forest flux model is a relevant example that should be expanded to include more land cover/use 
changes for data-driven flux estimation. Thematic, annual data of burned area, deforestation, 
afforestation, etc., can provide more accurate quantification of GHG fluxes via joint NOAA/NASA 
efforts. 

3.  Developing an improved global managed land (IPCC proxy) layer: the lack of an up to date, 
spatially-explicit data layer for managed land as defined by countries in their GHG inventories is a 
major hurdle in linking global and national AFOLU estimates. There will be an effort to reconcile 
available national and global data sources and provide a “best-available” data layer.   

4. Integrating land change and wetlands monitoring efforts and products: Most 
wetland/peatland and related land changes are still poorly monitored and addressed in global 
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AFOLU analysis and in national GHG inventories. The aim here is to use increasing detail from 
Earth Observation approaches to allow for better detection of different wetland types assessing 
changes related for GHG estimation.  In recent years, maps of mangrove extent globally have been 
produced for multiple years (Bunting et al., 2018) although there is still room for improvement. 
However, maps of comparable or better accuracy are required for most wetland types.   

5.  Community comparison of 10-m global land cover datasets: with different global 10 m land 
cover datasets in evolution, there is need for a community comparison and validation. The aim is 
to highlight and understand differences and make it easier for users to decide which map to use 
for a certain purpose. A comparison concept needs to be developed and reference datasets 
established and combined to underpin this assessment involving the main partners involved in 
the evolution and validation of the various products. 

3.2   Activity data 
Forests 
Following the IPCC GPG, two types of data are required in forest monitoring; area change (i.e. Activity 
Data, AD) and change in stock (Emission or removal Factor, EF) for that forest. These two types of 
information can be measured and reported using ground data, however, the AD and increasingly also EFs 
can also be derived from EO data. Maps can be useful in that they provide spatial and temporal 
information which can help to understand the complexity of issues related to forest dynamics but for IPCC 
reporting national estimates with confidence intervals will need to be provided.   

As for all LULUCF reporting, tracking of land areas and changes is key, and this can be done using three 
approaches: 

● Approach 1: Only reporting total area for each land category without information on change or 
spatial information 

● Approach 2: Extraction of from-to changes between land categories, typically from a change 
matrix 

● Approach 3: Spatially explicit tracking of changes based on sampling or wall-to-wall techniques. 

Approach 3 requires maps/ geospatial data, whereas it is possible to report using approach 1 and 2 
without maps. Reporting using Approach 2 does not necessarily require a map, and the result is a non-
spatially-explicit land-use/cover conversion matrix. The input data required for this, can be from a land 
use database for example, or can be obtained through sampling or other methods (IPCC 2006a). Where 
remote sensing data are used for this approach (e.g., Very High Resolution (VHR) or HR), observations 
from multiple time-periods can be visually assessed or classified using computer-based approach in order 
to derive land-use/cover and changes.  In this case a sample based approach would be required, and some 
information on sampling is provided in Annex 3A.3 of Chapter 3 of Volume 4 of the 2006 IPCC Guidelines 
for National GHGI (IPCC 2006b). 

Key reporting requirements from the GPG are that estimates should be (1) “neither over- nor 
underestimates so far as can be judged,” and (2) “uncertainties are reduced as far as is practicable” (IPCC 
2006c). Calculating unbiased GHG emission estimates that comply with these reporting principles often 
requires interpretation of national and independent data sources including global datasets and 
harmonization of data is essential to be able to integrate these datasets. An understanding of the accuracy 
of datasets is also required and should be made available in order to meet transparency requirements. So 
when wall-to-wall satellite data is required, there is still a need for adjustment of the data, which needs 
to be done with ground / other validation data (e.g,. VHR/HR satellite images as discussed in relation to 
Approach 2). Guidance has been produced on how this can be carried out, and this includes examples of 
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sampling strategies which should be applied (GFOI). The methods provided mean that the map-
classification errors which will bias results where the pixels from a map are simply counted are removed, 
due to the application of a sample-based estimator. Several steps need to be taken. Firstly, the 
appropriate sampling design should be used, and several considerations are outlined in the guidance. 
Secondly, the correct inference type should be selected. In the absence of expert knowledge on this topic, 
it is recommended to select a probability sample and implementing design-based inference is 
recommended. Finally, the response design should be determined. 

VHR/HR data are a useful resource in both the above contexts as reference/validation data however, a 
tool to manage this process can be useful. As examples, VHR data can be accessed and visualized in the 
FAO Collect Earth and Collect Earth Online tools, which form part of their OpenFORIS (FAO) suite of tools. 
Collect Earth provides data from Google Earth, Bing Maps and GEE, so that users can analyze this imagery 
in a user-friendly tool. A sampling grid, following the required sampling strategy can be imported, and 
from there fast, accurate and cost-effective assessments can be made. 

When looking at country reported data, there have been substantial improvements in national forest 
monitoring capacities around the globe. Forest area monitoring using remote sensing at good to very good 
levels increased from between 2005-2020. The uptake of EO-data and related capacity improvements are 
more widespread in the tropics, which can be linked to continued international investments for forest 
monitoring especially in the context of reducing emissions from deforestation and forest degradation in 
tropical countries (REDD+)[Nesha et al., 2021, Nesha et al., 2022]. This important achievement would have 
not been possible without the provision of free- and open satellite data from several CEOS partners. 

Looking forward, one should also recall the fact that EO-based products are often not directly used by 
countries (Melo et al., 2023). A gap remains between what can be achieved in the research domain and 
what is required to support policy making and meet reporting requirements. There are no unique 
solutions for all, as there is not one dataset that serves all users in terms of definition and type of 
measurements, geographic area, and uncertainty requirements and whether there is need for the most 
recent up to date forest area estimate or assess the long-term trend. The research and user communities 
should embrace the potential strength of evolving EO opportunities in combination to provide for these 
varying needs and to ensure continuity for long-term data provision which one-off research missions 
cannot provide. 

From a technical perspective, it is recommended by CEOS and its partners to improve the EO-based forest 
and forest area change estimation to address the following points with priority: 

● Move from generic forest area change to land use change and linking forest changes with those 
of other IPCC land use categories and thus to a broader AFOLU estimation and reporting. 

● Increasing the timeliness of providing forest change information to use the key advantage of EO-
data being able to provide rapid information and national and global levels 

● Develop approaches that provide both quality statistical estimates of forest area changes (i.e. 
from stratified area estimations) and forest change maps, which is important for GHG inventories 
to support reporting obligations and national policy developing and implementation. 

● Linking forest area and land use changes and estimations of emissions and removals; including a 
link to space-based biomass estimations and evolving carbon modelling (see section below) 

● Use EO-based data to improve forest characterization and different forest types incl. 
planted/natural, young vs. old-growth (forest age), different species/ecosystem types etc. 

● Make use of EO-data to better link national data (i.e. those from GHG-I) and the global level in the 
context of the global stock-take 
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Agriculture 
It is estimated that the food system contributes 18-37% of historical GHG emissions (Rosenzweig et al., 
2021). Agriculture accounted for 25% of the global GHG emissions in 2018 and this percentage is rising 
(Rosenzweig et al., 2021, Tubiello et al. 2021). However, for agriculture to meet the nutrition requirements 
of a growing global population, it is estimated that production must increase by 60% above 2006 levels by 
2050 (FAO 2016). These increases must occur on an increasingly constrained and degraded land resource 
base that is experiencing changes in climate that are marked by extremes. Consequently, agriculture has 
global significance for both climate mitigation and sustained food security. 

While agriculture is a major GHG contributor there also exist agricultural practices and technologies that 
can reduce GHG emissions and, in some cases, sequester more carbon in the soil than they emit. For both 
adaptation to and mitigation of climate change impacts, accurate, timely information is critical for meeting 
the challenge of addressing nutritional needs while reducing GHG contributions from the sector. EO and 
EO-derived information are already major assets for climate adaptation and mitigation information and 
will be a key asset for the Global Stocktake at the global scale, as well as Nationally Determined 
Contributions (NDCs) at the national scale. 

Agriculture has been a major focus of EO research and operational development for more than 40 years. 
The effort has evolved from a discovery research focus utilizing scientific missions (e.g. LACIE and 
AgRISTARS, Pinker et al. 2003), to the current day where operational monitoring systems employing EO 
mission data are supporting policy and program decisions around the world (e.g., the G20 GEOGLAM). 
The IPCC has identified many information and knowledge gaps related to food availability, food system 
resilience, mitigation, and trade-offs between GHG emissions and food production (IPCC 2014 and IPCC 
2019). Taken together, this long legacy of research and development in EO, the existing EO for agriculture 
communities that are well-organized and collaborative (e.g. GEOGLAM), the availability of open EO data, 
advances in computing systems, and openly available analytical applications means that many of these 
gaps can now be addressed in whole or part by operational EO solutions. Among the largest remaining 
challenges to large-scale EO-application is achieving sufficient access to high quality in-situ data which is 
particularly the case for less developed nations. 
 
The Opportunity for EO Based Agriculture Monitoring 
Monitoring the state and change in land use and management practices is a fundamental requirement to 
understanding the complex web of social and bio-physical challenges associated with agriculture. This 
understanding is necessary for the development of appropriate policy, program, and reporting responses 
that support effective GHG reduction and climate change mitigation and adaptation, while maintaining 
an adequate and high quality food supply. Contributions from EO may include monitoring land cover, land 
use, and land management state and change.  Global data sets of agricultural crop production systems 
(including cropland extent, crop rotations, cover crop utilization/duration/biomass accumulation, and 
tillage practices), rangeland grazing areas (including quality, intensity of use, and management, e.g., 
invasive species management on pasturelands) can make a significant contribution to the AFOLU, and the 
Global Stocktake, and agricultural NDCs at the national level, and in some cases mitigation practices at 
the farm level. The main areas in which EO can contribute are in assessment support of crop productivity, 
agricultural land cover and use, management practices, biomass burning and soil carbon sequestration. 

● Agriculture Land Cover and Land Use: State and change monitoring is critical for understanding 
AFOLU dynamics and their impact on climate change, and vice versa. The IPCC identified this 
information as a major gap and highlighted the need for improved global high spatial resolution 
data sets of crop production systems and grazing areas (IPCC 2014). In addition to global crop 
productivity monitoring (via condition assessment and yield forecasting), cropland and crop type 
mapping are among the most mature applications of EO for agriculture. 
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● Crop Condition:  Near-real time monitoring of crop productivity is critical to understanding the 
impact of climate shocks on local and global food chains within season and throughout time. The 
IPCC’s report on Climate Change and Land (IPCC 2019) identifies key knowledge gaps around food 
availability, resilience, mitigation, and trade-offs in decision making. Operational EO is already 
important in the support of proactive climate adaptation decision making. The GEOGLAM Crop 
Monitor for Early Warning (CM4EW) is already making a significant impact on global food security 
by providing near real time assessments of crop production, largely from satellite EO. At the 
national level GEOGLAM has been working with less developed nations (LDC’s) to co-develop their 
own crop monitoring systems using open data and tools. Where implemented these systems have 
proven to be an effective climate adaptation measure by informing proactive policies and 
programs. Building on this experience GEOGLAM is now working with the UNFCCC to develop 
supplemental guidance for the National Adaptation Plans (NAP). 

● Agriculture Management Practices: Management practices have been identified by the IPCC as a 
major gap.  Information requirements relate to nutrient application, pest management, irrigation, 
cover crop utilization, structural conservation management (e.g. strip and buffer cropping), and 
crop residue management (tillage and burning, see next sub-bullet). The IPCC points out that this 
information provides “improved understanding of the mitigation potential, interplay, and costs 
as well as environmental and socio-economic consequences of land use-based mitigation options 
such as improved agricultural management” (IPCC 2014). This has become one of the most active 
arenas of EO application research and development, particularly with the advent of commercial 
satellites with increased temporal and spatial resolution coupled with the adoption of 
sustainability commitments by actors throughout the agricultural value chain. 

● Agricultural Biomass Burning: A widely used practice globally during harvesting, post-harvesting, 
and preparatory (pre-planting) periods that has profound effects on local and regional air quality 
(Korontzi et al., 2006). Agricultural land use is responsible for at least 8-11 % of global fire events 
worldwide and at least 3 % of carbon emissions worldwide (van der Werf et al, 2010).  Even so, 
current methods under-report and therefore underestimate the agricultural emissions from 
agricultural burning by missing small and short duration fires (Lasko et al., 2017) highlighting this 
as an important area for further research. Satellite sensor data have revolutionized the field of 
burned area mapping, active fire mapping, and fire emissions estimation (Boschetti et al., 2020), 
but further work is needed to close the gap in understanding agricultural fire dynamics and their 
impacts on carbon dioxide and monoxide, methane, nitrogen dioxide, sulphur dioxide, and 
particulate matter emissions. 

● Soil Carbon: Estimates of Soil Organic Carbon (SOC) stocks and fluxes are an important yet poorly 
constrained component of the global carbon-climate system for agriculture and forested, 
especially peatland, systems. Monitoring agriculture soil carbon dynamics is key to understanding 
climate mitigation efforts, and “Smart Farming” practices can help to sequester significant 
quantities of carbon. Models that relate agricultural practices to carbon sequestration are well 
established (e.g., EPIC, APSIM, DSSAT, ecosys, Cropsys, and DNDC). Satellite data can provide 
important information on the land management and use essential agriculture variables (EAVs) 
required to parameterize and update these models. Some of the key inputs, mentioned above, 
include crop type; tillage intensity and type; crop residue, crop yield and crop biomass. Ground 
based data remains essential though for calibrating and validating these models.   

 
Essential Agricultural Variables Supporting Climate Change Monitoring 
To address the need for quantitative information on agriculture land cover, land use, and management 
practices, a set of Essential Agricultural Variables (EAVs) are being developed by the GEO Global 
Agricultural Monitoring (GEOGLAM) initiative. The EAV concept is consistent with the GCOS Essential 
Climate Variables (ECVs). Indeed, several of the variables essential for agriculture are identified as ECVs, 
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and where they do intersect with the EAVs the ECV definitions are referenced, minimizing new effort and 
amplifying the voice behind core variable requirements. EAV definitions are in progress and once 
complete in 2022, they will be used to define the requirements for operational systems to generate 
information products in support of AFOLU, the Global Stocktake and higher resolution NDC’s. This 
approach has been tested using the crop type map variable within the context of the ESA WorldCereal 
project. Based on the EAV work, Table 1 identifies which climate critical measurements can be provided 
by EO along with the characterisation of each in terms of coverage, spatial resolution, and revisit 
frequency. 

 

Table 1: Aligning observation requirements defined by GEOGLAM to meet the needs of the Essential 
Agriculture Variables (EAV). 
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Table 2 provides a list of most of the current, and selection of future, satellite missions (using the 
requirements categories employed in Table 1), that can be used to derive climate relevant variables in 
support of AFOLU. 

 
Existing Products 
Over the last couple of decades, considerable effort has been devoted to developing moderate to coarse 
scale global land cover products (summarized in Table 1) based on imagery from a single year or 
accumulated over several years. Most of these regard agriculture as being a single map class, without 
providing information on crop type, agricultural management, field sizes, seasonality, crop rotations, etc.  
Evolution of multiple satellite sensors, data availability and methods hinder comparison among products, 
which limits their use in change detection. However, more recent work by the Copernicus Land Service is 
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focussed on developing annual assessments and 5-year change products. The first change product was 
released in 2020 based on 2016 to 2019 annual products and at 100 m resolution 
(https://land.copernicus.eu/global/products/). Similarly a cropland change product generated by Potopov 
et al. (2021), quantifies global cropland change from 2003-2019. These new products approach the 
requirements of the IPCC and the needs for AFOLU on land cover change in the Global Stock Take. 
 
A major step towards global land cover monitoring was realised by the ESA WorldCover project which 
demonstrated that land cover maps can be produced within 3 months of the end of a year (https://esa-
worldcover.org/en). The dataset uses 11 classes at 10 m resolution and has an overall accuracy of 74.4% 
(WorldCover Product Validation Report v1.1). In the WorldCover product, agriculture can be a component 
of cropland, grassland (pasture, uncultivated cropland in reference year), shrubland or tree cover classes 
(greenhouses are considered built-up). In the cropland class, it is seen as a general yearly class 
(WorldCover Product User Manual v1.0). This does not reflect the dynamic nature of agriculture, which 
can have between one and three cropping seasons within any year. To provide more information for the 
agricultural class, the ESA WorldCereal project has just produced the first global seasonally updated 
cropland and crop type map at 10 m resolution. Perhaps more important for monitoring purposes, ESA’s 
WorldCereal project is the first open-source and cloud-agnostic (implementable on any cloud 
infrastructure provider) systematic approach to create global seasonal cropland extent and crop type 
maps. The capacity to produce, within one month after the end of each season per Agro-ecological zone, 
maps that include a 10 m temporary cropland, as well as maize and wheat crop type maps and irrigated 
and active cropland maps based on the current open and freely available data sets from Sentinel 1, 
Sentinel 2 and Landsat 8. The products for the 2021 seasons have been produced and validated e.g., global 
user's and producer's accuracies for the annual temporary crops product are 88.5% and 92.1%, 
respectively, and the data and code are publicly available. WorldCereal has also built the first global 
reference database for agricultural monitoring. Data collection and gathering efforts are streamlined and 
harmonized in close collaboration with the GEOGLAM In Situ Data Working Group, and the WorldCereal 
datasets will be managed by the GEOGLAM community when the initiative ends. The project has produced 
multi-temporal/seasonal datasets for 2021 and, more importantly, will leave a post-project legacy of an 
open source system and reference database. The GEOGLAM community is exploring options to 
operationalize the system, expand the system to cover more crops, and develop change products through 
time. 

Grasslands 
The IPCC states that the category of grasslands encompasses  “... rangelands and pasture land that are 
not considered Cropland. It also includes systems with woody vegetation and other non-grass vegetation 
such as herbs and bushes that fall below the threshold values used in the Forest Land category. The 
category also includes all grassland from wild lands to recreational areas as well as agricultural and silvi-
pastural systems, consistent with national definitions.” (IPCC 2019). Soil carbon in grasslands is particularly 
relevant as grassland soils contain large amounts of carbon that can be lost when converted to agriculture. 
 
According to the IPCC's guidelines for national GHG inventories (IPCC 2006, 2019b), all land is divided into 
two categories: managed and unmanaged. The distinction of managed land was created to differentiate 
the impact of human activities from natural effects on GHGs and only managed lands are reported on. 
When it comes to grasslands, it’s in many cases impossible to determine the difference between managed 
and unmanaged grasslands and therefore all grasslands are considered managed (Ogle et al. 2018).  
 
Within the managed grasslands class, grasslands can be considered degraded or improved. Improved 
grasslands are those that have undergone management practices to increase productivity, such as 
fertilization, irrigation, or species improvement. Grasslands that are not improved are considered 
nominally, moderately, or severely degraded. Degraded grasslands may have reduced vegetation cover, 
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altered species composition, and decreased productivity relative to native or nominally managed 
grasslands.   
 
The remote sensing needs for grasslands inventory reporting primarily center around land use state and 
change, degradation status, agricultural management practices (including invasive species management), 
and fire. Remote sensing products in these areas should be accurate and comprehensive, have high spatial 
and temporal resolution, and follow consistent and transparent methods that ensure the data is 
comparable between regions and over time. Importantly, error assessments that accompany EO products 
allow that error to be accounted for in inventories, but currently many products lack these kinds of 
uncertainty estimates.  
 
As an example of the successful application of remotely sensed data inputs for grassland inventories, the 
US national GHG inventory manages Tier 3 reporting on grasslands that leverage several EO products. US 
land use and land use change maps are supported by the Forest Inventory and Assessment (FIA) program 
and the National Resources Inventory (NRI), with gap-filling from the Landsat-based National Land Cover 
Dataset (NLCD). The grassland fluxes are modeled using the DAYCENT biogeophysical model. The model 
previously used Enhanced Vegetation Index (EVI) from MODIS, but will transition to VIIRS instrument, 
taking advantage of efforts to ensure continuity between the missions that allow for a long time series 
(the first year of reporting is 1990). The role of EVI in the US national GHG inventory is set to be improved 
and extended in partnership with NASA. Additionally, there are plans to evaluate and potentially improve 
the model with evapotranspiration data being created by USDA and incorporating SMAP data from NASA. 
Notably, like many countries, the US inventory lacks any detailed information on grassland management 
that could serve to further improve estimates.  

Settlements  
The IPCC’s land-use category includes all developed land, including transportation infrastructure and 
human settlements of any size. This includes impervious land covers (e.g., paved surfaces and buildings 
associated with construction and development activities), as well as urban vegetation (e.g., trees grown 
along streets, public parks, and lawns and golf courses). Urban development and associated settlements 
are among the most visible manifestations of human modification of the landscape, are typically 
unidirectional changes (i.e., result in permanent landscape modification), and have substantial impacts on 
local and regional hydrology, habitat fragmentation, and carbon and greenhouse gas fluxes. However, 
given the settlements land-use category includes such diverse land cover characteristics, synoptic, 
consistent mapping and monitoring of settlements at a regional/national, much less a global scale, is 
challenging.   
 
Remote sensing offers both synoptic coverage and multi-modal approaches for mapping and monitoring 
settlements and associated urban development. The Global Human Settlement Layer (GHSL), produced 
by the Joint Research Centre (JRC) in cooperation with the European Commission (Schiavina et al. 2019; 
Freire et al. 2016), provides global gridded information on various measures of human presence on the 
landscape, including population density maps at 30-meter resolution and multi-class settlement maps at 
1-km resolution. GHSL production is based on multiple sources of remote sensing data (primarily Sentinel 
Earth Observation Data), in combination with census and population data. The European Space Agency 
(ESA) and the German Aerospace Center (DLR), in collaboration with Google Earth Engine, have jointly 
developed the World Settlement Footprint from Sentinel data, providing global high-resolution 
settlement data. The World Settlement Footprint – Evolution, provides global moderate-resolution data 
on change in settlement footprints (Marconcini et al. 2020). In addition to these datasets focused solely 
on urban development and settlement, multiple global land-cover products have been produced recently 
that include a basic representation of “developed” lands, with thematic definitions which overlap with 
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the IPCC settlements category to various degrees.  ESA’s WorldCover (Zanaga et al. 2021) and ESRI Land 
Cover (ESRI 2023) both provide Sentinel-based land cover with a single “developed” class. 
 
Many remote-sensing based national/regional land-cover products are available with classes relevant to 
categorizing settlement. However, different data sources, thematic definitions, and temporal profiles limit 
comparability and aggregation of disparate datasets. Additional challenges facing consistent mapping and 
monitoring of settlements include the difficulties of distinguishing settlement land use based on land 
covers identifiable from remote sensing data that may be similar spectrally to non-settlement land covers 
(e.g., distinguishing between urban lawns and parks, vs. non-managed grass and vegetation cover). While 
most mapping of land cover/land use and settlements have relied on optical remote sensing, radar data 
are increasingly used in land cover/land use and settlement mapping (e.g., ESA’s WorldCover), potentially 
improving our capability to map complex human landscapes associated with settlement. 
 
Wetlands 
Inland and coastal wetlands can play an important role in both climate mitigation and adaptation. Hence 
there is an urgent need for comprehensive and up-to-date geospatial information on their extent 
(including by type), biomass and health, to produce reliable estimates of emissions and removals from 
these ecosystems. Wetlands, in the context of the CEOS AFOLU roadmap (and similarly to the IPCC 
Wetlands Supplement; IPCC 2013), can occur under any IPCC land-use category. Examples include 
mangrove forests (Forest Land IPCC category), peatlands (Forest Land or Wetland IPCC category, 
depending on their management) and seagrass meadows (Wetlands IPCC category). This thematic area 
can complement and contribute to the other AFOLU thematic areas, specifically land use and biomass, 
providing scientific information (data and methods) that consider the special characteristics of these 
important and carbon-rich ecosystems. 
 
Mangroves 
Mangroves are forested intertidal ecosystems that occur naturally along shallow coastlines, primarily in 
the tropics and sub-tropics. Mangroves perform critical landscape-level functions related to climate, 
biodiversity, regulation of freshwater, nutrients and sediments, and constitute important pools for carbon 
storage (Kaufmann et al., 2020). In the NIR reporting, some countries report mangroves in the forest 
category and some report as wetlands. For example, the USA NIR includes a height threshold to determine 
if mangroves are wetlands or forested. 

For countries that do not operate their own national mangrove monitoring systems, a dataset suitable for 
use for proxy mangrove activity data is the Global Mangrove Watch, GMW v3.0 (Bunting et al., 2022). 
Derived from a combination of optical (Landsat, Sentinel-2) and radar (JERS-1 SAR, ALOS PALSAR, ALOS-2 
PALSAR-2) satellite data, the GMW is a public open geospatial dataset of global mangrove extent at 25-m 
ground resolution. Global mangrove time-series maps (e.g., Figure 4) are to date available for 11 annual 
epochs between 1996 and 2020, with yearly updates from 2021 and onwards to follow.  The GMW is used 
by the United Nations Environment Program (UNEP) as the default mangrove dataset for reporting on the 
Sustainable Development Goal (SDG) indicator 6.6.1 (Change in the extent of water-related ecosystems 
over time) (UNEP 2023). 
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Figure 4. Global Mangrove Watch (v3.0) Mangrove Activity Data (Sulawesi, Indonesia). From Bunting et 
al. (2022) 

Provided in both standard vector (shape files) and raster (GeoTiff) formats, the GMW maps can be directly 
ingested in open source GIS systems (such as e.g., QGIS) and used to derive disaggregated and geospatially 
explicit estimates of national or regional mangrove losses and gains on an annual basis. 
 
Users should be aware that the GMW is a global-scale dataset, generated with a single methodology 
applied over all regions and, as such, the accuracy of the maps may vary between locations. Factors such 
as satellite sensor data availability, mangrove species composition, growth/degradation stage, the level 
of fragmentation and environmental conditions (e.g., tidal inundation) all influence the accuracy. 
 
Peatlands 
Peatlands comprise a wide variety of wetland vegetation types (e.g. bogs, fens, mires, forested and non-
forested swamps, etc.) and hydrological states (e.g. flooded, non-flooded, frozen, etc.), occurring mainly 
across the boreal zone and in the tropics and, to a lesser extent, temperate zones where many have been 
lost or degraded (Poulter et al., 2022).  

The broad definition of peatlands poses a major challenge to mapping and monitoring through Earth 
observations and there is thus a scarcity of high-quality maps of global peatland extent and changes 
(Hugelius et al., 2020). The most detailed global maps released by the Global Peatlands Database (2022), 
PEAT-ML (Melton et al. 2022) and PEATMAP (Xu et al. 2018) have been assembled from a combination of 
different data sources including, for example, soil maps, databases, and in-situ data, and are at a spatial 
resolution of 0.5 – 5 arc minutes (~ 1 – 10 km at the Equator).  

Regional maps at higher spatial resolution, based on parameters derived from EO data (e.g. Digital 
Elevation, surface wetness indices, vegetation spectral signatures) and field data have recently been 
developed over some of the main tropical peatlands in Indonesia (Anda et al. 2021), the Congo Basin 
(Crezee et al. 2022) and in Peru (Hastie et al, 2022). With the availability of such baseline datasets on 
peatlands, there is potential for monitoring changes in their extent using time series of both optical and 
radar EO data, with these then used as Activity Data proxies.  

A further consideration is that the presence of peat is used to establish their extent but this is often not 
visible from Earth observing sensors.  Hence, contextual information supported by ground observation 
networks might be needed to support better assessment of peatlands.  

 
3.3   Emission and removal factors 
Forest biomass 



 

20 

Forests are both a sink for carbon through sequestration during photosynthesis and a source through 
deforestation, degradation and fires. Estimating carbon stocks and changes globally with space-based 
instruments has the potential to be the most cost-effective, consistent and transparent contribution to 
the UNFCCC. In the UNFCCC COP-25, CEOS stated that they were in the process of “coordinating the use 
of multiple satellite missions with novel capabilities to determine above ground biomass” and noted that 
EO data “offer new prospects and will enable more direct estimates in support of forest and carbon 
emission reporting, including for global stocktake. ...”. Within the Paris Agreement, several articles make 
reference to EO data, with these including Art. 3,4 (the National Determined Contributions; NDCs), Art. 5 
(Conserve and enhance sinks and reservoirs of GHG including forests, Art. 13 (Transparency framework 
and GHG reporting, and Art. 14 (Global Stocktake (GST) assessment of collective process).  
 
The upcoming decades are expected to see a vast number of forest carbon estimates published in the 
form of AGB maps (i.e., the density of aboveground biomass per unit area), derived from a suite of current 
and planned satellites/sensors (Table 3), and with methods ranging from statistical modeling to artificial 
intelligence. Further, the capability of repeat-measurements from these instruments, which allows higher 
temporal forest carbon monitoring, may aid targeted emission mitigation strategies in the future. For 
example, the ESA Climate Change Initiative (CCI) maps are being or will be produced for multiple epochs 
(2005/7, 2010, 2015/16, and annually for 2017-2022), and the GEDI mission (currently off-orbit) is 
expected to come back online during 2024. Both these mission products have the potential to support 
forest carbon change assessments. In the future, the upcoming ESA BIOMASS, NASA–ISRO Synthetic 
Aperture Radar (NISAR), JAXA Multi-footprint Observation Lidar and Imager (MOLI) and Advanced Land 
Observing Satellite-4 (ALOS-4) will cover a combination of new radar and laser data, broadening the 
spectrum of wavelengths and polarizations available for forest monitoring.  Technology in the New Space, 
comprising commercial sector satellites, has also advanced fast and promised high-level data products in 
the form of forest carbon maps in the upcoming years (e.g. announced by Planet at Planet Explore 2023 
(https://www.planet.com/)). Maxar multispectral images from the QuickBird-2, GeoEye-1, WorldView-2 
and WorldView-3 are now being used to map the biomass of individual trees at sub-continental scales 
(Tucker et al. 2023)  
 
Table 3: A list of current and expected non-commercial missions relevant to the estimation of forest 
carbon stocks and changes.  
 

Mission Funding 
Agency 

Launch Date 
(Expected) 

Data Type     
(main obs mode) 

Measurement Resolution Geographic 
Domain 

ALOS-2 
PALSAR-2 

JAXA 05/2014 L-band SAR  
(DP) 

3-10 m stripmap        25-
50 m ScanSAR 

Global 

ICESat-2 NASA 09/2018 532 nm photon 
counting lidar 

13m footprint aggregated 
to 100m transect 

Global 

SAOCOM 
1A/B 

CONAE 10/2018 
08/2020 

L-band SAR 
(DP & QP) 

5-10 m stripmap        30-
100 m TOPSAR 

Global 

GEDI NASA 12/2018 1064 nm 
waveform lidar 

25m circular footprint ISS (+/- ~51.6o) 

ALOS-4 
PALSAR-3 

JAXA 2024 L-band SAR 
(DP & QP) 

3-10 m stripmap             25 
m ScanSAR 

Global 

NISAR NASA- 2024 L-band SAR    (DP) 3-10 m depending on Global 
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ISRO mode 

BIOMASS ESA 09/2024 P-band SAR  (QP) 60 x 50 m with >6 looks Global except 
W Europe and 
N America 

MOLI JAXA 2024 1064 nm 
waveform lidar 

25 m circular footprint ISS (+/- ~51.6o) 

TanDEM-L DLR TBD L-band SAR      (DP 
& QP) 

Down to 5 x 7 m Global 

Copernicus 
HPCM ROSE-L 

ESA / EC 2028 L-band SAR   (DP) 5-10m Global 

 
As the science of carbon estimation from space advances, however, it is evident that the output forest 
AGB maps have differences amongst themselves (Figure 5) and in comparison to national-level reports 
(e.g. Figure 6). These arise partly because of differences in the mapping input-data, methods, models, and 
forest/non-forest definitions. Systematic disagreements between the maps need to be evaluated by 
independent data sources (i.e., reference data provided by in-situ forest plot measurements, 
supplemented by data from ecological research teams or AGB estimates from airborne lidars). If local 
systematic errors, and the precision of the maps is known, they can be transparently compared and 
calibrated for local-use. If validation with reference data indicate that a given map is accurate for a region 
or biome, then countries could be advised to use this knowledge when exploiting the maps in national 
reporting. 
 

 
Figure 5: Difference in the aboveground biomass density (i.e. Mg/ha) estimated in the ESA CCI Biomass 
2020 v4 product and the GEDI L4B v2 product at 1 km x 1 km grid cells. The largest differences in the 
tropical belt are observed in the Congolese lowlands and east/southeast Asia (Hunka et al., in review).  
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Figure 6: Difference in the total aboveground biomass stock reported in UN-FAO Forest Resource 
Assessment (FRA) reports and estimated using data collected by the GEDI instrument (reproduced from 
Dubayah et al. 2022).  
 
Any policy-revelation decisions to be made with space-based AGB products requires the harmonization of 
the maps with policy guidance and individual country-level requirements. The IPCC Guidelines for National 
Greenhouse Gas Inventories (NGGI; IPCC 2006; IPCC 2019) recommends transparent and consistent 
accounting of various sources of uncertainty, including the variability in input training data, in model 
parameters and their residuals, and an estimation of systematic errors. These guidelines are designed so 
that “reported numbers are neither over- nor under-estimates, and uncertainties are reduced as far as is 
practicable''. As a step towards satisfying the conditions in these guidelines, various international teams 
under CEOS are now coordinating to harmonize and standardize definitions, transparency and usability of 
space-based AGB maps. The envisioned long-term goal is not necessarily to fuse existing products, but to 
harmonize each one of them with policy needs and set the stage for AGB estimates from the future 
missions to be seamlessly incorporated in policy reporting.  
 
To achieve common ground in the integration of space-based AGB maps into national-level reporting, an 
initial step in ‘biomass harmonization’ has been to make a suite of products freely visible and available on 
a single platform. These products include global AGB maps for 2020 developed by the Jet Propulsion 
Laboratory (JPL), ESA’s CCI Biomass project and the GEDI Science team, together with a continental map 
for Africa from the UK National Centre for Earth Observation (NCEO) and a pan-boreal map from the 
ICESat-2 Science Team. This is being undertaken as an open science activity on the joint NASA/ESA Multi-
mission Algorithm and Analysis Platform (MAAP); a summary of these products can be found on the 
Biomass Harmonisation Dashboard (https://earthdata.nasa.gov/maap-biomass/). The biomass  
harmonization activity also includes a basic tool (plot2map) that uses a global collection of reference data 
to estimate systematic biases in maps. A parallel initiative to support the process of map 
calibration/validation is Geo-Trees (https://geo-trees.org/project/), that aims to establish high-quality 
global Biomass Reference Measurement sites (BRM) (Figure 7), with standardized and transparent 
measurement protocols that will enhance space-based forest AGB estimation (Labrière et al. 2022). Such 
BRMs, when realized, must be targeted in the tropical areas where lack of in-situ data is greatest and the 
systematic differences between AGB maps largest.  
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Figure 7: Potential global locations and partners of the Geo-Trees Biomass Reference Measurement sites 
(BRM) (Labrière et al. 2022).  
 
Overall, the roadmap for Biomass Harmonization over the next few years aims to facilitate the use of 
space-based AGB map estimates  in national policy-level reporting for the collective ambition of reducing 
forest carbon emissions. This goal will be achieved by (1) intercomparing EO-derived AGB map products 
and associated uncertainties, (2) evaluating product uncertainties by validation using reference, (3) testing 
a suite of approaches to improve AGB map estimates and finally (4) co-developing tools and protocols to 
facilitate the uptake of AGB map products for national reporting. These steps can inform a  protocol for a 
common framework for EO-based AGB estimation in national/sub-national assessments in the future.  
 
Mangrove biomass 
Mangroves have the capacity to sequester and store large amounts of carbon in their above ground mass 
but also below ground due to the slow decomposition rates of organic matter in their inundated, anoxic 
soils. Once disturbed and exposed to oxygen through diking and draining, oxidation occurs quickly, and 
the stored carbon is released rapidly to the atmosphere.  In contrast to many terrestrial forests, the root 
systems of some mangroves species are above ground and can support substantial amounts of biomass, 
with these increasing with maturity. 

The Global Mangrove Distribution, Aboveground Biomass, and Canopy Height dataset (Simard at al. 2019) 
from the NASA Carbon Monitoring System was derived from SRTM Digital Elevation Model and 
spaceborne Lidar (ICESat GLAS), correlated with region specific allometric models. It is provided at 30 m 
spatial resolution. While representing the state of the global mangroves for a single year 2000, the dataset 
represents the most comprehensive global mangrove dataset suitable for use as proxy for mangrove 
Emission Factors. A refined version of the dataset is under development, based on digital elevation data 
from the TanDEM-X mission for the baseline year of 2015 and with a spatial resolution of 12 m.  Global 
maps of forest biomass are also being generated through ESA’s CCI Biomass for multiple years (currently 
2010, 2017, 2018 and 2019) and offer potential for quantifying changes. 

Complementing the above-ground component data, the Global Mangrove Watch Platform (GMW 2023) 
also provides a global map of mangrove Organic Carbon Stock (OCS), derived from the Soil Organic Carbon 
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dataset by Sanderman at al. (2018). OCS is predicted at 0–200 cm depth and provided at 30-m spatial 
resolution. 
 
Peatland biomass 
The vast majority of peatland carbon is stored as below-ground biomass, composed of dense, wet layers 
of dead and partially decomposed organic matter built up over thousands of years, with exceptionally 
slow decomposition rates due to the anoxic conditions in the permanently waterlogged soil. While 
peatlands cover only about 3–4% of the Earth's land surface (UNEP 2022), they are estimated to hold 
somewhere between 18–89% of global terrestrial C biomass (Minasny et al., 2019).  

The wide uncertainty range is partly due to the challenge in mapping peatland extent, but chiefly because 
peat carbon storage is closely correlated with peat depth, which typically requires access to extensive in-
situ measurements to model and estimate. 

While global maps of peat thickness are lacking however, the fine resolution regional maps over the 
peatlands in Central Africa (ROK, DRC, see Figure 8), Peru and Indonesia (Crezee et al. 2022b; Hastie et al, 
2022; Anda et al. 2021) mentioned above, have been derived using a combination of EO data and 
extensive field measurements, and provide disaggregated estimates of peat thickness. For the countries 
they cover (ROC, DRC, Peru, Indonesia) they constitute the best available proxy data for Emission Factors 
for peatlands.  

Other countries have also developed their own peatland maps, with an example being Wales (UK), where 
extent, thickness and emissions have been measured or estimated.  

Figure 8. Peat carbon density (left) and uncertainty (right) in ROC and the DRC.  (Crezee, 2022a).  
 
Recognising the urgent need for improved geospatial data of global peatland extent and carbon storage, 
and actions toward the conservation, restoration, and sustainable management of peatlands, the Global 
Peatlands Initiative, GPI, launched the Global Peatlands Assessment at the UNFCCC COP27 in 2022, calling 
for the development of data systems on peatland extent, condition and uses, to inform policy planning 
and regulations (UNEP 2022). 
 
Trees outside forests 
In recent years, the mapping of trees outside forests has been enabled through a combination of high-
resolution imagery and machine learning techniques (Brandt et al., 2020, Li et al., 2023). In particular, 
convolutional neural networks have proven successful in recognizing the crown shape of shrubs and trees 
in open-canopy forests and savannas over large spatial extents (i.e., national to biome scale). Using 
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commercial imagery such as Worldview, over 9.9 billion individual trees and shrubs were mapped 
throughout the Sahel and new allometric models applied to estimate canopy, stem and root biomass of 
every individual (Tucker et al., 2023). At national levels, canopy-recognition approaches have been shown 
to work for closed and open-canopy forests, providing new insights into biomass distributions across 
different forest types (Mugabowindekwe et al., 2023). These same approaches have recently been used 
to estimate the biomass of trees outside forests in temperate regions, where studies in Europe have 
shown at country level, trees outside forests make up to 10% of natural biomass (Liu et al., 2023). 

Crop, range and grasslands 
In order to accurately report on greenhouse-gas emissions in croplands and grasslands (rangelands), tier 
3 reporting often relies on sophisticated processed-based biogeochemical models such as DAYCENT or 
DNDC. However, these models can be further improved by incorporating Earth observation (EO)-derived 
products related to key factors such as soil moisture, land cover/land use, weather data, vegetation 
productivity, and biomass estimation. Such data could provide a more comprehensive and accurate 
estimation of GHG emissions from agricultural systems.  
 
Improvements to biomass products could also significantly benefit tier 1 and 2 reporting. While there are 
several products available for forests, there are currently limited options for croplands and grasslands. 
There are not as many biomass products available for croplands and grasslands as there are for forests. 
Spawn et al. (2020) have created a harmonized product for above and belowground biomass for the year 
2010. By harmonizing several inputs into a comprehensive representation across vegetation types, this 
product provides an imminently usable resource for estimating biomass from grasslands and croplands. 
In the US, Regrow’s Operational Tillage Information System (OpTIS) – which uses publicly available satellite 
datasets- is developing user-friendly products, usable for instance by the Conservation Technology 
Information Center (CTIC) which is supported in part by the U.S. Environmental Protection Agency and 
USDA 
 
4.  Approaches to estimate AFOLU-related emissions/removals 
IPCC approach 
The remote sensing based data products described in Section 3 that can be used as activity data (ha yr-1) 
and emissions factors (tCO2e ha-1) are the basis for estimating emissions and removals (tCO2e yr-1). These 
data products can be mapped to IPCC variables (Table 4) and combined in a series of increasingly complex 
modeling approaches to provide Tier 1, 2 or 3 estimates, with Tier 3 considered to have highest accuracy 
and precision. The IPCC Guidelines for the AFOLU sector provide two high-level approaches to estimate 
stock-changes referred to as 'stock-difference' and 'gain-loss'. The stock-difference method compares 
changes in biomass from one time point to another, to assess carbon stock changes translated into 
emissions or removal estimates. In this method, the area of land in each land category at times (t) t1 and 
t2 is identical. On the other hand, the default gain-loss method estimates the net balance of additions to 
and removals from a carbon stock in all land categories. For example, changes in biomass carbon stocks 
on land i converted to land j is estimated by the difference between the biomass stocks of j immediately 
after the conversion and the biomass stocks of i (BAFTER - BBEFORE, t d.m. ha-1yr-1) multiplied by the area 
change of land i to land j (ADij, ha yr-1; i and j are country specific strata). This initial change in biomass 
stocks between categories is increased by the average annual biomass growth (ΔCG) and decreased by the 
average annual biomass losses due to wood removals or disturbances (ΔCL, t d.m.ha-1yr-1) on the land in 
the year of conversion (t d.m. ha-1yr-1). The decision on which approach to use is based on the availability 
of data, with most GHG inventories submitted to the UNFCCC using the default gain-loss approach. When 
national data is not available, Tier 1 methods are applied and default values are used. For forest land, for 
example, the IPCC Guidelines provided default values for estimating the variables for the ‘gain-loss’ 
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method using globally available sources, distinguishing climate domain, ecological zone, continent, forest 
age structure, and for plantation or natural forests.  

Table 4. Variables used in the IPCC equations for estimating carbon stock changes in the AFOLU sector 
(Volume 4, Chapter 3, IPCC 2006). The first five variables correspond to the gain-loss method while the 
last two are used in the stock-difference method. 

Variable Description Equation from the 
IPCC 2006 Guidelines 

BAFTERi biomass stocks on land type i immediately after the conversion, t d.m. 
ha-1 

Equation 2.16 

BBEFOREi biomass stocks on land type i before the conversion, t d.m. ha-1 Equation 2.16 

ADij area of land remaining in the same land-use category, or area of land 
use i converted to land-use j in a certain year, ha yr-1 

Equation 2.9, 

ΔCG annual increase in carbon stocks in biomass due to growth on land 
converted to another land-use category or in land remaining in the 
same land-use category by vegetation type and climatic zone, in t C yr-

1 

Equation 2.7, 2.9 

ΔCL annual decrease in biomass carbon stocks due to losses from 
harvesting, fuel wood gathering and disturbances on land converted 
to other land-use category or in land remaining in the same land-use 
category, in t C yr-1 

Equation 2.7, 2.11 

Ct1 carbon stock in the pool at time t1, t C Equation 2.5 and 2.8 

Ct2 carbon stock in the pool at time t2, t C Equation 2.5 and 2.8 

 
In addition to considerations on the method selected by countries in their reporting, other IPCC factors 
need to be considered when handling and presenting satellite-based data products or maps, including 
national definitions, spatial resolution, temporal coverage and temporal resolution. Failing to consider a 
single one of these factors can render the data products unsuitable for uptake in national reporting to the 
UNFCCC and make the global independent estimates so conceptually different to the aggregated GHG 
inventories that they may fail to inform the Global Stocktake process. For example, the managed land 
proxy adopted by the IPCC Guidelines1 as a pragmatic approach to exclude natural fluxes and the national 
definitions of what constitutes a forest and other land uses are country specific. Grassi et al. (2023) 
quantified a large difference of 6.7 GtCO2 yr-1 in global land-use CO2 fluxes between the ensemble mean 
of the bookkeeping models used in the IPCC assessment reports (Canadell et al., 2021), and the estimates 
from the aggregated NGHGIs. After adjustment to be conceptually more comparable, the two sources 

 
1  The use of managed land as a proxy for anthropogenic effects was adopted in the IPCC Good Practice Guidance 

for LULUCF and is maintained in the 2006 IPCC Guidelines and 2019 Refinement to the 2006 Guidelines. In the 
context of GHG inventories, “managed land” is, therefore, broadly defined as “ land where human interventions 
and practices have been applied to perform production, ecological or social functions.” (see, for example, page 
1.5, Chapter 1, Volume 4, 2006 Guidelines) 
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show that the LULUCF sector is an increasing sink, and the order of magnitude of fluxes is relatively similar 
with an average for the past two decades of a little under 2 GtCO2 yr-1 removed from the atmosphere. 
While satellite-based data products serve multiple purposes, in the context of contributing to the Global 
Stocktake, similar reconciliation when presenting the data (or adherence to the IPCC guidelines) is 
encouraged. 
 
Hybrid IPCC-Earth Observation approach 
In 2021, Harris et al. (2021) introduced a global data integration framework (GFOI Methods and Guidance 
2020) for monitoring forest GHG emissions and removals that follows similar “gain-loss” methods for 
reporting net carbon stock changes as those used by many countries in reporting LULUCF fluxes to the 
UNFCCC as part of their national GHG inventories. Rather than relying on country data that can be 
inconsistent, incomplete and statistical rather than spatial in data format, Harris et al. incorporate data 
into this framework derived from satellite, lidar and ground observations to develop a geospatially 
explicit, bottom-up monitoring system of forest emissions and removals mapped at 30 m resolution. The 
framework was designed to enhance science-policy coordination around methods and data and includes 
several of the EO-based data products summarized above. It was designed to be flexible enough to 
accommodate new sources of data as they come online and as the state of the science matures. 
 
Activity data used in this approach are tree cover extent, loss and gain from Hansen et al. 2013 (updated 
annually on Global Forest Watch). Drivers of tree cover loss (Curtis et al. 2018) and MODIS burned areas 
(Giglio et al., 2016) are used to separate observed loss of tree cover into deforestation (conversion to a 
new land use) vs. other forms of forest disturbance that lead to emissions (forestry activities, wildfires). 
This distinction is important for determining the carbon pools included in emission factors under an IPCC 
approach. Data sources for developing emission factors include aboveground biomass in the year 2000, 
root to shoot ratio, soil organic carbon, mangrove specific biomass and soil, peat.  
 
Options remain limited for data-driven, satellite-based monitoring approaches for developing accurate 
and spatially explicit removal factors. This is because methods development thus far has been focused on 
mapping biomass at a single point or period in time, driven largely by the need to develop deforestation 
emission factors under the MRV agenda of REDD+. In general, these approaches cannot yet accurately 
separate the signal of subtle gains in forest biomass resulting from changes in forest stand dynamics over 
time from the relatively large uncertainties of static biomass maps (Arevalo et al. 2023). Therefore, as a 
first step to mapping forest carbon removals, Harris et al. applied a “stratify and multiply” approach based 
on stratifying global forests by continent, age, and type (primary/intact, secondary, regrowth, planted, 
agroforestry and tree crops) and applying removal factors derived from compiling repeated NFI data or 
field plots especially in the tropics. 
 
The data integration framework was designed to be flexible and updatable. As such, several short-term 
improvements and enhancements have been implemented since the original publication. Regarding 
improved activity data, these include updated tree cover loss through 2022 and gain through 2020, 
improved spatial attribution of forest (Tyukavina et al. 2022), and improved mapping of peat extent as 
summarized above for Congo Basin, Peru and Indonesia, and globally (refs). For emission factors, updated 
GWPs from IPCC AR6 for estimating non-CO2 emissions from fire and spatially explicit allocation of root 
biomass (ref).  
 
Longer-term data improvements are focused on improving maps of the spatial and temporal dynamics of 
forest carbon removals in undisturbed stands ranging in age from young to old growth forests, for example 
by deriving removal factors from space-for-time approaches (e.g. Heinrich et al. 2023) and/or developing 
spatially explicit matrix models (Liang et al. xxx) trained using in-situ repeated measurement inventory 
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data to simulate stand-level forest population dynamics and associated forest carbon dynamics. Efforts 
are also underway to expand this data integration approach beyond forests to map all AFOLU fluxes 
globally including emissions from croplands (Carlson et al. 2016) and livestock (Herrero et al. 2017).  
 
Dynamic Global Vegetation Models 
A Dynamic Global Vegetation Model (DGVM) is a gridded ‘process-based’ model that calculates the 
individual and net fluxes that comprise the carbon balance of the land surface, and in which vegetation 
and soil properties evolve dynamically through time. DGVMs therefore provide a key element in 
understanding and quantifying changes in atmospheric CO2. Although originally designed to be driven 
solely by climate, with all internal processes being parameterised, they have increasingly been required 
to simulate observed temporal variations in atmospheric CO2. To do so they must dynamically adjust to 
externally imposed land use and land use change. Friedlingstein et al. (2022) list 17 DGVMs that meet this 
condition, which is the key link to AFOLU activities. Also relevant is the CASA Light Use Efficiency Model 
coupled to the GFED4 fire databases (van der Werf et al., 2017), which calculates land-atmosphere C fluxes 
using a process-based approach and is directly driven by a range of satellite-derived variables.  
 
While realistic modeling of observed land C fluxes requires DGVMs to represent actual human 
management activities, the carbon consequences for vegetation and soils are calculated according to the 
internal processes within each individual DGVM. This includes plant growth and mortality, plant and soil 
respiration in both natural and managed landscapes, and natural disturbance (such as wildfires). Hence 
the amount of biomass available in a grid cell is a property of each individual model and the emissions 
due to LUC cannot be parameterised by simple "emissions factors" (as in the IPCC approach to producing 
national GHGIs). Instead the emissions arise from a complex interplay between local climate, model 
parameters, and the rules adopted when allocating carbon from the vegetation affected by LUC. Hence 
the emissions calculated by DGVMs are much more fine-grained that can be captured by the emission 
factor concept. 
 
Because DGVMs account for ambient environmental conditions, such as atmospheric properties, they 
include the indirect human-induced and natural effects of LUC, not just the direct human-induced effects. 
The indirect effects come from human-induced environmental changes, such as temperature and 
precipitation changes, atmospheric CO2 concentration and nitrogen deposition, whereas natural effects 
include climate variability and natural disturbances, such as wildfires. National GHGIs based on direct 
observation according to IPCC guidelines implicitly include such indirect and natural effects. Hence, in 
principle, their estimates of the emissions (positive and negative) from managed land should be consistent 
with those from DGVMs. However, currently the net global anthropogenic land emissions estimated from 
GHGIs is about 4 GtCO2 yr-1 lower than those from an ensemble of DGVMs (Grassi et al., 2018 and see 
Schwingshackl et al., 2022). 
 
There are conceptual and practical reasons why DGVMs and NGHGIs are likely to disagree on both the 
carbon emission and sink terms arising from LUC. One concerns the fate of carbon lost due to 
deforestation or forest degradation. This needs to be assigned to immediate emissions, long-lived wood 
products and residual coarse woody debris, and the proportions of each differ between different models. 
These three components have different rates of emissions to the atmosphere. In addition, the extracted 
wood may be transported elsewhere, so is removed from the local or regional carbon balance, and will 
not give rise to local emissions. A second is that DGVMs vary in the parameters used when calculating 
quantities such as vegetation growth, mortality, above and below ground carbon allocation, litter fall, soil 
respiration etc. Hence the sizes of the carbon pools vary between models, which has immediate 
consequences when calculating carbon emissions under LUC, and their dynamics also vary, with differing 
values of carbon residence times. Thirdly, DGVMs vary in the range of processes they include and how 
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they include them, for example, nitrogen deposition and fire (both on managed and unmanaged land, and 
whether used as part of land management or not). 
 
Nonetheless, DGVMs can play an important role in closing the apparent large discrepancy between 
emissions estimates from GHGIs and Integrated Assessment Models (IAMs), which the IPCC uses to 
explore scenarios and pathways of future changes. Comparisons with historical data show that IAM 
estimates of the global net anthropogenic land emissions exceed those from GHGIs by about 5.5 GtCO2 
yr-1. However, DGVM-based estimates of the indirect human-induced and natural effects of LUC (which 
are not in the IAMs) can explain the whole of this discrepancy (Grassi et al., 2021[a1]). 
 
Global datasets and spatially explicit models, such as those used in the Global Carbon Budgets (GCB; 
Friedlingstein et al., 2020, 2021), can make a valuable contribution to the GST by providing an 
independent, low latency (i.e., near-real time) and consistent way of linking global to national GHG 
budgets (Hegglin et al., 2022, Bastos et al., 2022). Several studies have already aimed at linking national 
inventories to global approaches, both for atmospheric inversions (e.g., Chevalier et al., 2021, Deng et al., 
2022, Byrne et al., 2023) and land carbon flux models (DGVMs and bookkeeping models) (e.g., Grassi et 
al., 2018).  
 
A key challenge in using global budgets, such as that from the GCB, is that they contain large uncertainties 
in: (i) the spatial distribution of surface GHG fluxes, at the scale of large regions, and even more over small 
regions or countries due to model structural differences, parameter values and model input data; (ii) the 
LULCC and management input datasets used to estimate corresponding fluxes by bookkeeping models 
and Dynamic Global Vegetation Models (DGVMs); (iii) the attribution of fluxes to human vs. natural 
processes, or to managed/unmanaged lands; (iv) definitions used to account for different fluxes. 
 
Despite the enormous development and expansion of Earth Observation (EO) networks and satellite 
platforms to monitor Essential Climate Variables (ECVs) in the past decades (Popp et al., 2020), many of 
which are relevant to the global carbon cycle, EO data are still underused in NGHGI and BK/DGVM 
approaches (Bastos et al., 2022). Recent case-studies have called for (and shown) the potential of) deeper 
integration of EO data in models used to quantify different terms of carbon budgets and attribute them 
to specific processes (e.g., Thais et al., 2021, Heinrich et al., 2021, Bultan et al., 2022, Fawcett et al., 2023). 
One of the main challenges in the use of (satellite) EO data directly being that it only allows estimating 
instantaneous fluxes, while legacy fluxes are needed. 
 
Bookkeeping approaches 
Bookkeeping approaches (BK) model carbon losses and gains following LULCC based on land-use and land-
cover type specific C densities and response curves following transitions (e.g., transitions between various 
natural and managed vegetation types, croplands and pastures). Unlike DGVMs, they do not simulate 
carbon stocks but use observational data to assign carbon densities to given cover types, such as 
literature-based biome-level values and inventory data. Hence, BKs do not include the effect of changing 
environmental factors, such as climate and CO2 fertilization, on vegetation growth rates and soil 
respiration. The carbon stored in vegetation and soils before and after a change in land-use is tracked 
using literature-based response curves that describe the decay of vegetation and soil carbon, including 
transfer to product pools of different lifetimes, and carbon uptake due to regrowth. Secondary forests 
and long-term degradation of primary forest can be represented in terms of reduced values of above-
ground biomass and soil carbon stocks; forest management practices, such as wood harvests, can also be 
included. Models differ in their parameters, response curves, LULCC forcing and spatial detail of 
transitions and fluxes. 
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In general, bookkeeping models have relied on statistical surveys and generalized global to regional 
emission factors to estimate carbon emissions and removals. More recently, integration of remote sensing 
activity data as the underlying driver, i.e., replacing FAOSTAT with Land-Use Harmonization dataset (Chini 
et al., 2020), to estimate emissions, see Hartung et al., 2021. Remote sensed emission factors are also 
being evaluated as part of the book-keeping model workflow (Bastos et al., 2021), replacing generalized 
biomass estimates with values more representative of a wider range of ecosystem types, e.g., Bultan et 
al., 2022. 
 
5.  Perspective on CEOS GHG roadmap 
Approaches used to estimate AFOLU emissions and removals rely on the activity data and emissions 
factors described in the previous sections. In contrast, changes in atmospheric concentrations can be used 
to provide a top-down constraint on emissions and removals using atmospheric inversion approaches. 
The CEOS GHG Task Team has been carrying out pilot top-down assessments as part of the CEOS GST 
activity to demonstrate how atmospheric constraints can inform country-level sectoral emission and 
removal estimates (see Deng et al., 2022, Byrne et al., 2022). Atmospheric inversions can be done mainly 
independent from the data used in the bottom-up approaches in AFOLU, and thus provide a useful basis 
for comparison and quantification of uncertainties. 
 
In the context of the GST, comparisons between top-down (CEOS GHG) and bottom-up (CEOS AFOLU) 
must take into account several systematic differences. These include differences in i) the resolution of 
sectors responsible for emissions and removals, ii) the spatial resolution of each approach in the context 
of country size, iii) definitions used for the managed land proxy by each country, and iv) the treatment of 
the land-ocean-aquatic-continuum fluxes. 
 
6.  Capacity building & user engagement 
The user engagement activities contribute to the main goals of the AFOLU roadmap through the 
collaboration between the CEOS agencies engaged in land surface and carbon process observation and 
the domestic GHG inventory analysts and land measurement experts in the context of the UNFCCC, as 
well as capacity building programs and country practitioners. The activities are led by USGS SilvaCarbon 
and are leveraged by the program's partner network and well-established relationship with Government 
institutions. The overarching goals are to: 

1. Establish the needs and requirements for using space-based data and derived products to report 
carbon emissions from the AFOLU sector.  

2. Provide national feedback on, and contribute to refining available products derived from 
satellite data. 

3. Demonstrate the uptake of products in UNFCCC processes, including in domestic GHG 
inventories submitted to the Convention, which are input to the Global Stocktake. 

 
The use of space data by GHG inventory teams for the first Global Stocktake provide numerous examples 
of data and products used at the moment. Lessons learned and best practices from these existing 
examples (e.g., Melo et al, 2023) complemented with examples from active research are used in the 
preparatory work of the AFOLU task team for the engagement activities. Regional workshops and 
development of case studies or demonstrations are planned ahead of the new cycle of submissions 
starting in 2024, which will be an input to the 2028 Global Stocktake. These activities are to be 
implemented in a collaborative interface of national and global monitoring experts, including LULUCF GHG 
inventory experts, to facilitate the understanding of the differences between global and domestic 
estimates which follow the IPCC guidance.  
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The coordination developed by space agencies for AFOLU efforts (see the CEOS Global Stocktake data 
portal) is strengthened by the engagement with national GHG inventory teams and experts. The 
collaborative interface between global and national land monitoring experts will coincide with the 
transition from the current MRV framework to the more stringent reporting requirements of the Paris 
Agreement, and its Enhanced Transparency Framework (ETF). The activities are led by the USGS 
SilvaCarbon Programme and articulated with the GFOI capacity building initiatives. They are also 
leveraged by SilvaCarbon’s partner network and well-established relationship with Government 
institutions responsible for reporting to the UNFCCC. The objectives of this collaborative framework are 
to:  

● determine needs and requirements regarding the potential use of space-based data and derived 
products for specific IPCC variables, following IPCC guidance and principles;  

● test and improve existing datasets;  
● address some of the outstanding issues that hinder the use of products by national teams; and  
● provide examples of the practical implementation of the 2019 Refinement to the 2006 IPCC 

Guidelines.  
 
First results from the collaborative work between global and national land monitoring experts and LULUCF 
experts reviewing GHG inventories include:  
 

1. Preparation of regional workshops 
In 2023, two regional workshops organized by SilvaCarbon/CEOS took place in Paraguay (2022) and 
Thailand (2023), providing forested countries with valuable opportunities to access global and pantropical 
datasets for biomass estimation and mangrove extension. Additionally, the Silvacarbon program 
conducted bilateral activities in selected countries to test global products. SilvaCarbon is currently testing 
global datasets in Solomon Islands, Paraguay, Colombia, Guatemala, Peru, Vietnam, Laos, and Gabon. The 
next workshop is being planned for September 2023 in Gabon. In the regional workshops, national 
technical teams presented their current methods and NFIs, invited independent experts to introduce and 
discussed the IPCC guidance and requirements; and remote sensing experts and scientists from CEOS 
agencies showed their different mapping data and methods. The dialogue begins in the workshops but 
continues at national scales in working clusters composed of national experts, global experts, and experts 
nominated by national teams to the UNFCCC roster to achieve the objectives listed above. Below there 
are some examples of the current efforts using global datasets in countries.  

● Paraguay example: country-specific EO calibration (recalibration of GEDI to NFI; Bullock et al, 
submitted). CEOS & UNFCCC Global Stocktake 

● GLAD Global Map uptake in Peru, Colombia and Guatemala CEOS & UNFCCC Global Stocktake 
● Peru examples: EO as auxiliary data to improve precision in NFI estimates (validation with NFIs; 

increased precision). 
● West Africa example: improved EO calibration (improving local reference data to improve EO 

models). 
● Mexico: temporal gap-filling of NFIs. 
● Solomon Islands - potential for using EO data when no other data is available. 
● Vanuatu - potential for using EO data when no other data is available. 
● Laos and Vietnam - improving calibration of GEDI based pantropical datasets. 

 
A second activity includes an overview of the use of satellite-based global maps in domestic GHG 
inventories and reporting to the UNFCCC (Melo et al, 2023). This activity developed a baseline to assess 
progress on the uptake of satellite-based global maps in the next cycles of the Global Stocktake as a 
needed reflection from the EO community on what we are delivering, which is an essential step to 
influencing policy. The evidence shows that all developing countries use satellite data, mainly Landsat and 
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imagery accessed through the Collect Earth platform, to develop national estimates of AD (Figure 9). 
However, the use of global maps is very limited, and for biomass maps the use is only indirect, for example 
as a verification tool used for domestic quality control or by the expert LULUCF reviewers. 
 

 
Figure 9. Analysis of use of EO data in forest reference level submissions to the UNFCCC by developing 
countries between 2014 and 2022. The color scheme in the quadrant charts shows the use of satellite 
data (e.g. Landsat imagery) and derived EO products (or global maps) to directly derive activity data (AD, 
left-hand quadrants in red and yellow respectively), and emission factors (EF, right-hand quadrants in teal 
and green respectively). Indirect uses of EO products are represented with a • mark in a quadrant (e.g. 
use for validation, to justify decisions) (source: Melo et al., 2023) 
 
Similar collaborative activities to demonstrate the uptake of satellite-based data products in national 
reporting and for climate policy applications can be implemented with teams from developed countries. 
Especially given that examples of fully complete and spatial GHG inventories are also rare (or even 
nonexistent) for Annex I countries and there is political will to support existing systems with satellite-
based data. 
 
Lessons learned and recommendations: 
Recommendations from testing biomass maps 
 

1. Calibration is challenging due to the limited amount of NFI data. There are many global and 
pantropical biomass maps, and all then differ in their biomass estimate, given different volumes 
by different maps in the same areas. Usually, the uncertainty of these maps is calculated at a 
global scale. The discrepancies between global and pantropical biomass maps are a common 
challenge in carbon accounting. Therefore, it can be difficult for country officials to decide which 
biomass map suits their specific needs and circumstances. Ultimately, the choice of biomass map 
will depend on each country's particular needs and priorities. It may be helpful for country officials 
to consult with experts in the field of carbon accounting and measurements to determine which 
biomass map is most suitable for their needs. 
 

2. Some of the maps don't fit the requirements for reporting. Therefore, it may be necessary to 
develop guidelines and standards for biomass mapping to ensure that future maps meet the 
requirements for carbon emission reporting. For example, establishing minimum standards for 
validation.  
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3. Harmonization is no longer possible. While achieving complete harmonization may be difficult, 

steps can still be taken to improve the accuracy and reliability of biomass mapping and carbon 
emission reporting.  
 

4. Lifetime of the satellite information is uncertain: GEDI has made significant contributions to our 
understanding of forest structure and carbon storage, and the instruments it is on pause for a 
time. Satellite data uncertainty is a factor that will play a role in countries using a global product 
considering the risk that there would not be a future iteration.  

 
Recommendations from testing  mangrove maps: 
 

1. Calibration: Calibration can improve estimates' accuracy and precision and ensure they are 
consistent with ground-based measurements. However, a limited amount of National Forest 
Inventory (NFI) data are available for mangroves. To have more calibration data, the SilvaCarbon 
program provides training on protocols to collect mangrove inventory data (above and below-
ground biomass). It is a complex issue due to the difficulty and cost of mangroves NFI. It 
recommended that the CEOS group keep this as a priority and invest in mangroves' ground-
based data.  
 

2. Field inventories: Given that most of the carbon stored in mangroves is underground, 
conducting field inventories that include below-ground biomass measurements may be 
necessary to estimate carbon stocks and emissions accurately. A combination of remote sensing 
data and field inventories can provide a more comprehensive picture of carbon stocks and 
emissions for this ecosystem. 
 

3. Combining activity data and emission factors: It can be challenging to combine activity data 
(such as land-use change) with emission factors (such as carbon stock changes), particularly for 
complex ecosystems like mangroves. Improved methods are needed to integrate these data 
sources and produce accurate estimates of carbon emissions. 
 

4. Reporting ambiguity: There may be ambiguity around where to report mangroves, particularly 
concerning the Greenhouse Gas Inventory (GHGi) and the REDD+ annex. Clear guidelines are 
needed to ensure that mangroves are written consistently and accurately in the forest or 
wetlands classes.  
 

5. Linking with databases: Finally, it is recommended to connect mangrove global maps developers 
with programs with historic ground-inventory data, such as the SWAMP carbon database. This 
can help the new iteration of mangrove maps. 

 
7.  Forward looking to 2035+ 
The recommendations from this Roadmap provides guidance for near, medium and long term support of 
remote sensing for the Paris Agreement and Global Stocktake. By near-term, the Roadmap identifies 
operational missions, mature modeling approaches, and pathway for engaging with stakeholders in the 
inventory community to address the first Global Stocktake released in November 2023. Medium term 
recommendations are made in line with supporting the second Global Stocktake in 2028, with reference 
to planned missions and sustained land imaging, as well as adoption and development of new models to 
support AFOLU. Long term recommendations look toward 2035+, a period when the NDC’s achieve 
emissions reductions of 50%, and when a new generation of GHG satellites are in orbit, and when regular-
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annual inventories are provided to the UNFCCC. At the same time, the recommendations acknowledge 
the emergence of New Space and the role of the commercial sector in providing very-high resolution 
optical and radar imagery to support imaging spectroscopy, land surface feature mapping, and enable 
deep learning and artificial intelligence algorithms to detect changes in land-use and land cover and to 
estimate emission factors. For example, the Blue Carbon ecosystem app developed between The Nature 
Conservancy and Planet provides changes in mangrove and seagrass carbon stocks easily accessible to the 
inventory and climate mitigation and adaptation community 
(https://tnccaribgis.users.earthengine.app/view/blue-carbon-explorer). 
 
Looking forward, we will move into a world where a system is required in post 1.5-degree C world, rapidly 
on its way to net zero emissions. In this world, the carbon cycle will be changing due to climate change. 
Therefore, we shall aim to evolve into a system capable of observing the carbon cycle in a changing 
climate. A GHG+ observing system that integrates GHG’s and AFOLU to carry out both the UNFCCC 
reporting requirements and to also detect the climate-carbon responses. For the 2035+ timeframe, we 
will need to identify science needs (modeling, integration, new/sustained missions). From a CEOS 
perspective, the GHG and AFOLU roadmaps need to become integrated at the 5-year timeframe. 
 
In addition to recommending the AFOLU Roadmap, the CEOS Strategy to Support the Global Stocktake 
also recommended an AFOLU themed field campaign. Recommendation #4 states that “CEOS should 
consider, in conjunction with modelers, setting up one or more focused observational campaigns in the 
areas suggested above, or others, as a major contribution to the understanding of the trends of GHG 
emissions from natural sources in key areas”. Such a campaign can leverage the recommendations laid 
out in Annex A, in particular to support engagement between the CEOS and inventory communities, to 
explore synergies of operational and planned missions using aircraft instruments, enable and mature 
modeling approaches, and to include non CO2 gases such as CH4 and N2O. 
 
The recommendations are intended to adapt and evolve as the IPCC and the Global Stocktake revise 
guidelines and identify new areas for research and applications. The recommendations also intend to 
support sustained measurement requirements of current and operational missions to ensure systematic 
monitoring, verification and reporting. The Earth system is changing rapidly and thus revisiting observing 
systems and their ability to detect, monitor and quantify climate impacts is required. Climate policy and 
the emphasis between mitigation, adaptation, loss and damage, is also dynamic, and requires the 
recommendations in the Roadmap to be flexible and adaptive. The observing landscape is also changing 
rapidly, with CEOS partners such as WGClimate, the World Meteorological Organization, GCOS, the World 
Climate Research Program establishing their own definitions and/or frameworks for GHG+, along with 
efforts from the private sector, i.e., ClimateTrace. 
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Annex A: Table of Recommendations 
 

Thematic Area Audience Recommendation 

Recommendation 0: Ensure 
that every country that wishes 
to has the land satellite data 
required to report to UNFCCC 
under IPCC guidance. 

CEOS Recommendation 0a: Continue and expand the free and open data 
policy required for land information in UNFCCC reporting. 

Recommendation 1: Ensure 
long-term continuity and 
backward compatibility for 
missions providing activity 
data and emission factors 

CEOS 
Agencies 

Recommendation 1a: Support continuation of remote sensing 
missions and derived products that provide activity data and biomass 
change information so that countries can safely embed these data 
streams into their inventory workflows and guidance documents. 
Recommendation 1b: Explore harmonization and integration activities 
that generate temporal continuity and provide complete and 
consistent spatial coverage of activity data and biomass estimates. 
Recommendation 1c: Evaluate the planned program of record to 
identify mission gaps and to define future missions, including 
backward compatibility of next-generation missions, to support 
activity data and biomass estimates. 

Recommendation 2: Improve 
use of Earth observation data 
in UNFCCC reporting and IPCC 
Guidelines. 

UNFCCC/ 
IPCC 

Recommendation 2a: Formalize a dialog between CEOS GST activities 
and the UNFCCC regarding the systematic use of Earth observations to 
inventory guidelines and reporting. 
Recommendation 2b: Develop a protocol or best-practice guidance to 
use EO-based estimates of AGB in support of national estimation, 
reporting and climate policy support, including guidance on the use of 
spatially disaggregated land cover change and biomass estimates in 
inventories. 
Recommendation 2c: Enable international activities such as the 
establishment of Forest Biomass Reference Measurement in-situ long-
term monitoring plots (e.g.  Geo-Trees) to ensure space-derived data 
are of the highest quality, uncertainties are well characterized. 
Recommendation 2d: Align terminology and analytical frameworks of 
uncertainty assessments and the release of AGB estimates consistent 
with IPCC Guidelines. 
Recommendation 2e: Develop traceability and flexibility for different 
land activity definitions to be consistent with national definitions used 
in GHG inventories. 

Recommendation 3: 
Recognizing that different 
countries have various 
requirements to support their 
system for reporting, enable 
dialog between inventory 
practitioners and CEOS 
community  

National 
Inventories / 
CEOS 
Agencies 

Recommendation 3a: Work with national measurement and reporting 
teams to define, develop and evaluate Earth observation datasets 
that serve common needs of countries. 
Recommendation 3b: Build capacity for national GHG inventory teams 
to integrate Earth observations data with existing and new inventory 
guidelines through demonstration projects. 

Recommendation 4: Support 
efforts to reconcile bottom-
up, top-down, and inventory 

Research 
community 

Recommendation 4a: Develop guidance and datasets to support the 
consistent comparison and assessment of bottom-up and top-down 
methodologies with national GHG inventories. 
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estimates of GHG emissions 
and removals2 

Recommendation 5: 
Integration of New Space and 
commercial partnerships in 
supporting national GHG 
inventories 

CEOS Recommendation 5a: Provide guidance for how new forms of activity 
and biomass data from non-government supported space agencies 
can be integrated within public-space Earth observation workflows. 
Recommendation 5b: Establish protocols for open-source science 
sharing tools and cloud computing to facilitate data and code 
development. 

Recommendation 6: Ensure 
consistency of CEOS AFOLU 
and GHG Roadmaps to 
support an integrated national 
GHG inventory system, GHG+. 

CEOS Recommendation 6a: Coordination with GHG Task Team to integrate 
bottom-up and top-down measurements in support of national GHG 
reporting. 
Recommendation 6b: Expand the purview of CEOS AFOLU Roadmap 
to include methane and nitrous-oxide emissions from agriculture. 
Recommendation 6c: Work with WMO to facilitate and support the 
development of a Global Greenhouse Gas Watch (G3W). 

Recommendation 7: 
Development of actions to 
support the CEOS AFOLU 
recommendations 

CEOS AFOLU Develop series of actions for implementing the CEOS AFOLU Roadmap 
for CEOS  2024 

  

 
2  
https://ceos.org/observations/documents/CEOS_CGMS_GHG_Constellation_Roadmap_V2.3_cleaned.pdf 
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Annex C: List of Acronyms 
AD : Activity Data 
AFOLU : Agriculture, Forestry and Other Land Use 
AGB : Aboveground Biomass 
AR : Assessment Report 
BUR : Biennial Assessment Report 
CEOS : Committee on Earth Observation Satellites 
CH4 : Methane 
CO2 : Carbon dioxide 
CSA : Canadian Space Agency 
DGVM : Dynamic Global Vegetation Model 
EAV : Essential Agriculture Variables 
EF : Emission Factors 
ECV : Essential Climate Variables 
EO : Earth Observations 
ESA : European Space Agency 
ETF : Enhanced Transparency Framework 
FAO : Food and Agriculture Organization 
IPCC : Intergovernmental Panel on Climate Change 
JAXA : Japanese Aerospace Exploration Agency 
JRC : Joint Research Council 
GCB : Global Carbon Budget 
GCOS : Global Climate Observing System 
GEDI : Global Ecosystem Dynamics Investigation 
GHG : Greenhouse Gas 
GLANCE Global Land Cover Mapping and Estimation 
GMW : Global Mangrove Watch 
GPG : Good Practice Guidelines 
GST : Global Stocktake 
IAM : Integrated Assessment Model 
LCCS : Land Cover Classification System 
LUC : Land Use Change 
LULCC : Land Use and Land Cover Change 
MRV : Monitoring, Reporting and Verification 
NASA : National Aeronautics and Space Administration 
NFI : National Forest Inventory 
NGGI : National Greenhouse Gas Inventory 
N2O : Nitrous Oxide 
REDD+ : Reduced Emissions from Deforestation and Degradation 
UNFCCC: United Nations Framework Convention on Climate Change 
USGS : United States Geological Service 
WRI : World Resources Institute 


