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Chapter 1: Introduction 

1.1. Objectives of the document 

Aerosols, clouds, precipitation, and the processes governing their interactions are the grand 

challenges for current climate science, of the highest priority for the climate science-policy 

interface, and of great relevance for both Working Groups I and III of the upcoming 7th IPCC 

cycle. Satellite missions such as CALIPSO and CloudSat have demonstrated the value of 

aerosol and cloud profiling techniques on understanding the processes governing aerosol-

cloud-radiation interactions. The EarthCARE mission will ensure the continuity of these efforts 

and further advance synergies of space-borne lidar and cloud radar profiling. Following 

EarthCARE, the Atmosphere Observing System (AOS) of NASA will further shed light over 

the unknown links between aerosols, clouds, atmospheric convection, and precipitation.  

The geophysical validation of spaceborne high-resolution profilers for aerosols, clouds and 

precipitation presents unique challenges. As indicated in the following section, several CEOS 

agencies are preparing profiler missions, and the need for a common practice capturing 

lessons learned from earlier missions was identified by the CEOS Working Group Calibration 

and Validation, and its implementation is tracked under its action item CV-22-01. The present 

document is a response to this action item. 

The best practice convergence process, culminating in this document, is aimed at the 

optimization of Calibration and Validation techniques (Cal/Val) in terms of instrumentation, 

sampling strategies and scenarios, and intercomparison methodologies. For this, the scientific 

communities involved in past missions have reviewed lessons learned and identified areas 

where convergence on similar approaches is beneficial.  

The approaches and recommendations provided in this document cover correlative site 

selection, correlative instrument selection, data processing and quality control, campaign 

criteria, configurations, scenarios, and collocation methods, along with intercomparison 

methodologies, including handling of wavelength differences. In addition, for increased 

statistical relevance of the intercomparison with ground sites, guidance and recommendations 

for intercalibration between networks are included, to achieve a “network of networks” to 

compensate for the sparse overpasses per site, and avoid biases. 

In view of the complexity and diversity of geophysical scenarios and retrievals of aerosol, 

cloud, and precipitation regimes, the best-practice convergence process and also this entire 

document is aimed at knowledge exchange and conveying lessons learned, rather than 

definition on single and strict protocols that have been agreed in some other domains with 

fewer degrees of freedom.  

In the context of the convergence, several dedicated studies have been performed on historic 

datasets, in order to arrive at recommendations on open issues. Community open source tools 

have been developed in addition, to facilitate the efforts of the Cal/Val communities.  

In this Chapter, we overview key missions addressed in the ACPPV document along with the 

targeted satellite products for Cal/Val. Furthermore, we review the content included in the 

following chapters, in terms of available platforms and measurements for validation purposes, 
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methods for Cal/Val, suggestions on issues concerning scene representativeness, and 

existing gaps in our Cal/Val knowledge.  

1.2. Overview of past, present, and future space missions for aerosol, 

cloud, and precipitation profile observations, and the role of the 

validation programme  

Key spaceborne missions for aerosol, cloud, and/or precipitation profiling include the Tropical 

Rainfall Measuring Mission (TRMM) launched by NASA and JAXA in 1997 (Kummerow et al., 

2000), CloudSat launched by NASA and CSA in 2006 (Stephens et al., 2008), the Cloud-

Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission launched by 

NASA and CNES in 2006 (Winker et al., 2010), the Global Precipitation Mission (GPM) 

launched by NASA and JAXA in 2014 (Hou et al., 2014; Skofronick-Jackson et al., 2017), 

Aeolus Earth Explorer launched by ESA in 2018 (Stoffelen et al., 2005), the Earth Cloud 

Aerosol and Radiation Explorer (EarthCARE) launched by ESA and JAXA in 2024 (Illingworth 

et al., 2015), the future Atmosphere Observing System (AOS) Precipitation Measurement 

Mission (PMM), and the Cloud Aerosol LIdar for Global scale Observation of the ocean-Land-

Atmosphere system (CALIGOLA) mission slated to launch in the early 2030’s. Cal/Val 

activities for these missions generally include combinations of statistical comparisons with 

data from existing ground-based sites and networks, near-real time (NRT) validation through 

monitoring in an assimilation system, airborne field campaigns motivated by the particular 

missions, and leveraging relevant measurements or flight opportunities from field campaigns 

that have broader science goals. 

The TRMM satellite featured a 13.8-GHz (Ku-band) Precipitation Radar (PR) built by JAXA, 

which was the first precipitation radar in space (Kummerow et al., 2000). The TRMM PR 

collected reflectivity data allowing derivation of rain rates at 250-m intervals in the vertical, 

across a swath over 200 km wide. The TRMM Microwave Imager (TMI) allowed retrievals of 

surface rain rates over a wider (~700 km) swath, while constraining combined retrievals of the 

precipitation profiles where the swath overlapped that of the radar. The TRMM satellite was 

launched in a tropical (35° inclination) orbit on November 27, 1997. In order to extend the life 

of the planned 3-year mission, the satellite was boosted from its original 350 km orbit to 402 

km beginning August 22, 2001. It remained in orbit until it was decommissioned on April 15, 

2015. Its validation program included airborne field campaigns based in Florida (USA, 1999), 

Kwajalein atoll (Yuter et al., 2005), and Brazil (Silva Dias et al., 2002). The aircraft carried 

“satellite simulator” payloads in these campaigns, providing higher-resolution analogs to the 

satellite measurements. Other airborne instrumentation provided complementary 

measurements to expand the remote sensing capabilities and provide direct in situ 

observations. The field campaigns featured ground-based supersites with enhanced remote 

sensing and in situ measurements, although the aircraft were not constrained to only focus on 

the supersite locations. Besides those dedicated field campaigns, long-term statistics were 

accumulated from fixed sites with ground-based radars, rain gauges, and disdrometers (Wolff 

et al., 2005). Measurements from an operational weather radar network were leveraged as a 

“Validation Network” via special data processing after TRMM satellite overpasses of rain 

events near those radars.  

CloudSat (Stephens et al., 2008) and CALIPSO (Winker et al., 2010) launched together in 

2006, with the W-band cloud profiling CloudSat radar and the Cloud-Aerosol Lidar with 
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Orthogonal Polarization (CALIOP) dual-wavelength (532 nm and 1064 nm) lidar to distinguish 

aerosols from clouds.  CloudSat and CALIPSO flew in formation along the same track, 

separated from each other by about 15 seconds, and also aligned with other satellites in the 

Afternoon-Train constellation (A-Train). The CALIPSO and Cloudsat Validation Experiment 

(M. J. McGill et al., 2007) was conducted in June 2006, immediately following commissioning 

of both satellites. That experiment included deployment of a W-band radar and elastic 

backscatter lidar on the ER-2 aircraft, an HSRL on a King Air, and in situ cloud samplers on a 

Lear Jet. A dedicated validation field campaign was conducted for CloudSat in southeastern 

Canada (Barker et al., 2008). Another field campaign focused on validating cool-season, high-

latitude, light precipitation retrieval approaches by CloudSat and GPM was conducted in 

Finland (Petersen et al., 2011). Besides these validation field campaigns, the CloudSat 

program leveraged long-term systematic measurements from ground-based sites, and 

validation opportunities associated with airborne science campaigns (Stephens et al., 2008). 

Over its 17 years of operation, the CALIOP lidar on CALIPSO benefited from extensive ground 

and airborne validation efforts. The most impactful in terms of algorithm assessment and 

improvement were 147 airborne HSRL underflights, 70 of which were flown on a total of 8 

campaigns dedicated solely to CALIPSO validation with the remaining flights conducted as 

opportunities arose during science-focused field missions.  The HSRL data were used to 

assess CALIOP Level-1 calibration (Getzewich et al., 2018; Kar et al., 2018; Rogers et al., 

2011)  and Level-2 aerosol backscatter, extinction, optical depth, aerosol type, and aerosol 

detection sensitivity (Burton et al., 2013; Rogers et al., 2014; Thorsen et al., 2017). Validation 

efforts also heavily leveraged ground-based remote sensors in many locations, most 

significantly the EARLINET lidar network (Pappalardo et al., 2010).  

The GPM satellite was launched in 2014, expanding from the TRMM heritage with a Dual-

frequency (Ku- and Ka-band) Precipitation Radar (DPR) built by JAXA and a GPM Microwave 

Imager (GMI) (Hou et al., 2014; Skofronick-Jackson et al., 2017). The dual-frequency radar 

measurements allow improved determination of precipitation rate profiles, and a 65° inclination 

expands the mission focus to include snowfall detection (Iguchi, 2020; Kojima et al., 2012). 

The GPM ground validation program (Petersen et al., 2020) included a broader range of 

airborne field campaigns, consistent with the broader range of environments measured by 

GPM. These included partnering in campaigns with abundant snow and mixed-phase 

precipitation in Canada (Skofronick-Jackson et al., 2015), Sweden, and Korea, and campaigns 

featuring thunderstorms (Jensen et al., 2016), flood events (Petersen & Krajewski, 2013), and 

orographic precipitation (Barros et al., 2014; Houze et al., 2017) in the U.S and Brazil. The 

airborne field campaigns focused on well-instrumented ground-based sites, featuring 

combinations of radars, profilers, disdrometers, and other sensors. As with the TRMM field 

campaigns, the satellite simulator aircraft were not limited to measuring only over the ground-

based instrumentation. The fixed sites with ground-based precipitation measurements and 

remote sensors collected both rain and snow data. The TRMM Validation Network was 

expanded and enhanced, with the GPM Validation Network (Gatlin et al., 2020; Schwaller & 

Morris, 2011) taking advantage of polarimetric radar measurements from nearly 100 ground 

radars over CONUS as well as partner sites in Brazil, Korea, and Europe. A well-instrumented, 

long term super-site was established as the NASA Wallops Precipitation Research Facility 

(PRF) at NASA Goddard Space Flight Center Wallops Flight Facility on Wallops Island, 

Virginia. The PRF hosts multi-frequency radars (S-, C-, X-, Ka-, Ku-, K- and W-band), as well 

as numerous disdrometers, rain gauges and vertical profilers. 
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The Aeolus wind mission of ESA hosted the first space-based Doppler wind lidar world-wide 

(ALADIN), operating at 355 nm (Stoffelen et al., 2005). The mission successfully fulfilled its 

objective to demonstrate the Doppler wind lidar technique for measuring wind profiles from 

space. The unique Aeolus datasets found a range of applications, demonstrating the benefits 

of space-based wind profiling for NWP and the study of atmospheric circulation, precipitation 

systems, aerosol transport and interactions with clouds and radiation. For the validation of 

Aeolus, an Announcement of Opportunity (AO) call for Cal/Val support studies took place in 

2007. The AO focussed on the validation of the Aeolus wind and optical properties products. 

17 proposals including ground-based and airborne validation experiments along with NWP 

data assimilation studies were received from teams all around the globe (detailed description 

of the Cal/Val proposals can be found in (Straume et al., 2019)). Activities of special interest 

included near real-time validation through monitoring in NWP data assimilation systems, 

tropical stratospheric balloon experiments, and the inclusion of collocated measurements in 

polar areas. Furthermore, a dedicated large-scale experimental campaign with the 

participation of groups from both EU and NASA has been organized by ESA to support the 

validation of Aeolus and the preparation of the ESA missions EarthCARE and WIVERN. The 

so-called Joint Aeolus Tropical Atlantic Campaign (JATAC) included both surface and airborne 

deployments on Cabo Verde (2021/2022) and the US Virgin Islands (2021). The JATAC 

campaign started in July 2021 with the deployment of ground-based profiling instrumentation 

at Cabo Verde. By mid-August 2021, the CPEX-AW campaign started its operations from the 

US Virgin Islands with NASA’s DC-8 flying laboratory. In September 2021, a European aircraft 

fleet was deployed to Cabo Verde with the DLR Falcon-20 and the Safire Falcon-20 carrying 

remote sensors and in-situ instrumentation, and the Aerovizija Advantic WT-10 light aircraft 

for in-situ aerosol characterization. The JATAC activities restarted in June 2022 with the one-

month deployment of UAVs by the Cyprus Institute to Mindelo for in-situ aerosol 

measurements. Moreover, NASA deployed the DC-8 aircraft to Sal with the same payload set-

up of 2021 for a full month intensive campaign period in the framework of the CPEX-CV activity 

in September 2022. As for 2021, the Aerovizija Advantic WT-10 light aircraft took part in the 

campaign with its in-situ aerosol measurements from Mindelo. In total, around 60 scientific 

flights of the four aircraft were performed, with an additional 25 UAV flights operated by the 

Cyprus Institute in the framework of the JATAC activities. 23 Aeolus orbits were underflown, 

four of which in 2021 featured simultaneous observations by three aircraft 

(DLR/Safire/Aerovizija), with a perfect collocation of Aeolus and ground-based observations 

for two cases. Also in 2022, NASA and Aerovizija succeeded to perform a collocated flight of 

Aeolus and the ground-based observation. Overall, the joint activities have resulted in a high-

quality and comprehensive dataset to support a wide range of tropical atmospheric research, 

the validation of Aeolus and other satellites, and have provided key reference data for the 

development of future EO missions. 

EarthCARE is a satellite mission implemented by ESA in cooperation with JAXA, aiming to 

measure global profiles of aerosol, cloud and precipitation properties together with radiative 

fluxes and derived heating rates (Illingworth et al., 2015). The data will be used in particular to 

evaluate the representation of clouds, aerosols, precipitation and associated radiative fluxes 

in weather forecasting and climate models. The satellite scientific payload consists of the 

Atmospheric Lidar (ATLID)  operating at 355 nm to provide vertical profiles of aerosols and 

thin clouds, the highly sensitive Cloud Profiling Radar (CPR) operating at 94 GHz (W-band), 

equipped with Doppler measurement capability, to provide measurements of clouds and 

precipitation, the Multi-Spectral Imager (MSI) with channels in the visible, near infrared, 
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shortwave and thermal infrared, and a Broad-Band Radiometer (BBR) to provide 

measurements of top-of-the-atmosphere radiances and fluxes. The EarthCARE mission has 

been specifically defined with the basic objective of improving the understanding of cloud-

aerosol-radiation interactions so as to include them correctly and reliably in climate and 

numerical weather prediction models. The validation program of EarthCARE consists of 

correlative observations of cloud, aerosol, precipitation, and radiation properties. These 

observations will be delivered by ground-based sites, aircraft and UAVs, and other satellites 

that are being identified by an open process including announcements of opportunities from 

ESA/JAXA and the response of the validation teams (similarly to Aeolus). The validation teams 

and respective proposals are reviewed by the Agencies and during the Joint ESA/JAXA 

Validation Workshops, before being incorporated into the EarthCARE Validation Team 

(ECVT). Activities supported already include: (a) pre-launch campaigns and Fiducial 

Reference Measurement (FRM) developments for radars and lidars (FRM4RADAR, eVe, 

EMORAL); (b) development of suborbital-to-orbital simulators; (c) collaboration with networks 

and Research Infrastructures (e.g EARLINET, CloudNet, AERONET, ACTRIS), supported 

also by the European Commission through the ATMO-ACCESS project; (d) ESA-JAXA 

coordination through the joint Scientific Validation Implementation Plan (Koopman, 2021) (e) 

near-real time validation through monitoring in NWP data assimilation systems; (f) lessons 

learned / best practice convergence on validation of aerosol, cloud and precipitation profiles 

in collaboration with CALIPSO, Cloudsat, Aeolus, and AOS scientists. Along with the 

aforementioned activities, field campaigns with mobile ground-based instruments and airborne 

systems will constitute a very important part of the validation strategy for EarthCARE. 

The AOS Precipitation Measuring Mission (PMM) is planned to include a Ku-band Doppler 

radar built by JAXA and a pair of passive microwave radiometers provided by CNES, to be 

launched by NASA on two satellites flying in formation in a 55° inclination orbit. The Doppler 

radar will add vertical velocity information to more traditional precipitation information, both for 

assessing dynamics (in cloud vertical motion) and refining precipitation retrievals (through the 

use of particle fall speed information). The short temporal offset between radiometer 

measurements on the two satellites is intended to add information about vertical velocities and 

convective ice flux. By precessing through the diurnal cycle, PMM will capture a variety of 

storms in different parts of their lifecycles. 

An AOS-Cloud mission launched by NASA is expected to include a Doppler radar capable of 

measuring cloud and precipitation. It may be limited by attenuation in deep, strong convection 

and heavy precipitation, but should bring higher sensitivity than PMM in cloud and snow 

scenes that are especially important from polar orbit. Another AOS mission, with partnership 

between NASA and CSA, is expected to bring passive remote sensing measurements that 

could aid vertical profile retrievals that use active remote sensors in the same orbit. A multi-

frequency lidar capable of aerosol and cloud profiling is planned for the CALIGOLA mission, 

led by ASI with partnership from NASA (Di Girolamo et al., 2023). If flown in formation, the 

combination of lidar with a cloud-capable Doppler radar allows examination of aerosol-cloud-

precipitation interaction processes. Ho 

Validation for the AOS missions will largely be conducted through a suborbital science 

program whose focus is not exclusively on validation. This suborbital program is intended to 

fill gaps by measuring processes and conditions that are difficult to observe from satellites. 

Many of these measurements, including in situ particle measurements and higher resolution, 

higher sensitivity analogs of the satellite-based remote sensors, will also align with satellite 
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validation needs.  Airborne field campaigns after key satellite launches will be planned based 

on the science needs and opportunities, with ground-based networks and super-sites 

leveraged and potentially augmented with additional instrumentation. 

1.3. Validation objectives for space profilers 

1.3.1. What to validate 

Validation can include assessment of the accuracy of direct measurements and 

straightforward derivatives of those measurements (Level 1), of derived geophysical variables 

(Levels 2 and 3), and of physical assumptions or parameterizations used in retrieval 

algorithms. This document largely focuses on validation of retrieved geophysical variables, 

whether by statistical validation (comparison with independent measurements of those 

geophysical variables), physical validation (measurements relevant to retrieval algorithm 

assumptions), and NRT validation through monitoring in a data assimilation system. 

A plethora of geophysical variables can be used to describe aerosol, cloud, and precipitation 

vertical profiles - it is not practical to attempt to list, nonetheless to validate, them all. A 

particular mission will have its own requirements, identifying those geophysical variables that 

must be validated. This document addresses some of the more fundamental geophysical 

variables that may be retrieved by spaceborne lidar or radar for aerosol, cloud, and 

precipitation vertical profiling. 

The geophysical variables to be validated can be grouped by the type of instrument enabling 

their retrieval, or by classes of the variables themselves (see Chapter 2 for details). 

Macrophysical variables include cloud or aerosol layer height, depth, and type (e.g., mineral 

dust, smoke, ice cloud, liquid cloud). Cloud properties include optical thickness and vertical 

profiles of extinction, water content, and aspects of the particle size distribution. It is useful to 

separate these cloud properties into liquid and ice categories. Similarly, aerosol properties 

include optical thickness and extinction profiles, and it is useful to treat these properties 

separately by aerosol species. Precipitation rate and mass are also typically separated by 

phase, with rain rate and snow rate presenting different retrieval and validation challenges. 

For some of these geophysical variables (e.g., rain rate and snow rate), it is practical to limit 

validation to the surface, although a retrieval product may apply to the full vertical profile. 

1.3.2. How to validate 

Depending on the geophysical variable to be validated from the space profilers for aerosols, 

clouds and precipitation, a validation study can be performed using different types of 

instruments such as lidars, radars, other remote and in-situ sensors, or synergistic 

observations of them. The instruments can be deployed on a variety of platforms (ground-

based fixed or mobile, airborne, spaceborne) and can be part of a permanent installation or of 

an ad hoc deployment within the framework of a field campaign. An extended discussion about 

the capabilities of each sensor is given in Chapter 3. 

For lidars, different techniques can be implemented that make use of specific interaction 

processes between the emitted radiation and the atmospheric constituents at a single or at 

multiple wavelengths, e.g. elastic-backscatter lidar, Raman lidar, high-spectral-resolution lidar, 

and polarization lidar. The lidar techniques are capable of profiling aerosol and thin-cloud 

properties. The combination of different lidar techniques or even lidar products from single or 
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multi-wavelength measurements allow the data users to obtain information not only about the 

optical properties of the particles but also to characterize the particles in terms of their size, 

shape, and type (e.g. (Amiridis et al., 2005; Burton et al., 2012; Floutsi et al., 2023; Gross et 

al., 2013; Haarig et al., 2018)).  

For radars, different frequencies are used for depicting the properties of the particular target 

and the interactions of these targets with the atmosphere, resulting in a wide range of radar 

types such as weather and micro rain radars, cloud radars, wind radars, as well as scanning 

radars operating in various radar bands. In principle, radars are capable of providing profiles 

of cloud and precipitation properties, characterization of cloud particles and hydrometeors, 

and monitoring of cloud and precipitation systems (e.g. (Hogan, 1998; Kollias et al., 2007)). 

Shorter wavelengths provide higher resolution but are more susceptible to attenuation by 

precipitation, while longer wavelengths offer better penetration through precipitation layers 

and are suitable for weather forecasting. The choice of wavelength/frequency depends on the 

desired trade-offs between resolution, penetration, and the atmospheric effects for a given 

application. Moreover, dual-polarization radar techniques can be used to improve the quality 

of radar observations of precipitation microphysics, precipitation evolution, hydrometeor 

classification (e.g. (Bringi & Chandrasekar, 2001)). Doppler radars additionally measure the 

velocity of targets toward or away from the radar. These are commonly used from the ground 

to diagnose horizontal wind patterns. From a vertically-oriented viewpoint (profilers, and 

downward-looking spaceborne or airborne Doppler radars), the Doppler velocity combines 

vertical air velocity with particle fall speed. 

In addition, passive sensors can provide reference measurements for the validation of 

columnar integrals of profiling products. Such sensors can be spectroradiometers, 

photometers, solar occultation and limb scattering measurements, which obtain column-

integrated aerosol and cloud properties such as the particle size, the aerosol and cloud optical 

thickness, the extinction coefficient, the cloud top height (e.g. (Chiu et al., 2010; Kahn et al., 

2010; Sinyuk et al., 2020; Thomason et al., 2010). Furthermore, observations suitable for 

validation purposes can be provided from in-situ techniques which deliver information of the 

targeted parameter for the exact location of the in-situ instrumentation. For example, 

observations of the particle concentration, composition, number size distribution of aerosols 

or cloud droplets, shape, hygroscopicity, and optical properties can be obtained from in-situ 

sensors like nephelometers, filters and impactors, particle counters, 

particle/cloud/precipitation probes and precipitation sensors (e.g. (Anderson & Ogren, 1998; 

Baumgardner et al., 2017; Delahaye et al., 2015; Formenti et al., 2003; Lieke et al., 2011). In 

addition, for precipitation estimation, both rain gauges and disdrometers are critical tools 

needed to provide rain rates and particle size distributions at the surface. Video-based 

disdrometers, such as the Two-Dimensional Video Disdrometer (2DVD, (Schönhuber et al., 

2007) and the Precipitation Imaging Package (PIP, (Pettersen et al., 2020), allow for direct 

measurement of particle size and shape of liquid and solid precipitation. In general, in-situ 

measurements should be used with caution when compared to remote sensing observations 

and special corrections should be applied regarding the environmental conditions (e.g. 

humidity corrections need to be applied to remote sensing observations to match dry in-situ 

measurements; the size range of the samples probed by different in-situ instrumentation 

should be synthesized to much remote sensing etc, see for example (Tsekeri et al., 2017).  

All mentioned instrument types have differences in the applied measuring techniques and 

methods used for the retrieval of the products, and the volume of the atmospheric sample. As 
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such, they can be used individually and independently for providing observations of aerosols, 

clouds and precipitation. However, the synergistic use of observations from collocated 

instruments, which could also lead to retrieval of extra parameters incorporating 

measurements from multiple instruments, allows the increase of the information content of the 

observation targets and, in a broader point of view, to provide complementary information on 

the atmosphere and its constituents. Synergistic approaches can be applied not only between 

remote and in-situ sensors but also between different types of remote sensors (e.g. lidar-radar, 

lidar-photometer, lidar-radar-radiometer; (Gasteiger, Gross, et al., 2011; Illingworth et al., 

2007; Lopatin et al., 2021; Marenco et al., 2011; Sato & Okamoto, 2011). 

The individual observations of aerosols, clouds and precipitation for calibration and validation 

studies can be provided from ground- or space-based instrumentation or from instrumentation 

deployed onboard aircraft, drones, and balloons. The space-based observations from remote 

sensing instrumentation onboard satellite missions can be used for validation purposes on an 

instrument onboard another mission given that there is an operational lifetime overlap between 

the two of them (cross-validation). For ground-based observations, several networks have 

been established aiming to provide quantitative and comprehensive databases with 

observations over broader areas. A database of comprehensive measurements can also be 

provided through intensive field campaigns, but they lack the climatological and statistical 

significance that a network could provide in terms of monitoring the variability over the 

operation site. Moreover, the networks may include supersites where multiple instruments are 

deployed (remote sensing and/or in-situ) targeted on a specific atmospheric component (e.g. 

aerosols, clouds, radiation) or a combination of components (e.g. aerosols and clouds) where 

synergistic observations can also be available. For example, the US Department of Energy 

Atmospheric Radiation Measurement (ARM) facility, the Network for the Detection of 

Atmospheric Composition Change (NDACC), and the pan-European Aerosol, Clouds and 

Trace Gases Research Infrastructure (ACTRIS) provide reference measurements, which can 

be used from the broader climate and Earth Observation communities. Besides the multi-

instrument networks and Research Infrastructures (RIs), single-instrument networks also exist 

for providing targeted observations of the atmospheric components on a global or a regional 

scale. For example, for weather radars there are networks in Europe (OPERA), Japan (JMA’s 

Weather Radar Observation Network), and the U.S. (NEXRAD); for lidars there are networks 

in Asia (AD-NET), Europe (EARLINET), Latin America (LALINET), and the global NASA 

(MPLNET) network, and for photometers and radiometers there are the AERONET, SKYNET, 

and WMO-PFR networks. 

Moreover, there are mobile systems that can be transportable either themselves (e.g. the 

ground-based lidars of ESA or the ACTRIS mobile facilities), or installed onboard ship- or air-

borne platforms (NASA ER-2, UK FAAM, DLR HALO and Falcon 20; Research Vessels 

Polastern, Meteor, Sonne). These observational platforms often deploy a variety of remote 

sensing and/or in-situ instrumentation for aerosol, clouds and precipitation measurements and 

participate in experimental campaigns for providing reference measurements for intensive 

observation periods to support Cal/Val activities.  

The overarching objective of a validation exercise is to evaluate the degree of consistency 

between the satellite-based instrument (to-be-validated) and the reference instruments that 

have been described above. Sources of inconsistency may include the instrumental or 

processing algorithm issues, the differences in the retrieval techniques and the assumptions 

and limitations made, or the sources of the auxiliary data (e.g. meteorological profiles) required 
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for the retrieval. All these issues and differences can be quantified through the measurement 

uncertainties of each instrument. Some types of systematic and random uncertainties can be 

characterized following specific calibration activities and quality assurance and control 

procedures. A detailed discussion on the data quality assurance and quality control (QA/QC) 

is provided in Chapter 3. 

An important factor that must be taken into account is the spatiotemporal representativeness 

of the datasets used for Cal/Val, which includes the spatial and temporal coverage of the 

instruments and criteria for collecting collocated observations. Other key aspects should be 

considered, including scene homogeneity, ocean/land differences, topography etc. The 

concept of creating collocated observations in time and space is driven by the differences in 

the spatial and temporal sampling among different instruments and measurement techniques 

along with the need of a statistically significant dataset suitable for the validation exercise. To 

this end, thresholds are often used to generate a dataset of collocated observations between 

the reference and the “to-be-validated” instruments. In principle, the applied thresholds take 

into account the distance between the geographical position of the observation volumes and 

the time difference between acquisition times of the instruments. Moreover, complementary 

or auxiliary data such as air-mass back-trajectories and information about the cloud coverage 

above a site can be used to better collocate datasets, e.g. from a ground-based station and a 

satellite overpass. 

1.4. Definitions and validation metrics 

This section provides an overview on the terminology that is widely used across the Earth 

Observation community including key terms and metrics for the validation of the data 

originated from space-based sensors, as well as definitions of the environmental and/or 

physical parameters that are measured from Earth Observation remote sensing and in-situ 

instrumentation. 

1.4.1. Key terms 

A table listing the definitions and source of key terms that are used in this document is provided 

below. 

Table 1.1. Definitions of key terms used in the ACPPV document and their sources 

Term Definition Source(s) 

Verification The provision of objective evidence that specified 

requirements have been fulfilled. Verification should not be 

confused with calibration and not every verification is a 

validation. 

ISO/TS 19159-

1:2014 

Calibration (1) The process of quantitatively defining the system 

responses to known, controlled signal inputs. 

(2) An operation that, under specified conditions, in a first 

step, establishes a relation between the quantity values with 

measurement uncertainties provided by measurement 

standards and corresponding indications with associated 

ISO/TS 

19101‑2:2008, 

ISO/TS 19159-

1:2014 
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measurement uncertainties and, in a second step, uses this 

information to establish a relation for obtaining a 

measurement result from an indication. 

A calibration may be expressed by a statement, calibration 

function, calibration diagram, calibration curve, or calibration 

table. In some cases, it may consist of an additive or 

multiplicative correction of the indication with associated 

measurement uncertainty. 

Validation The process of assessing, by independent means, the quality 

of the data products derived from the system output. 

ISO/TS 19159-

1:2014 

Correction The compensation for an estimated systematic effect. The 

compensation can take different forms, such as an addend 

or a factor, or can be deduced from a table. 

ISO/TS 19159-

1:2014 

Measurement A set of operations having the object of determining the value 

of a quantity. 

ISO/TS 

19101‑2:2008 

Resolution The smallest difference between indications of a sensor that 

can be meaningfully distinguished. 

ISO 19101-2:2018 

Raw data The physical telemetry payload data as received from a 

detector of the instrument, i.e. a serial data stream without 

de-multiplexing.  

CEOS/WGISS/DS

IG/GLOS 

Level 0 data The reconstructed unprocessed data at full space-time 

resolution with all available supplemental information to be 

used in subsequent processing appended. 

CEOS/WGISS/DS

IG/GLOS 

Level 1A data The reconstructed unprocessed data at full resolution, time-

referenced, and annotated with ancillary information, 

including radiometric and geometric calibration coefficients 

and geo-referencing parameters computed and appended 

but not applied to the Level 0 data. 

CEOS/WGISS/DS

IG/GLOS 

Level 1B data The radiometrically corrected and calibrated data in physical 

units at full instrument resolution. 

CEOS/WGISS/DS

IG/GLOS 

Level 1C data The Level 1B data but orthorectified, re-sampled to a 

specified grid 

CEOS/WGISS/DS

IG/GLOS 

Level 2 data The retrieved geophysical parameters (e.g. aerosol 

backscatter coefficient, depolarization ratio, Radar 

reflectivity, Doppler Velocity, cloud liquid and ice water 

content) at the same resolution and location as Level 1B 

source data. 

CEOS/WGISS/DS

IG/GLOS 
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Level 3 data The retrieved geophysical parameters which have been 

spatially and/or temporally re-sampled (i.e. derived from 

Level 1 or 2 products), usually with some completeness and 

consistency. Such re-sampling may include averaging and 

compositing. 

CEOS/WGISS/DS

IG/GLOS 

Correlative 

measurements 

Geophysical parameter data, measured or collected by other 

means than by the instrument itself, used as correlative or 

calibration/validation data for that instrument data. It includes 

data taken on the ground, on the ocean or in the atmosphere. 

CEOS/WGISS/DS

IG/GLOS 

Fiducial reference 

measurements 

A suite of independent ground measurements that provide 

the maximum scientific utility/return on investment for a 

satellite mission by delivering, to users, the required 

confidence in data products, in the form of independent 

validation results and satellite measurement uncertainty 

estimation, over the duration of the mission. The FRMs follow 

the guidelines outlined by the GEO/CEOS Quality Assurance 

framework for Earth Observation (QA4EO). 

(Donlon et al., 

2014) 

Remote sensing 

measurements 

A measurement of a quantity from a distance. Remote 

sensing is the collection and interpretation of information 

about an object without being in physical contact with the 

object. 

ISO/TS 

19101‑2:2008, 

(Sayer, 2020) 

In-situ 

measurements 

A direct measurement of a quantity in its original place. ISO/TS 19159-

1:2014 

Temporal 

collocation 

The degree to which measurements are aligned in time. (Loew et al., 2017) 

Spatial collocation The degree to which measurements are aligned in space. (Loew et al., 2017) 

Representativeness The extent to which a set of measurements taken in a given 

space-time domain reflect the actual conditions in the same 

or different spacetime domain taken on a scale appropriate 

for a specific application. 

(Nappo et al., 

1982) 

Accuracy The combination of bias and precision, defined as the overall 

distance between measured and reference value 

(Walther & Moore, 

2005) 

Precision The absence of variability or variance (i.e. the random error) 

of the measured value generated by the measurement error, 

the sample variation, and the estimation variance of the 

measuring procedure 

(Walther & Moore, 

2005) 

Uncertainty The non-negative parameter characterizing the disper-sion of 

the quantity values being attributed to a measurand, based 

on the information used. 

ISO/IEC Guide 

99:2007 
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Note: The measurement uncertainty includes components 

arising from systematic effects, such as components 

associated with corrections and the assigned quantity values 

of measurement standards, as well as the definitional 

uncertainty. Sometimes the estimated systematic effects are 

not corrected for but, instead, associated measurement 

uncertainty components are incorporated. 

Error (of 

measurement) or 

Bias 

The measured quantity value minus a reference quantity 

value. 

Note: The concept of measurement error can be used both 

a) when there is a single reference quantity value to refer to, 

which occurs if a calibration is made by means of a 

measurement standard with a measured quantity value 

having a negligible measurement uncertainty or if a 

conventional quantity value is given, in which case the 

meas-urement error is known, and 

b) if a measurand is supposed to be represented by a unique 

true quantity value or a set of true quantity values of negligible 

range, in which case the meas-urement error is not known. 

ISO/IEC Guide 

99:2007; (Walther 

& Moore, 2005) 

Systematic error (of 

measurement) 

The component of measurement error that in replicate 

measurements remains constant or varies in a predictable 

manner. 

Notes: 

1. A reference quantity value for a systematic measurement 

error is a true quantity value, or a measured quantity value of 

a measurement standard of negligible measurement 

uncertainty, or a conven-tional quantity value. 

2. The systematic measurement error, and its causes, can be 

known or unknown. A correction can be applied to 

compensate for a known systematic measure-ment error. 

3: The systematic measurement error equals the 

meas-urement error minus the random measurement error. 

ISO/IEC Guide 

99:2007 

Random error (of 

measurement) 

The component of measurement error that in replicate 

measurements varies in an unpredictable manner. 

Notes: 

1. A reference quantity value for a random measurement 

error is the average that would ensue from an infinite number 

of replicate measurements of the same measurand. 

2. The random measurement errors of a set of replicate 

measurements form a distribution that can be summarized by 

its expectation, which is generally assumed to be zero, and 

its variance. 

ISO/IEC Guide 

99:2007 
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1.4.2. Validation metrics 

A key element in a validation study is the statistical analysis of the differences between the 

measurements of a new instrument to be validated and a reference instrument (von Clarmann, 

2006). As such, the use of statistical metrics is required when testing the quality of the data 

products derived from the space profilers for aerosol, clouds and precipitation properties while 

using reference measurements. The used metrics such as mean bias, standard deviation, and 

root mean square error fall under the terms of bias, accuracy, and precision. The qualitative 

concepts of these three key terms will be presented below, based on the literature review of 

(Walther & Moore, 2005). 

The term bias is used to define the difference between a measured quantity value and a “true” 

or reference quantity value, thus it is indicative of an overestimation or underestimation of the 

reference values. Another word for “bias” is also the “error” of the measurement (ISO/IEC 

Guide 99:2007). Moreover, it can be classified as a measurement, a sampling or an estimation 

bias (Kotz et al., 1988). The measurement bias can be caused by errors in the measuring 

procedures (e.g. wrong calibration procedure) meaning that the measured values are 

systematically biased away from the reference values, thus, it does not depend on the 

sampling effort. The sampling bias can be caused by unrepresentative sampling of the 

measured quantity, and it is independent of the sampling effort (e.g. when an airborne in-situ 

sensor for particle concentration measurements performs more measurements below the 

mineral dust layer than inside the dust layer, then the particle concentration measurements 

below this dust layer will not give an unbiased measurement of the particle concentration 

inside the layer). On the other hand, the estimation bias can be decreased with increased 

sampling effort and it refers to a biased estimation method or measuring procedure for which 

the average of repeated value estimates deviates from the reference value in a consistent 

way. The estimation bias is also called systematic error of the measurement (ISO/IEC Guide 

99:2007). The most common bias metric is the mean error or mean bias, i.e. the mean of the 

differences between the measured value and the reference/true value (Table 1.1), and it 

indicates whether the true value is under- or overestimated by the measuring procedure. 

The term precision is used to define the degree of variability or variance (i.e. the random error) 

of the measured value generated by the measurement uncertainty, the sample variation, and 

the estimation variance of the measuring procedure. In contrast to bias, precision is 

independent of the reference value and its magnitude depends on the resolution of the 

measuring instrument. However, higher resolution may allow greater variance of the measured 

quantity, but does not always result in higher precision. Common metrics for precision are the 

variance (mean of the squared differences between the measured value and the mean 

measured value), and the standard deviation (square root of variance) which is in the same 

scale as the mean error (Table 1.1). However, the precision metrics do not require the 

knowledge of the true value, thus they cannot evaluate the performance of an instrument 

without the use of complementary bias or accuracy metrics. 

The term accuracy is the combination of bias and precision and defines the overall distance 

between measured and true value. For example, when the measuring instrument and/or the 

measuring procedure are more biased and less precise, the overall ability of the measured 

value to be an accurate estimation of the reference/true value is decreased. Common 

accuracy metrics are the mean or median absolute error, the mean square error (mean of the 

squared differences between measured and reference values), and the root mean square 
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error (Table 1.1). The advantage of mean/median absolute error is that it eliminates the effect 

of outliers while the mean square error and the root mean square error tend to be dominated 

by the outliers. On the other hand, the mean square error incorporates the concepts of bias 

and precision as it is the sum of the mean error and the variance (Casella & Berger, 1990), 

thus a measurement with small variance and small bias is of high accuracy. The advantage of 

root mean square error is that it scales back the mean square error to the measurement scale. 

Table 1.2. Performance measures for bias, precision, and accuracy where 𝑛 is the sample size, 𝑥𝑖 is 

the measured value and  𝑥 is the mean measured value, 𝑥𝑟𝑒𝑓,𝑖 is the reference/true value, 𝛴 is the 

summation formula. 

Bias 

Mean Bias 𝑀𝐵 =
1

𝑛
∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥𝑟𝑒𝑓,𝑖), 

Precision 

Variance 𝑉𝑎𝑟 =
1

𝑛 − 1
∑

𝑛

𝑖=1

(𝑥𝑖 − 𝑥)2 

Standard Deviation 𝑆𝑇𝐷 = √𝑉𝑎𝑟 = √
1

𝑛 − 1
∑

𝑛

𝑖=1

(𝑥𝑖 − 𝑥)2 

Accuracy 

Mean Absolute Error 
 
or  
 
Median Absolute Error 

𝑀𝑒𝑎𝑛 𝐴𝐸 =
1

𝑛
∑𝑛

𝑖=1 |𝑥𝑖 − 𝑥𝑟𝑒𝑓,𝑖|, 

𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑥𝑟𝑒𝑓,𝑖|) 

Mean Square Error  𝑀𝑆𝐸 =
1

𝑛
∑

𝑛

𝑖=1

(𝑥𝑖 − 𝑥𝑟𝑒𝑓,𝑖)2 

Root Mean Square Error 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑

𝑛

𝑖=1

(𝑥𝑖 − 𝑥𝑟𝑒𝑓,𝑖)2 

 

1.5. ACPPV document structure  

Chapter 2 of this document describes products that may require validation, from past, current, 

and future aerosol, cloud, and precipitation profiling missions. This includes some description 

of retrieval algorithms, as validation includes testing algorithm assumptions. The chapter is 

organized by measurement type, and by mission. Chapter 3 describes a variety of instruments 

and networks that are (or recently have been) available for validation data collection. Some 

challenges in using validation data from such a variety of sources pertain to data access and 
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data formats. Chapter 4 discusses considerations for correlative metadata, data formats, and 

data access along with Findable Accessible Interoperable Reusable (FAIR) data principles. 

Chapters 5, 6, and 7 provide guidance for conducting validation activities for the lidar and 

aerosol products (Chapter 5), for the radar and cloud products (Chapter 6), and for statistical 

validation techniques (Chapter 7). While much of this document focuses on using independent 

measurements to validate spaceborne profilers, Chapter 8 turns toward validation using 

numerical models via data assimilation. Finally, Chapter 9 addresses some of the current 

(early 2020’s) gaps in the state of our knowledge and capabilities, and resulting challenges for 

validation of aerosol, cloud, and precipitation profiles. 
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2. Chapter 2: Validation needs for space profilers 

2.1. Overview of the Chapter 

The focus of this chapter is on the validation of vertical profiles of parameters associated with 

aerosol, clouds, and precipitation as measured by space-borne active sensors (i.e. lidars and 

radars). These profiles may range in nature from mainly direct observables (e.g. lidar 

attenuated backscatter, radar reflectivity and Doppler mean velocity), to quantitative inversion 

products (e.g. lidar derived extinction profiles, radar derived ice-water-content profiles and 

microphysics parameters), to qualitative products (e.g. classification of cloud particles and 

aerosol type). 

Validation (see Chapter 1 for the definition) implies the use of independent measurements, 

that can be collected by instruments having different characteristics with respect to satellite 

instruments to achieve an independent assessment of satellite products but also to provide 

feedback for improving retrieval methods, which implies also a feedback on the assumptions 

adopted to develop the retrieval algorithms. The GPM Ground Validation (Petersen et al., 

2020) refers to these two aspects as direct statistical validation and physical validation. While 

the statistical validation relies on long term measurements obtained from operational or 

scientific networks, and fiducial networks or supersites, physical validation is usually related 

to targeted measurement campaigns including those typically conducted in the pre-launch 

phase to set-up algorithms. 

Since each recent (some of them are described in Chapter 1) and future satellite missions has 

its own characteristic sets of observing systems with their associated products and specific 

retrieval methods, aspects like the characteristics of sensors, the spectral range exploited, 

and the set of assumptions adopted in retrieval must be taken into account in terms of 

validation requirements. Usually, satellite missions draft a specific validation plan that takes 

into account science objectives and innovative elements of the mission, such as technology 

advancements and related new methods and products that were not available in the previous 

missions (e.g. Doppler capability of lidar in Aeolus or in EarthCARE radar, the use of dual-

frequency in radar the GPM radar, co-location of multiple instruments on the same platform). 

For this reason, new missions set new challenges for validations. 

Therefore, drafting a document about general validation needs with an outlook to future 

missions is not an easy task, although there is a noticeable experience developed along past 

and current missions. Some of the high-level (interacting) considerations to be taken into 

account when planning or conducting validation activities are: 

 The horizontal and vertical resolution of the space-based profiles measurements and 

products and their associated uncertainty. 

 The data availability and the degree of co-location between the space and terrestrial 

instruments involved. 

 The temporal and spatial scales of the geophysical target(s) in question. 

All of these factors come into play in determining the effective validation strategies but can 

affect in different ways the validation, depending on the sensor and the target geophysical 

products. For example, the validation of L1 CALIOP attenuated backscatter profiles was 

successfully carried out via satellite underflights with a nadir-viewing airborne HSRL (Rogers 
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et al., 2011). Success was ensured by conducting flights along the satellite track timed for 

temporal coincidence at a point on the track and focusing on validation comparisons in the 

free troposphere between the boundary layer and aircraft altitude where there was low spatial 

and temporal variability in aerosol backscatter. On the other hand, validation of cloud 

observations using ground-based observations usually must involve longer-term statistical 

comparisons (Protat et al., 2009), mainly because, in general, clouds and precipitation as well 

are much more variable in time and space than aerosols. 

For aerosols, in areas far from sources, tropospheric aerosol optical properties can typically 

be considered coherent on horizontal scales on the order of several tens of km and on 

temporal scales of a few hours. For clouds the temporal and spatial scales depend on the 

cloud type, however, as a general rule the variability associated with clouds is much higher 

than with aerosols ranging from less than a few minutes and 100’s of meters for boundary-

layer cumulus clouds to a few minutes and less than a few km for cirrus clouds. Similar 

considerations can be also applied to precipitation that follows different time and space scales, 

for example in convective events and in stratiform events. Horizontal and temporal scales can 

sometimes be evaluated after each event using imagery products from e.g. geostationary 

imagers and ground-based radar networks or modeling tools, but in general this remains a 

challenge to be addressed case-by-case. 

For lidars, especially, the target’s optical depth and its associated variability is also an 

important consideration. For optically thin targets, signal profiles may be averaged together to 

increase the signal-to-noise ratio as well as the representativity of the observation, which may 

be considered a valid average. If significant and highly variable extinction is present, then any 

retrieval based on the average signals will become suspect because of the non-linear 

equations that model the instrument response. This is also an important distinction between 

lidar aerosol and cloud observations. In the case of radar observations, especially at 

frequencies like the Ka (36 GHz) of GPM and the W-band (94 GHz) of Cloudsat and 

EarthCARE, the effect of attenuation depends on the radar frequency and could not be a 

concern for cloud observation but can be in case of liquid precipitation. Moreover, attenuation 

effects are different if the same precipitating structure is observed from a satellite or from a 

ground-based profiler: in observing precipitating clouds in stratiform regime with say, at 94 

GHz radar, attenuation due to propagation through liquid precipitation and the melting layer 

affects measurements collected by profilers at ground, but not measurements collected by the 

satellite-borne radar. Geophysical retrievals will present a completely different error structure. 

Expected uncertainties related to satellite products and uncertainties of corresponding 

correlative estimates, collected from ground or, in general, from a suborbital platform must be 

taken into consideration as part of the validation study. Although key system parameters are 

carefully monitored, also with external calibrator and precise specifications are defined in the 

pre-launch phase and to verify their behavior in time, this is not always the case of the 

expected accuracies of geophysical products (this happens for GPM, which set a requirements 

on accuracy of mass weighted mean drop diameter - (Skofronick‑Jackson et al., 2018), which 

are defined through pre-launch experiments or through simulations and have a complex 

dependency on the scene observed. 

Instrument instantaneous footprints are also a factor, for lidars this is usually not a significant 

concern. However, for space-based radars cloud and precipitation variability on the foot-print 

scale can be important and can have a significant effect both on reflectivity measurements 
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and especially with observed Doppler velocities leading to the fact that cloud edges should be 

treated with caution (Kollias et al., 2023). This fact will have an obvious impact on strategies 

needed to validate Doppler velocity estimates from space-based radars. 

Several strategies and methods are available for validation. While discussing validation 

techniques that will be the aim of other chapters, this one focuses on validation needs, by 

illustrating satellite retrieval techniques for main profile products to discuss the expectations 

for validation and the experience carried out in past experiences. 

The discussion is separated based on the instruments and instrumental synergies and 

considers the validation approaches adopted in the different satellite missions. The chapter 

begins with lidar products from CALIPSO, CATS, Aeolus, and EarthCARE, followed by cloud-

focused radar products as in CloudSat, EarthCARE, or precipitation-focused as in 

TRMM/GPM, and offers also an initial survey of the products of the planned INCUS mission.  

The discussion is separated by mission since each mission has peculiar characteristics, both 

in terms of instruments and the physical basis of the recovery approaches adopted for the 

development of L2 products, probably being EarthCARE due to the payload and the number 

of products delivered by ESA and JAXA (see table A2.1 for a summary of the products made 

available by the two agencies) as the most complex one.  Instrument synergies will be the 

subject of Section 2.4, which discusses the long-term CloudSat/CALIPSO experience and new 

EarthCARE synergy products. Radiative products, both from CloudSat/CALIPSO and 

EarthCARE, are included in Chapter 2 (section 2.5). 

All the sections of Chapter 2 have been developed following possible a similar scheme, i.e. 

starting with the description of the algorithms and products (important to highlight the 

hypotheses used in the algorithms used and which are the subject of physical validation) 

followed by a discussion of the validation approaches, which may be "lessons learned" from 

validation programs of completed missions, or ongoing missions like GPM with a long-term 

validation experience, or "validation needs" for ongoing or future missions which can provide 

new products compared to previous missions that will likely require new methods for 

validation. Issues relating to instrument calibration are also taken into consideration (see 

Chapter 1 for the definition of calibration). A final section attempts to summarize the content 

of the chapter considering macrocategories of products and a critical discussion of the 

corresponding validation means used or planned by the different missions. 

2.2. Lidar products 

2.2.1. CALIPSO products 

The CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite 

mission was a joint endeavor between NASA and the French Space Agency Centre National 

d’Études Spatiales (CNES). Its primary payload was CALIOP, standing for Cloud–Aerosol 

Lidar with Orthogonal Polarization, a three-channel elastic backscatter lidar operating at 532 

and 1064 nm, with depolarization sensitivity in the 532 nm channel. Launched on April 28, 

2006, CALIPSO embarked on a mission initially planned for three years flying in formation 

along the same track with CloudSat which hosted a W-band radar (see section 2.4.1 for the 

CALIPSO/CloudSat synergy) to probe the vertical structure and properties of clouds and 

aerosols. The mission, which concluded on August 1, 2023, marked a significant milestone as 

the first enduring lidar satellite mission and CALIOP lidar collected science measurements 
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from 2006-2023 that have provided significant insight into the role of clouds and atmospheric 

aerosols in determining weather, climate, and air quality.  

2.2.1.1. CALIOP level 1B data products 

The primary measurables were vertical profiles of parallel and perpendicular attenuated 

backscatter at 532 nm and total (parallel + perpendicular) attenuated backscatter at 1064 nm. 

Given the high vertical and horizontal sampling of the lidar, CALIOP measurements were 

capable of discerning cloud and aerosol layers at a wide range of spatial resolutions, from the 

surface up to 36 km in altitude. The fundamental calibration technique for CALIOP was 

molecular normalization of the 532 nm nighttime channel based on the MERRA-2 reanalysis 

model molecular number density from 36-39 km (Kar et al., 2018). The 532 nm daytime 

channel is calibrated by matching attenuated scattering ratios between the day and night at 

lower-stratospheric altitudes that are spatially homogeneous (Getzewich et al., 2018). Lastly, 

the 1064 nm calibration technique transfers the 532 nm calibrations to 1064 nm based on the 

predictable ratios of 1064 nm to 532 nm attenuated backscatter for cirrus (Vaughan et al., 

2019). To achieve acceptable SNR when deriving calibration coefficients, the calibration 

process averages data in multiple neighboring orbits as a function of granule elapsed time. 

The calibration coefficients are a strong function of latitude, and they vary also over time. 

Perpendicular attenuated backscatter is calculated using polarization gain ratios (PGR) 

derived from bi-monthly on-orbit PGR calibration operations at night and derived from 

backscatter returns of optically thick cirrus during the day that are smoothed and stored in a 

lookup table (Getzewich et al., 2024). These processes capture the systematic change in PGR 

values over the course of the mission. Table 2.1 reports a summary of CALIOP level 1B data 

products. 

2.2.1.2. CALIOP level 2 data products 

To identify atmospheric features, CALIOP level 2 processing uses a threshold-based feature 

detection algorithm to iteratively search for features from finer to coarser horizontal averaging 

resolutions (Vaughan et al., 2009). This allows detecting layers at varying backscatter intensity 

while improving SNR with each subsequent average. Cloud and aerosol layers are 

discriminated based on comparing five lidar observables to a five-dimensional probability 

distribution function of values expected for these two feature types (Liu et al., 2019).  Aerosol 

layers in the troposphere are each subtyped into one of seven classifications, consisting of 

pure types (clean marine, dust, smoke), mixtures (dusty marine, polluted dust, polluted 

continental/smoke), and background aerosol (clean continental). The subtyping algorithm for 

tropospheric aerosol uses thresholds of CALIOP observables based in part on AERONET 

cluster analysis with refinements added for mixtures (Kim et al., 2018; Omar et al., 2009). 

Stratospheric aerosol layers are subtyped into one of four classifications (volcanic ash, sulfate, 

smoke, polar stratospheric aerosol) using thresholds of estimated particulate depolarization 

ratio empirically derived from major stratospheric injections during the CALIPSO mission 

(Tackett et al., 2023). The thermodynamic phase for cloud layers (ice, water, oriented ice) is 

determined based on depolarization ratio and integrated attenuated backscatter 

measurements (Avery et al., 2020).    

Following atmospheric layer identification and typing, CALIOP level 2 processing retrieves 

profiles of extinction coefficients. These retrievals are either unconstrained, whereby a lidar 

ratio is assumed based on the feature type/subtype, or they are “constrained” by an estimate 
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of the layer two-way transmittance which allows a lidar ratio to be estimated (Young et al., 

2018). Except for layers classified as ice clouds where the lidar ratio is assigned based on the 

layer centroid temperature, default lidar ratios for unconstrained retrievals are fixed values for 

each subtype that are occasionally adjusted in the retrieval process to achieve a solution. 

Extinction profiles are reported separately for aerosol and cloud features. Additionally, two 

independent retrievals in CALIPSO processing determine column particulate optical depths 

(1) above opaque water clouds based on the technique of (Hu et al., 2007), and (2) over ocean 

based on atmospheric attenuation of the ocean surface lidar return, named ODCOD (Ryan et 

al., 2024).  

Table 2.1 CALIOP Level 1B and level 2 Data Products. 

CALIOP level 1B data products 

Calibrated, geolocated, vertical profiles (AMSL) of: 

- Total attenuated backscatter 532 nm 

- Perpendicular attenuated backscatter 532 nm 

- Total attenuated backscatter 1064 nm 

CALIOP level 2 layer product 

For each layer detected: 

- Top/base altitudes 

- Feature type (cloud or aerosol) 

- Feature subtype  

- Layer-integrated volume depolarization ratio 532 nm, attenuated backscatter 1064 nm, attenuated 
backscatter color ratio (all measured quantities) 

- Layer optical depth 532 nm, 1064 nm 

- Ice-water path (cloud only) 

Column retrievals: 

- Column aerosol optical depth 532 nm, 1064 nm 

- Column cloud optical depth 532 nm 

- Column stratospheric aerosol optical depth 532 nm, 1064 nm 

- Above-opaque water cloud column optical depth 532 nm 

- Ocean surface derived column optical depth 532 nm 

CALIOP level 2 profile products 

Vertical profiles including: 

- Aerosol extinction coefficient, backscatter coefficient, perpendicular backscatter coefficient 532 nm, 1064 
nm 

- Aerosol particulate depolarization ratio 532 nm 

- Cloud extinction coefficient, backscatter coefficient, perpendicular backscatter coefficient, particulate 
depolarization ratio 532 nm 

- Ice-water content (cloud only) 

- Atmospheric volume description / vertical feature mask 

 

2.2.1.3. CALIOP level 3 products 

CALIOP level 3 products are also constructed from quality-assured level 2 retrievals for 

tropospheric aerosol, stratospheric aerosol, ice clouds, and cloud occurrence (Kar et al., 2019; 

Tackett et al., 2018; Winker et al., 2024). These products contain monthly averages or 
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histograms, on an equal angle latitude-longitude-altitude grid. The detail of CALIOP Level 3 

products is provided in Table 2.2.  

Table 2.2 CALIOP Level 3 Data Products 

Description Variables 

CALIOP level 3 tropospheric aerosol product 

Reported for cloud-free, all-sky, cloudy-sky 

transparent, cloud-sky opaque. 

Day/night separate.  

Equal angle latitude-longitude-altitude grid. 

Aerosol extinction coefficient mean 532 nm 

Aerosol occurrence by subtype 

Column AOD mean 532 nm 

CALIOP level 3 stratospheric aerosol product 

Reported for all aerosol and background-only.  

Nighttime only, above tropopause. 

Zonal averages.  

Equal angle latitude-altitude grid. 

Total attenuated backscatter coefficient 532 nm 

Particulate extinction and particulate backscatter 

coefficients 532 nm (Fernald retrieval) 

Stratospheric optical depth 532 nm 

CALIOP level 3 ice cloud product  

Equal angle latitude-longitude-altitude-histogram grid. 

Day/night separate. 

Ice cloud extinction coefficient 532 nm histogram  

Ice water content histogram 

Ice cloud occurrence 

CALIOP level 3 cloud occurrence product 

Equal angle latitude-longitude-altitude-histogram grid. 

Day/night separate 

Water cloud occurrence 

Ice cloud occurrence 

Unknown phase cloud occurrence 

 

2.2.1.4. CALIOP calibration and validation 

The primary validation needs for CALIOP level 1B data are quantitative assessments of the 

attenuated backscatter calibration coefficients and the PGR values. Validation data is required 

for both day and night, and separately for both wavelengths because assumptions 

underpinning the backscatter calibration methods are different for 532 nm night, 532 nm day, 

and 1064 nm. In addition, co-located observations are needed at varying latitudes to ensure 

that the calibration coefficients remain accurate over the course of each orbit. This analysis 

typically involves comparisons of attenuated backscatter profiles in particulate-free regions 

from either airborne or ground-based lidar data. Given the SNR of CALIOP observations, 

numerous collocated measurements are required to create statistically significant 

comparisons. The CALIPSO project relied heavily on collocated underflights of the NASA 

Langley Research Center airborne HSRL for assessing calibration accuracy during the 

mission lifetime (Getzewich et al., 2018; Kar et al., 2018; Rogers et al., 2011; Vaughan et al., 

2019) and other underflight experiments (Marenco et al., 2014). Collocated ground-based lidar 

observations of attenuated backscatter measurements were also a valuable source of 

validation (Mamouri et al., 2009; Wu et al., 2010).  
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An important validation step was incorporated into the CALIOP level 1B data verification 

strategy as data was generated, prior to public release. The CALIPSO team formalized a 

science impact test plan that specified quantitative metrics which must be met based on 

statistical analysis of each month of data produced. These tests confirmed that (1) the 

assumptions underlying the calibration strategies for all three channels are correct and (2) the 

accuracy of the calibrated signal in the science region (<36 km) is within an acceptable margin. 

Furthermore, time series of attenuated scattering ratios were evaluated for each month to 

identify and correct any errors caused during the production process. 

CALIOP PGR values are also important to validate because volume depolarization ratios are 

among the most influential measurables that level 2 feature typing and subtyping algorithms 

use for classification. Strongly depolarizing features such as cirrus have provided useful 

validation targets (Sassen et al., 2012). Since the CALIPSO PGR values vary diurnally, a 

proper validation must assess both day and night depolarization ratio measurements. 

Validation of CALIOP level 2 retrievals was a continual process throughout the mission 

because it required statistical comparisons of a wide variety of atmospheric feature types with 

limited sources of independent measurements. The primary needs of level 2 validation are for 

feature detection capability and the accuracies of cloud-aerosol discrimination, aerosol 

subtyping, cloud thermodynamic phase determination, default lidar ratios, retrieved extinction 

profiles, and retrieved column optical depth.  

Feature detection capability is important to characterize because CALIOP level 2 typing, 

subtyping, and extinction retrievals only operate on detected layers. Weakly scattering or 

vertically diffuse layers can go undetected, particularly in the daytime due to solar noise, which 

can cause underestimates in total column optical depth (Thorsen et al., 2017; Toth et al., 

2018). Previous validation strategies identified minimum thresholds for layer detection in terms 

of either backscatter, extinction, or optical depth using collocated lidar, in-situ, and MODIS 

observations (Sheridan et al., 2012). Accurate detection of cloud geometric thickness is also 

important. Co-located airborne CPR measurements, CloudSat observations, and ground-

based lidar have been used to evaluate CALIOP top and base altitudes (Kim et al., 2011; 

McGill et al., 2007). Cloud-aerosol discrimination validation is critical because erroneously 

including clouds in aerosol-only observations can lead to large biases. Particular attention is 

warranted in regions where discrimination is difficult, for example where high-altitude dust and 

cirrus co-exist and where strongly backscattering dust plumes could be misclassified as clouds 

(Liu et al., 2019).  

Aerosol subtyping and cloud thermodynamic phase determination are important to validate 

because the classifications from these algorithms determine the initial lidar ratios used in 

CALIOP extinction retrievals. Unconstrained retrievals are most common for aerosol layers, 

where the default lidar ratio is based on the ascertained subtype. Because default lidar ratios 

for aerosol layers vary by nearly a factor of three, incorrect aerosol subtyping can cause large 

biases or failures in extinction retrievals due to incorrect lidar ratio selection. CALIOP aerosol 

subtyping has been evaluated using different methods, including comparisons against 

collocated airborne HSRL classifications resulting from an independent subtyping scheme that 

uses aerosol intensive property measurements (Burton et al., 2013). Ground based Raman 

lidar and AERONET typing retrievals provided valuable comparative observations (Ansmann 

et al., 2021; Mielonen et al., 2009). Likewise, incorrect cloud thermodynamic phase 

determination can also lead to lidar ratio selection errors for unconstrained retrievals. It is 
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especially important to validate that the correct phase is assigned to cirrus since these layers 

typically exist above all others and any bias due to incorrect lidar ratio selection will propagate 

to layers at lower altitudes in the extinction retrieval (Young et al., 2013). The IIR instrument 

on board the CALIPSO satellite has proved to be a critical asset for verifying the accuracy of 

CALIOP cloud phase classifications (Avery et al., 2020; Garnier et al., 2023).  

Cloud lidar ratios, either retrieved or assumed by CALIOP level 2 processing, have been 

validated by a variety of methods. Dedicated co-located flights of the Cloud Physics Lidar were 

used to evaluate cirrus lidar ratios retrieved by CALIOP during the CALIPSO-CloudSat 

Validation Experiment in 2006 (Hlavka et al., 2012). SODA retrievals, derived from CloudSAT 

and CALIOP measurements of the ocean surface return, also provided meaningful insight for 

cirrus lidar ratio validation (Josset et al., 2012) and water cloud lidar ratio validation (Deaconu 

et al., 2017). The IIR instrument on board CALIPSO provided a means to establish a 

temperature-dependent multiple scattering factor required for CALIOP lidar ratios based on 

constrained retrievals of ice clouds (Garnier et al., 2015; Young et al., 2018).  

Aerosol lidar ratios vary between different types and natural variability exists within each type 

(Floutsi et al., 2023). Hence, validating default lidar ratios for each subtype is an important 

priority for CALIOP. Default lidar ratios for tropospheric aerosol types were initially assigned 

based on aerosol models derived from AERONET cluster analysis (Omar et al., 2009). These 

values were re-evaluated and refined based on statistical analysis of airborne HSRL data 

(Rogers et al., 2014) and ground-based AERONET and EARLINET observations 

(Papagiannopoulos et al., 2016; Sayer et al., 2012). As of 2024, efforts are underway to 

replace the CALIOP default lidar ratio for marine aerosol layers with regionally and seasonally 

varying climatological averages of lidar ratio retrievals constrained by SODA, ODCOD, and 

MODIS (Trepte et al., 2023). Independent oceanic observations of lidar ratios will be needed 

to validate this new strategy. 

Validation of retrieved extinction profiles and column optical depth is important and difficult 

because multiple error sources can impact the retrieval, including undetected features, 

incorrect lidar ratio assignment, and calibration uncertainty (Young et al., 2013). Each of these 

factors must be assessed to gain an accurate assessment of the validity of CALIOP extinction 

and optical depth retrievals. Case studies of collocated airborne HSRL measurements are 

ideal for evaluating CALIOP extinction retrievals and teasing apart these factors (e.g., 

(Kacenelenbogen et al., 2011; Rogers et al., 2014)). Collocated MODIS and AERONET 

observations are valuable for statistical comparisons (e.g., (Kim et al., 2013; Kittaka et al., 

2011; Omar et al., 2013)).  

Validating CALIOP tropospheric level 3 products is especially challenging because it requires 

global independent observations which do not exist from the ground at all locations. Further 

exacerbating this challenge, level 3 products are monthly averages of CALIOP overpasses 

within a given latitude-longitude grid (typically 4-5 per month at midlatitudes, many more near 

high latitudes), making temporal collocation tricky. Therefore, most validation work would need 

to be regional, focusing on comparing level 3 latitude-longitude grids containing fixed ground-

based observations that can be sampled on the same days of the CALIOP overpasses. 

Comparing CALIOP level 3 products to monthly averages from other satellite observations is 

helpful for sanity checks, but care must be taken in interpreting these non-temporally 

collocated comparisons (Kotarba, 2022b). Validating CALIOP level 3 stratospheric aerosol 

retrievals is more tractable since stratospheric aerosol tends to be uniformly distributed in 
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between major events, thereby requiring less stringent spatiotemporal collocation. 

Comparisons against monthly averaged spaceborne solar occultation and limb scattering 

measurements are fruitful for validation (Kar et al., 2019). Despite the challenges of validating 

level 3 products, the CALIOP team found that closely examining level 3 data was 

tremendously beneficial for sanity checking level 2 data products. This is because the 

averaging process required to make level 3 data tends to elucidate systematic errors in level 

2 retrievals. Comparing against independent observations is a means to identify these level 2 

errors and identify refinements. 

2.2.2. CATS products and their validation 

The Cloud-Aerosol Transport System (CATS) was a lidar technology demonstration that 

profiled the atmosphere from the International Space Station (ISS) from 15 February 2015 to 

30 October 2017 (Yorks et al., 2016, 2021). During its lifetime, CATS operated in two distinct 

science modes: science mode 1 from 15 February 2015 until 21 March 2015 and science 

mode 2 from 25 March 2015 until end of operations. In Mode 1, CATS provided total 

attenuated backscatter and volume depolarization ratio measurements at 532 and 1064 from 

two fields of view, separated by 7 km on the ground. In Mode 2, CATS provided total 

attenuated backscatter and volume depolarization ratio measurements from 1064 nm only. 

CATS data products were produced at three levels. CATS Level 0 data products include 

photon counts acquired at raw data resolution (350 m horizontal and 60 m vertical) downlinked 

from the ISS and are assigned as a “day” or “night” granule based on ISS broadcast ancillary 

data (BAD) and a threshold for solar background contributions to the total signal.  In both 

modes, level 1 (L1) data products, which are further described in Section 2.2.2.1, were 

provided at 350 m horizontal and 60 m vertical resolution. CATS level 2 (L2) data products, 

described in Section 2.2.2.2, include both layer integrated and profile data products at 5 km 

horizontal and 60 m vertical resolution. A key feature of CATS was the capability to provide 

expedited near-real time (NRT) data products within 6 hours to the global modeling and hazard 

detection communities.  

2.2.2.1.  CATS Level 1 Data Products and Validation 

CATS Level 1A data products include normalized relative backscatter (NRB) for all parallel 

and perpendicular channels. L1A data products are range corrected, normalized to laser 

energy, geolocated, and then are correcting raw L0 data for detector nonlinearity (dead-time 

correction) using precomputed look-up tables. The data is then corrected for molecular folding 

to remove atmospheric contributions that have been folded from above the data frame into the 

measured signal and then are background subtracted to remove solar contributions to the total 

signal. CATS L1A products were produced at raw data resolution. 

CATS L1B data products, described in (Yorks et al., 2016), consist of (1) total attenuated 

backscatter at 1064 nm (both operating modes), (2) perpendicular attenuated backscatter at 

1064 nm (both operating modes), (3) total attenuated backscatter at 532 nm (Mode 1 only), 

and (4) perpendicular attenuated backscatter at 532 nm (Mode 1 only). These parameters are 

scaled through calibration by normalizing the 532 and 1064 L1A NRB signal to the 

atmospheric signal between 22 and 26 km, which includes the Rayleigh backscatter profile 

and backscatter from background aerosols in the lower stratosphere (Pauly et al., 2019). 

Rayleigh backscatter profiles were computed using colocated NASA Modern-Era 

Retrospective analysis for Research and Applications version 2 (MERRA-2) (Gelaro et al., 
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2017) profiles of temperature, pressure, and ozone. For stratospheric aerosol loading in the 

CATS calibration window, CALIPSO V4 L1B data was used to construct monthly climatologies 

of scattering ratios to correct for stratospheric aerosol contributions to the total signal in the 

calibration region. Production of CATS L1B data also includes correction for the relative gain 

between perpendicular and parallel channels, known as the polarization gain ratio (PGR). 

Validation of the CATS L1 data products has been performed by comparing the L1B calibrated 

attenuated backscatter profiles to collocated airborne and ground-based attenuated 

backscatter profiles. (Pauly et al., 2019) compared the mean attenuated backscatter profiles 

from eight clear-sky, nighttime overpasses (40 profiles, ~10km) to the mean attenuated 

backscatter from the ground-based Leipzig PollyXT lidar. CATS passed an average distance 

of 40 km from the Leipzig site and 30 min of PollyXT data were averaged for each validation 

case (36,000 profiles/case). (Pauly et al., 2019) also compared the CATS 1064 nm attenuated 

backscatter profiles to Cloud Physics Lidar (CPL) airborne attenuated backscatter profiles 

collected during two underflights of the ISS ground track. The mean attenuated backscatter 

profiles were computed for clear sky regions over a 55-70 km span for both CATS (165-210 

profiles) and CPL (280-360 profiles). The PGR is computed using the ratio of CATS daytime 

parallel to perpendicular solar background signals scattered from optically thick ice clouds, 

which are summed over an entire granule. (Yorks et al., 2015) validated the CATS PGR using 

a CPL underflight that occurred during local nighttime hours and included observations of 

dense ice clouds along the ISS track. The 1064 nm depolarization ratios in the dense ice 

clouds from CATS were validated against the CPL 1064 nm depolarization ratios from CPL, 

which flew about a 30-minute segment below the ISS. Biases were then used to further correct 

the CATS 1064 nm perpendicular attenuated backscatter in operating Mode 1.  

2.2.2.2. CATS Level 2 Data Products and Validation 

CATS L2 data products include 1) atmospheric feature detection for determination of the 

vertical feature mask (VFM) that includes cloud-aerosol discrimination (CAD), cloud phase 

determination, aerosol typing, and 2) retrievals of cloud and aerosol optical properties. The 

first step in CATS level 2 data processing is feature detection, which uses the attenuated 

scattering ratio to discriminate particulate contributions to the profiles, as done by CALIPSO 

and CPL (Mace & Zhang, 2014). Owing to CATS primarily operating in single-wavelength 

Mode 2, the feature detection developed by (Vaughan et al., 2009), was modified for 1064 nm. 

Additional differences between CALIPSO and CATS feature detection are provided in detail 

in (Yorks et al., 2021). One distinct new addition to the CATS feature detection algorithm was 

the CATS Cloud-Embedded-in-Aerosols-Layers (CEAL) routine that was developed to isolate 

low-level clouds within aerosol layers. CATS feature detection was performed at two horizontal 

resolutions: 5 km and 60 km. All nighttime feature detection was performed at 5 km which 

daytime feature detection was performed at both 5 km and 60 km, owing to the lower SNR 

during daytime viewing conditions.  

The objective of the CATS CAD is to determine whether a detected feature is cloud or aerosol. 

The CATS CAD uses a multidimensional probability density function (PDF) as done with 

CALIPSO using CPL airborne measurements as inputs, as CPL provides volume 

depolarization ratio measurements at 1064 nm. Inputs to the CATS CAD are layer integrated 

attenuated backscatter, 1064 nm layer-integrated volume depolarization ratio, layer thickness, 

mid-layer altitude, temperature profiles from MERRA-2, and layer-integrated color ratio for 

Mode 1 only. An overview of the CATS CAD is provided in Figure 2.1. 
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Figure 2.1 CATS Cloud-Aerosol-Discrimination Schematic (from (Yorks et al., 2021)) 

 

Following the CAD, cloud phase and aerosol typing algorithms are evoked to assist with lidar 

ratio determination for optical property retrievals. Inputs to the CATS cloud phase algorithm 

include layer-integrated attenuated backscatter, layer-integrated volume depolarization ratio, 

cloud thickness, and temperature from MERRA-2 to assign either ice, liquid, or undetermined 

cloud types. Inputs to the CATS aerosol typing algorithm include layer-integrated attenuated 

backscatter and volume depolarization ratio, aerosol altitude and thickness, surface type, and 

layer-integrated color ratio in the case of Mode 1. Additionally, as described in (Nowottnick et 

al., 2022), MERRA-2 aerosol typing is evoked conservatively to help discriminate between 

smoke and polluted continental layers. CATS cloud phase and aerosol type is used primarily 

to select a lidar ratio to retrieve particulate backscatter and extinction when the constrained 

method cannot be used (see CATS ATBD). Detailed descriptions of the various techniques to 

retrieve CATS optical quantities are provided in the CATS ATBD.  

CATS L2 data products include both profile (vertically resolved) and layer (feature integrated) 

files. All products are reported at 5 km horizontal resolution. Primary products in each level 2 

file type are provided in Table 2.3. 
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Table 2.3 CATS Level 2 Layer and Profile Data Products. 

Parameter Wavelength Notes 

Layer Products 

Top/base altitudes N/A cloud or aerosol 

Feature type N/A cloud or aerosol 

Feature subtype N/A cloud phase, aerosol type 

Layer-integrated attenuated backscatter  532* and 1064 nm *Mode 1 only 

Layer-integrated volume depolarization ratio 532* and 1064 nm *Mode 1 only 

Layer optical depth  532* and 1064 nm *Mode 1 only 

Ice-water path 532* and 1064 nm Ice clouds, *Mode 1 only 

Profile Products 

Particulate extinction coefficient 532* and 1064 nm *Mode 1 only 

Particulate backscatter coefficient 532* and 1064 nm *Mode 1 only 

Ice-water content 532* and 1064 nm Ice clouds, *Mode 1 only 

 

Validation of CATS L2 products has primarily been focused on aerosol extinction/optical depth. 

(Proestakis et al., 2019) used EARLINET observations to validate near-coincident CATS 1064 

nm backscatter coefficients and to evaluate day-night feature detection sensitivity. (Lee et al., 

2019) evaluated CATS aerosol optical depths by comparing to near-coincident AERONET and 

MODIS aerosol optical depths (AODs), as well as an intercomparison between CATS and 

CALIPSO AODs at 1064 nm. (Nowottnick et al., 2022), used near-coincident measurements 

of aerosol extinction from the Micro-Pulse Lidar Network (MPLNET) to validate diurnal 

variability in smoke distributions observed by CATS in Kuching, Malaysia. (Yu et al., 2021) 

compared CATS dust optical depths to AERONET ground sites and MISR (the Multi-angle 

Imaging Spectroradiometer aboard NASA's Terra satellite) observations. For clouds, (Noël et 

al., 2018) compared CATS cloud detection frequencies to the Lidar Nuages et Aérosols (LNA) 

lidar at the Site Instrumenté de Recherche par Télédétection Atmosphérique (SIRTA) ground 

site in Paris, as well as the Atmospheric Radiation Measurement (ARM) lidars at the Southern 

Great Plains (SGP) and Eastern North Atlantic (ENA) sites. 

2.2.2.3.  CATS Near-Real Time (NRT) Data Products 

Owing to operating on the ISS, CATS was able to downlink raw data and process NRT data 

products to data users within 6 hours of acquisition. The CATS NRT data product was provided 

at 5 km horizontal and 60 m vertical resolution and contained total attenuated backscatter, 

volume depolarization ratio, VFM, and associated uncertainties and quality flags. For NRT 

products, Rayleigh backscatter profiles were computed using colocated profiles of 

temperature, pressure, and ozone from the NASA Goddard Earth Observing System - Forward 

Processing (GEOS-FP) for CATS NRT products, owing to the longer latency of MERRA-2 

production. CATS NRT products were not validated during mission operations. 
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2.2.2.4. CATS Data Availability 

CATS quick look and individual file data can be found at: 

https://cats.gsfc.nasa.gov/data/browse/. Data may also be found at the NASA Atmospheric 

Science Data Center (ASDC): https://www.earthdata.nasa.gov/eosdis/daacs/asdc. 

2.2.3. Aeolus products and validation 

Launched on 22 August 2018, the Aeolus mission provided global profiles of the horizontal 

wind speed as well as extinction and backscatter information on clouds and aerosols. The 

satellite carried a single instrument, the Atmospheric Laser Doppler Instrument (ALADIN) 

operating at 355 nm wavelength, the first Doppler Wind Lidar (DWL) in space, measuring 

direct wind profiles from Earth’s surface up to an altitude of about 30 km in clear air, inside 

thin clouds and aerosols, and on top of thick clouds. The instrument includes a Rayleigh and 

a Mie receiver to measure the molecular and the particulate laser return signals. As a High 

Spectral Resolution Lidar (HSRL), ALADIN is able to independently measure the particle 

extinction and co-polarized particle backscatter coefficients.   

The operational mission ended on 30 April 2023 followed by a series of experimental end-of-

life activities before its assisted re-entry on 28 July 2023. In these 4.5 years of operations, 

ALADIN emitted 7.1 billion UV laser shots at 355 nm. Aeolus was flying in a polar dawn-dusk 

orbit at an altitude of 320 km with a 7-days repeat cycle. The number of orbits per day was 15 

summarizing to 111 orbits per week. 

2.2.3.1.  Level 1B products 

The Level 1B products contain the preliminary Horizontal Line-Of-Sight (HLOS) winds, useful 

signals for the Rayleigh and Mie receivers, product confidence data (e.g. random and 

systematic errors and product quality flags) and processed calibration files (instrument 

characterization, instrument settings and calibration processor output). Standard atmospheric 

corrections, receiver response and bias correction are applied to the L1B product. 

2.2.3.2. Level 2B wind product 

The Level 2B wind product is a geo-located HLOS wind observation with actual atmospheric 

correction applied to Rayleigh channel (Rennie & Isaksen, 2020) . The correction of 

atmospheric temperature and pressure broadening effects is done in the processing using 

collocated auxiliary meteorological information (AUX_MET) from the ECMWF model. The 

product is classified into Rayleigh–clear winds, indicating observations in clear air (from 

molecular return signal) and Mie–cloudy winds, indicating winds retrieved from aerosol or 

cloud particle backscatter  (Rennie et al., 2020; Tan et al., 2008). For most parts of the mission, 

one measurement consisted of 18 accumulated backscattered laser pulses, corresponding to 

2.9 km. The setting has been adjusted during the mission to mitigate the instrument 

degradation and to optimize the SNR ratio. Rayleigh-clear winds typically have a horizontal 

resolution of 87 km, which corresponds to 30 measurements, while only 3 measurements were 

accumulated for Mie-cloudy winds resulting in a horizontal resolution of 8.7 km (Lux et al., 

2020; Rennie et al., 2021). Each profile consists of 24 range bins dividing the atmosphere into 

boxes with varying vertical resolution between 250 m and 2 km. The thickness of these range 

bins was defined through range bin settings, which have been changed and updated multiple 

times during the mission. The main reason to change or add range bin settings was to address 
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particular scientific and Aeolus mission objectives. Some of the settings were changed 

seasonally, while others were long term and meant to support data assimilation by NWP 

centers. In the case of dedicated science objectives, validation campaigns or specific events 

such as volcanic eruptions or smoke, a limited spatial box could be defined. 

2.2.3.3. Level 2A aerosol/cloud product 

The Aeolus Aerosol and Cloud Optical Properties Product Level-2A (L2A) includes retrievals 

derived from multiple algorithms SCA, MCA, and MLE monitored and improved at Meteo 

France CNRM and TROPOS (Flamant et al., 2022). The historical Standard Correct Algorithm 

(SCA) is a direct inversion of the lidar equation without a-priori conditions (Flament et al., 

2021). The SCAmid corresponds to an average over consecutive vertical bin to compensate 

for noise. The Mie Channel Algorithm (MCA) relies on the Mie channel and climatological data 

using fixed extinction-to-backscatter ratio. The Maximum Likelihood Estimation (MLE) is 

based on a physically constrained optimal estimation (Ehlers et al., 2022). Particulate 

extinction and backscatter with corresponding variances and Quality Check (QC) flags are 

provided at coarser horizontal resolution Basic Repeat Cycle (BRC), also referred as 

observation, aligned with signal accumulation over ~87km. The SCA attenuated backscatters 

are given at finer horizontal sampling measurements (~2.9km to ~17.4km depending on 

settings) as the MLEsub particulate extinction and backscatter which accumulates 

measurement per sub-BRC profiles. A group product with feature detection and a model-

based scene classification are included. 

The L2A product also comprises retrievals from algorithms AEL_FM and AEL_PRO developed 

at KNMI anticipating further missions such as EarthCare and Aeolus 2. AEL-FM provides a 

feature-mask at the highest resolution measurement. AEL-PRO is a Multi-scale Optimal-

Estimation procedure for retrieving cloud and aerosol extinction and lidar-ratio. 

2.2.3.4. Validation of Aeolus products 

Since Aeolus’ main objectives were to demonstrate the Doppler Wind Lidar technology in 

space and to improve weather forecasting an appropriate calibration and validation approach 

was essential for the success of the mission. A comprehensive description of the Cal/Val 

needs is provided in the Aeolus Scientific Calibration and Validation Requirements document 

(ESA, 2019b). An overview of all planned Aeolus validation activities from external teams (at 

the beginning of the mission) including guidance and recommendations for the acquisition of 

collocated data is provided in the Aeolus Scientific Calibration and Validation Implementation 

Plan (ESA, 2019a). 

The assessment of the Aeolus L2B wind product quality relies mainly on the quantification of 

wind biases and random errors (scaled MAD, RMSE, STD). For this purpose, collocated 

independent reference measurements are needed, such as from super pressure balloons, 

radiosondes, ground-based Radar Wind Profilers (RWP) and Doppler Wind Lidars (DWL). 

Further, geostationary satellites provide Atmospheric Motion Vectors (AMVs) on a global scale 

with a very high temporal sampling. However, AMVs are only single-layer winds representative 

for the top of clouds or water vapor features and the assignment of the corresponding altitude 

is very uncertain. Super-pressure balloons float horizontally in a particular layer of the 

atmosphere and thus don’t provide vertical information. In contrast, radiosondes measure the 

entire wind profile but only on a single case basis. Remote sensing instruments onboard 
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research aircrafts have proven to be very valuable, as they can measure multiple profiles along 

the satellite track (Bedka et al., 2021; Lux et al., 2020; Witschas et al., 2020). Furthermore, 

pre-launch validation campaigns with the ALADIN airborne demonstrator from DLR were 

considered to be very valuable for improving the calibration strategy and for quantifying the 

uncertainties of the retrieved winds (Lux et al., 2018). 

The quality assessment of the wind product using independent reference measurements is 

complemented by NWP monitoring using the ECMWF mode (Rennie et al., 2021). Because 

each L2B wind dataset also provided the predicted winds from the ECMWF model collocated 

and converted to the Aeolus HLOS wind, the NWP monitoring was a very powerful tool 

throughout the whole mission. It also helped to correct systematic biases (e.g. due to 

temperature fluctuations across the primary mirror of the telescope, (Weiler et al., 2021)) and 

to improve calibrations (e.g. NWP-based calibration of the Mie winds, (Marseille et al., 2022)) 

during mission operations. The L2B wind processor further provides an estimated error which 

mainly accounts for the instrument noise. Independent validation activities showed that this 

error estimate is underestimated (Bley et al., 2022; Borne et al., 2024). 

Profiles of backscatter coefficient, extinction coefficient and depolarization ratio measured by 

ground-based or airborne-based lidars operating at 355 nm are needed for independent 

validation of the Aeolus L2A aerosol and cloud product. Because Aeolus only measured the 

co-polar component of the backscattered signal, the backscatter coefficient is significantly 

underestimated in case of non-spherical particles (e.g. dust). Thus, ground-based lidars need 

to be operated at 355 nm and derive backscatter coefficient, extinction coefficient and 

depolarization ratio in order to derive the parallel-component of backscatter signal of Aeolus. 

Cloud contamination can significantly influence the intercomparison of extinction and 

backscatter profiles from multiple observing platforms with varying spatial resolution. 

Adequate spatiotemporal averaging can reduce the impact of representativeness errors, but 

not the impact of cloud contaminated profiles. Therefore, a cloud flag based on the AUX_MET 

data was introduced to the L2A product to support validation teams in the selection of aerosol-

only profiles. This update was requested by external validation teams. 

In four years of L2A validation with the EARLINET lidar network, 2313 overpasses have been 

collected. After cloud screening, the number of collocated measurements reduced to 556 and 

after further manual data screening, 282 collocated profiles remained for statistical validation 

which is only 12% of the initially collected data. This means that only 6 collocations can be 

used for a single station per year assuming one overpass per week. This example 

demonstrates the challenges when performing statistical validation of aerosol 

backscatter/extinction profiles.   

Statistical comparison between Aeolus backscatter profiles and collocated measurements 

from ground-based lidars at Cape Verde (e.g. multiwavelength Raman polarization and water-

vapor lidar PollyXT, ESA eVe reference polarization lidar (Paschou et al., 2022)) have 

revealed an underestimation of the Aeolus backscatter in the Saharan Air Layer, which can 

be explained by the missing cross-polarization component of the backscattered signal. After 

conversion of the ground-based lidar measurement to the Aeolus-like co-polar signal, the 

deviation is reduced, but not fully, which indicates that the differences are due to multiple 

reasons (e.g. range bin overlap especially at coarse vertical resolution, non-perfect cross-talk 

correction between the Rayleigh and Mie signal, signal loss and cloud contamination in 

lowermost bins). Preliminary analysis of Aeolus backscatter and extinction profiles collocated 
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with NASA DC-8 aircraft measurements from the High Altitude Lidar Observatory (HALO) 

showed solid agreement for pure dust layer below clear sky conditions, the statistics appearing 

degraded for dusty mix with marine aerosols in lower altitudes.  

Both the horizontal and the vertical resolution has changed multiple times over the course of 

the mission. This has direct impacts on the quality and the representativeness of the data. On 

one hand, finer aerosol layers can be detected or sharper wind gradients observed with 

smaller range bins, on the other hand smaller range bins also lead to higher random errors. 

The heterogeneous Aeolus sampling both vertical and horizontal should be considered for 

validation activities. The flexible Range Bin Settings (RBS) results in multiple vertical grids per 

orbit. This leads to higher Signal to Noise Ratio (SNR) for thicker bins but with less chance to 

get bins homogeneously populated in particles. 

2.2.4. EarthCARE ATLID products and validation 

2.2.4.1. ESA ATLID and ATLID-synergy products 

EarthCARE payload includes the Atmospheric Lidar (ATLID) system, to provide vertical 

profiles of aerosols and thin clouds. ATLID onboard EarthCARE is a high-spectral-resolution 

lidar (HSRL) operating at 355 nm with a high-spectral resolution receiver and depolarisation 

channel (do Carmo et al., 2021). An overview of the EarthCARE processing chain is provided 

in (Eisinger et al., 2024).  

Several processors produce products based on processing on lidar measurements. Table 2.4 

lists main processors, corresponding products and provides references to specific processors 

and processors.  

Table 2.4 ESA ATLID level 2 processor (in grey) and products 

ATLID Feature Mask (A-FM, (van Zadelhoff et al., 2023)) 

● Probability of particle return detection on a scale from 0 (clear sky) to 10 (clouds or aerosols present). 
ATLID Profile Processor (A-PRO, (Donovan et al., 2024)) 

● Aerosol oriented extinction and backscatter retrieval (A-AER) 
● Cloud and aerosol Extinction, Backscatter and Depolarization procedure (A-EBD) that provides profiles 

of  

○  particle backscatter coefficient 
○  particle extinction coefficient 
○ lidar ratio 
○ particle linear depolarization ratio 

● Target classification (A-TC, (Irbah et al., 2023)) 
●  Ice Microphysical property Estimation (A-ICE) 

ATLID Layer Products processor (A-LAY, (Wandinger, Haarig, et al., 2023)) 

● Cloud top height 
● Aerosol layer heights 
● Layer mean optical properties 

○ Backscatter 
○ Extinction 
○ lidar ratio 

○  particle linear depolarization ratio 
○ aerosol optical depth (AOD) 

● AOD, stratospheric AOD, sum of layer AOD 
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2.2.4.2. Validation of ESA ATLID products 

The spaceborne lidar ATLID and its products need to be validated in many ways.  

Firstly, the cross-talk between the detection channels has to be known. Even if it was 

characterized on ground before launch, it is suggested that in-flight operations need calibration 

and validation. There is the spectral cross talk between the Mie and the Rayleigh channel 

which will affect the results, especially the extinction coefficient and there is the polarization 

cross talk between the Mie channel and the cross-polar channel which especially affects the 

measured depolarization ratio. Besides internal calibration and verification procedures, 

suborbital validation is essential to prove the correctness of the derived L2 products. The A-

FM processor provides an operational output for evaluating the crosstalk correction & 

calibration in the EarthCARE L1 A-NOM data. From the pixels assigned as clear-sky (with no 

features present above), the ‘clear-sky-averaged’ profiles for the three ATLID channels, the 

co-polar Mie channel, the cross-polar Mie channel and the co-polar Rayleigh channel, are 

created and can subsequently be compared to the theoretical clear sky profiles. Offsets and 

trends in these ‘feature-free’ or ‘clear-sky’ profiles, and therefore appropriate cross-talk 

corrections, can be identified and looked into for further evaluation on the exact causes. 

Profiles of the extinction coefficient and the depolarization ratio measured by ground-based or 

airborne lidar systems are an important input for the validation of the cross-talk influenced 

quantities. Issues like the spatio-temporal collocation or the wavelength transformation (if the 

suborbital measurement is not at the same wavelength as the spaceborne lidar) are discussed 

in Chapter 5 where guidance for validation is given. The quality assurance is essential for the 

suborbital validation data and needs to be documented well.  

The L2 products from the above-mentioned processors need to be validated. High quality 

profiles of the particle backscatter coefficient, extinction coefficient and particle linear 

depolarization ratio at the same ATLID wavelength, i.e. 355 nm, are best suited to validate 

EarthCARE’s lidar products. All other quantities like the aerosol layer heights, the AOD, the 

profile of the lidar ratio and target classification can be derived from these profiles. Using a 

different wavelength is possible, however the transformation to 355 nm needs to be well 

documented and based on previous multiwavelength observations. Multiwavelength lidar 

(depolarization) observations with their higher information content are especially helpful for 

the validation of the target classification and the evaluation of the Hybrid End-to-End Aerosol 

Classification (HETEAC) model on which the aerosol typing is based (Wandinger, Floutsi, et 

al., 2023b). Additional collocated in-situ measurements of aerosol and ice-crystal habits are 

beneficial for this evaluation as well.  The algorithm developers have indicated that the feature 

detection and target classification (e.g., aerosol cloud discrimination) is a major uncertainty in 

their algorithms and needs to be validated with close collocation.  

2.2.4.3. JAXA ATLID L2 products 

As JAXA L2 products (Sato et al., 2024), the JAXA ATLID products (including the ATLID-MSI) 

synergy are listed in Table 2.5 and are obtained by using different retrieval method than the 

method by which the above-mentioned ESA L2 products are estimated (Nishizawa et al., 

2024). 
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Table 2.5 JAXA ATLID and ATLID-MSI synergy products 

ATLID one-sensor Cloud Aerosol Products (ST) 

● Feature mask 

● Aerosol and cloud extinction coefficient, backscatter coefficient, lidar ratio, and depolarization ratio 

● Target mask (aerosol and cloud type) 

● Planetary boundary layer height 

ATLID one-sensor Aerosol Component Product (ER/LR) 

● Extinction coefficient for the major aerosols in the atmosphere 

○  water soluble particles (WS) 

○  light absorbing carbonaceous particles (LAC) 

○  mineral dust (DS) 

○ sea-salt (SS) 
ATLID-MSI synergy sensor Aerosol Component Product (ER/LR) 

● Extinction coefficient for WS, LAC, DS, and SS 

● air-column mean mode-radii of fine-mode and coarse-mode aerosols 

 

The JAXA EarthCARE products are divided in two categories, Standard Product (ST) and 

Research Product (ER/LR). The JAXA L2 ATLID one-sensor and ATLID-MSI synergy 

algorithms have been extended from those developed for CALIOP and MODIS to produce 

JAXA A-train products and ground-based HSRL and Raman lidar measurements. The 

algorithm to estimate the feature mask product adopts vertically varying criteria function 

determined from ATLID observables considering the signal to noise ratio of all the ATLID 

channels and spatial continuity (coherent filter) (Hagihara et al., 2010, 2014; Okamoto et al., 

2024). The aerosol and cloud optical properties such as extinction coefficient are retrieved by 

the maximum likelihood estimation using Gauss-Newton method and line-search method with 

spatial smoothing to achieve robust retrieval (Kudo et al., 2016). Aerosol type classification is 

performed using a two-dimensional diagram of lidar ratio and depolarization ratio, which is 

constructed by combining cluster analysis using the AERONET L2 product with non-spherical 

dust data obtained from lidar observation. Cloud type classification algorithm uses the two-

dimensional diagrammatic method of signal attenuation and depolarization ratio developed for 

CALIOP cloud type classification (Yoshida et al., 2010). PBL height is estimated by a method 

using wavelet covariance transform (e.g., (Kim et al., 2021)). The algorithms for estimating 

aerosol component products (ER/LR products), which is based on algorithms developed for 

ground-based lidar and CALIOP and validated (Kudo et al., 2023; Nishizawa et al., 2007, 

2011), retrieve the vertical profiles of aerosol components by the MAP method using difference 

in sensitivity to depolarization and lidar ratio for each aerosol component, under which the 

optical properties and shape of each component are modeled. 

2.2.4.4. Validation of JAXA ATLId L2 products 

The JAXA ATLID L2 product validation uses ground-based observation networks such as AD-

Net and SKYNET and ship-borne measurement (Katsumata et al., 2020) to attempt validation 

against various aerosol species. Comparison with HSRL and Raman lidar measurements at 

the same wavelength as ATLID (i.e., 355nm) is essential for the validation of optical properties 

such as extinction coefficients, and HSRL and Raman lidars implemented at AD-Net sites are 

used together with HSRL installed at the EarthCARE super-site in Koganei, Tokyo, Japan (Jin 

et al., 2020, 2022; Nishizawa et al., 2017). In addition, comparisons with AOD at UV 
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wavelengths obtained from the SKYNET skyradiometer are also performed. The feature mask, 

target mask and PBL height products are also validated by the products derived from ground-

based 355nm HSRL and Raman lidar measurements. For these products, ground-based lidar 

data at other wavelengths (e.g. 532nm, 1064 nm) are used in terms of increased validation 

opportunities, although some differences in the criterion and retrieval method used in the 

estimation should be noted. The aerosol component products are validated by the products 

derived from ground-based 355nm HSRL and Raman lidar measurements with skyradiometer 

measurements. 

2.3. Radar products 

2.3.1. CloudSat radar products 

CloudSat launched in June 2006, carrying the first millimeter-wavelength cloud radar in space.  

Operating at 94 GHz (W-band), the nadir-pointing Cloud Profiling Radar (CPR) provided the 

first near-global (82°S to 82°N) measurements of the vertical structure of clouds and light 

precipitation (Stephens et al., 2008).  The CPR ceased operations on December 20, 2023.  

For most of its lifetime, CloudSat flew in formation with several other Earth observing satellites 

in the A-Train constellation making 14 orbits per day in a sun-synchronous orbit with equatorial 

crossing times of 1:30am and 1:30pm (L’Ecuyer & Jiang, 2010).    

The CPR data record spans more than 17 years that can be divided into two epochs: a period 

where measurements were collected during both day and night prior to a battery anomaly in 

April 2011, followed by a period of daytime-only observations after the data collection resumed 

in early 2012 (Stephens et al., 2018). CloudSat’s standard products consist of vertical profiles 

of reflectivity (corrected for attenuation from atmospheric gasses), cloud occurrence, cloud 

phase, cloud liquid and ice water contents, and radiative fluxes and heating rates.  CloudSat 

also supplies scalar estimates of near-surface precipitation occurrence and phase as well as 

profiles of light rain and snowfall intensity.  It should be noted that, while this section describes 

CloudSat’s radar-only, or RO, products, many of the mission’s most widely used cloud 

products are those that include information from the Cloud Aerosol LIDAR and Infrared 

Pathfinder Satellite Observations (CALIPSO) lidar. Combined CloudSat and CALIPSO 

products will be discussed in Section 2.4.1. 

CloudSat’s RO data products are listed in Table 2.6.  All have undergone several refinements 

from their initial post-launch releases in 2007, but most follow the same theoretical concepts 

and retrieve similar geophysical parameters as originally designed, with some additions.  At 

the time of writing, Release 05 (R05) is the most recent version of all CloudSat products 

available through the CloudSat Data Processing Center (DPC).  One final post-mission 

revision is underway that will culminate in the final Release 06 (R06) version of all products, 

but the anticipated updates should not change the summary presented here.  The reader is 

directed to the Process Description and Interface Control Documents (PCICDs) for each 

algorithm found on the DPC website (www.cloudsat.cira.colostate.edu) for additional details. 
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Table 2.6 CloudSat Radar-Only Data Products 

Product Description 

Level -1 

1B-CPR Backscattered power profile 

Level-2 

2B-GEOPROF ● Radar reflectivity profile 

● Vertical cloud mask 

● Gaseous attenuation profile 

2B-CLDCLASS Cloud classification 

2B-CWC Cloud liquid and ice water content profile 

2C-PRECIP-COLUMN Surface precipitation occurrence and type 

2C-RAIN-PROFILE Rainfall rate profile 

2C-SNOW-PROFILE Snowfall rate profile; snow particle size distribution profile 

 

Backscattered Power (1B-CPR) 

The most fundamental CPR data product used in scientific analyses is the Level-1 range-

resolved backscattered power product, 1B-CPR (Tanelli et al., 2008).  1B-CPR reports 

calibrated, geolocated profiles of backscattered power sampled at 240 m vertical resolution 

along with estimates of the noise floor and surface backscatter cross-section and several other 

instrument characteristics such as transmit power and radar coefficient.  A full description of 

the CloudSat Level-1B algorithm can be found in the corresponding PCICD. 

More relevant to this discussion is the output, calibrated radar backscattered power that 

effectively defines the vertical and spatial resolution of all subsequent Level-2 products.  Aside 

from a short period prior to 15 August 2006, the CPR has pointed forward by 0.16° off-nadir 

to avoid specular reflection from flat surfaces.  The CPR’s 3.3 ms pulse and beam pattern 

translate into an approximately 480 m along-track resolution which is sampled every 240 m to 

generate the profiles reported in 1B-CPR.  The CPR has a 1.4 km instantaneous field of view 

on the surface which is stretched to 1.7 km in the along-track direction by spacecraft motion 

over the 0.16 second integration time (Tanelli et al., 2008).  The absolute calibration of the 

CPR was established via coordinated underflights with airborne W-band radar (e.g. the 

CALIPSO-CloudSat Validation Experiment, CCVEx; (McGill et al., 2007)). Subsequent 

monitoring via surface backscatter and other indirect methods has demonstrated that, aside 

from an expected slow degradation of the radar sensitivity, the CPR maintained a remarkably 

stable calibration over its lifetime. 
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Geometric Profile (2B-GEOPROF) 

1B-CPR provides the primary observational input to the series of CloudSat Level 2 algorithms 

reported in Table 2.6.  These algorithms are run sequentially, starting with CloudSat’s 

geometric profile algorithm, or cloud mask, 2B-GEOPROF, which identifies atmospheric layers 

that contain significant radar echo from hydrometeors (as opposed to noise or ground clutter) 

based on CPR radar returns.  To maximize the detection of thin clouds and minimize false 

detection, the 2B-GEOPROF algorithm employs a spatial box filter in both the vertical and 

along-track directions centered on each range bin to identify coherent signals in the 1B-CPR 

backscatter profile (Marchand et al., 2008).  To further improve detection capability, an 

independent cloud mask generated by applying an along-track moving average to the 

observed backscatter power is also generated and used to create a combined cloud mask.  A 

confidence is assigned to each cloudy range bin at the native CloudSat resolution based on 

the results of these two methods of cloud identification.  The primary validation needs for 2B-

GEOPROF are precise measurements of cloudy layers from radar with higher vertical and 

spatial resolution and more sensitivity.  Elements of the methodology such as the averaging 

scales used, and the cloud probability thresholds adopted can also be tuned to strike an 

optimal balance between false detections and missing clouds using ground-based and 

suborbital observations. 

2B-GEOPROF also reports the surface bin and identifies ground clutter-contaminated range 

bins with a cloud mask value of 5.  Furthermore, unlike precipitation radars, water vapor can 

significantly attenuate W-band radar, especially in the tropics where two-way attenuation from 

the surface to the satellite can exceed 5 dB.  2B-GEOPROF supplies an estimate of profile of 

attenuation due to gases (water vapor and the less pronounced effects of oxygen) based on 

ECMWF analyses that is generally applied to correct the reported unattenuated reflectivity 

profiles before subsequent cloud and precipitation retrievals.  Both the ability of the algorithm 

to discriminate between clouds and ground clutter as well as the estimated attenuation profile 

require verification against independent observations. 

Cloud Scenario Classification (2B-CLDCLASS) 

All cloudy scenes observed by CloudSat are classified into one of eight canonical cloud types 

recognized universally by surface observers. The cloud classification algorithm, 2B-

CLDCLASS, classifies clouds as either St, Sc, Cu, Ns, Ac, As, deep convective, or high cloud, 

based on their cloud top temperature, cloud base height, horizontal and vertical dimension, 

and maximum reflectivity which indicates the presence of precipitation (Sassen et al., 2008; 

Sassen & Wang, 2008).  Both rule-based and fuzzy logic approaches have been employed.  

Cirrus, cirrocumulus, and cirrostratus are all considered high clouds for the purpose of the 

classification while Cu includes both cumulus congestus and fair-weather cumulus.  Radiance 

observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard 

Aqua are used to supply texture information to the algorithm.  Like 2B-GEOPROF, the 

validating 2B-CLDCLASS requires precise delineation of cloud boundaries (both horizontal 

and vertical).  In situ measurements of cloud phase and precipitation presence at the 

horizontal and spatial resolution of the CloudSat field of view are also required.  Validation 

observations are also used to tune thresholds in the rule-based approach or refine training 

datasets in the fuzzy logic-based method. 
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Cloud Water Content (2B-CWC-RO) 

2B-CLDCLASS determines the phase of the hydrometeors that may exist in each cloud 

observed by CloudSat.  The cloud water content product, 2B-CWC-RO, utilizes this 

information to provide quantitative estimates of cloud liquid and ice water content and effective 

radii for each cloud layer observed by CloudSat’s CPR.  2B-CWC is a combination of two 

distinct algorithms, one that applies to liquid clouds (Austin & Stephens, 2001) and the other 

that applies to ice clouds (Austin et al., 2009). Each algorithm applies optimal estimation to 

retrieve size distribution parameters and associated uncertainties for the liquid- and ice-phase 

portions of cloudy profiles that are used to compute corresponding liquid and ice water 

contents.  In addition to qualitative information from 2B-CLDCLASS, 2B-CWC-RO applies 

temperature thresholds to ECMWF analysis temperature profiles to separate the liquid, ice, 

and mixed portions of clouds that extend across these thresholds.  The liquid- and ice-only 

retrievals are combined to produce continuous profiles of liquid and ice water content at the 

standard 240 m CloudSat range bin resolution. 

The 2B-CWC-RO output requires three forms of validation: a priori algorithm assumptions and 

thresholds, profiles of retrieved size distribution parameters and liquid and ice water content, 

and uncertainties.  Verifying and improving algorithm assumptions requires observations of 

temperature-dependent ice and liquid particle number concentrations and effective radii in a 

wide range of cloud types and environments to form the a priori distributions and covariances 

employed in the retrieval.  Validating the 2B-CWC-RO products themselves, requires 

coincident measurements of liquid and ice water contents and effective radii from airborne 

sensors in clouds sampled by CloudSat.  Since 2B-CWC-RO produces explicit uncertainty 

estimates linked to the a priori, measurement, and forward model error covariance matrices, 

it is important to verify that the differences between in situ and remotely-sensed cloud 

properties obey approximately Gaussian distributions and fall within the stated standard 

deviations. 

Precipitation (2C-PRECIP-COLUMN, 2C-RAIN-PROFILE, 2C-SNOW-PROFILE) 

All cloudy scenes observed by CloudSat are also probed for the presence of precipitation.  

CloudSat’s 2B-PRECIP-COLUMN product uses attenuation- and multiple-scattering-

corrected reflectivity to identify precipitating (raining and snowing) radar profiles (Haynes et 

al., 2009).  All CloudSat profiles are classified as either not precipitating or assigned a 

probability that they contain rain, snow, or mixed-phase precipitation based on applying 

thresholds to corrected reflectivity in the lowest usable range bin above the ground clutter.  

Rain and snow are discriminated by applying a melting model to temperature and humidity 

profiles from ECMWF analyses.  Any precipitating profile with more than 90% of the 

hydrometeor mass melted is classified as rain while any profile with less than 10% melted is 

classified as snow.  Profiles with melted fractions between 10 and 90% are classified as mixed 

phase to reflect uncertainty in the phase classification. 

Even more so than GPM, attenuation from hydrometeors significantly impacts the CloudSat 

reflectivity profile to the point where rainfall can completely attenuate the radar signal well 

above the surface.  To mitigate this challenge, CloudSat’s precipitation products also make 

use of the surface backscatter return to estimate PIA (L’Ecuyer & Stephens, 2002). Unlike 

GPM, the PIA information is not used to tune the assumed DSD, but rather used to provide a 

first-order attenuation correction to the reflectivity profile and a rough estimate of rainfall 
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intensity assuming that rain is vertically uniform below an estimated rain top height (e.g. 

(Meneghini et al., 1983)).  The top of the rain column is estimated by searching for an inflection 

point in the reflectivity profile noting that strong attenuation when rainfall is present causes 

reflectivity to decrease significantly toward the surface.  Comparing the estimated rain top 

height to the local freezing level also provides a means for identifying convective cores 

whenever the rain top exceeds the freezing level by more than 1 km. 

While not a profile product, output from 2C-PRECIP-COLUMN is used to drive retrievals of 

rainfall and snowfall intensity and its output must be validated to characterize the quality of the 

subsequent precipitation intensity retrievals.  Assessing this product requires measurements 

of near-surface precipitation phase and measurements of two-way attenuation at W-band due 

to hydrometeors for coincident CloudSat under flights.  More generally, independent 

observations of surface winds and surface radar backscatter can also be used in the algorithm 

to refine relationships used to derive PIA constraints. 

All raining scenes identified by 2C-PRECIP-COLUMN are further processed by the 2C-RAIN-

PROFILE algorithm. (L’Ecuyer & Stephens, 2002) demonstrated that the (Hitschfeld & Bordan, 

1954) attenuation correction method rapidly becomes unstable even in light rain (>1 mm h-1) 

so the algorithm uses PIA estimates based on observed surface backscatter as a strong 

constraint via optimal estimation. The algorithm models attenuation from both rain and cloud 

water (Lebsock et al., 2011) and inverts the radar equation to retrieve surface rainfall rate and 

profiles of precipitating liquid and ice water content consistent with CPR reflectivities (Lebsock 

& L’Ecuyer, 2011). The algorithm also outputs estimated hydrometeor attenuation profiles and 

a multiple-scattering correction that accounts for multiple-scattering within the CloudSat field 

of view.  Surface rainfall rate and coincident profiles of rain drop size distribution and the ratio 

of ratio of total water content that resides in the form of cloud droplets to raindrops are needed 

to validate the 2C-RAIN-PROFILE product.  Satellite under flights with higher spatial resolution 

airborne W-band radar can be used to validate the associated multiple-scattering corrections. 

W-band radar also provides the most direct measure of falling snow from space across the full 

range of snowfall regimes (Kollias et al., 2007).  Snow particle size distributions (PSDs) and 

snowfall intensities for all snowing scenes identified by 2C-PRECIP-COLUMN are estimated 

in CloudSat’s 2C-SNOW-PROFILE algorithm.  The algorithm applies an optimal estimation 

approach to retrieve the slopes (L) and intercepts (N0) of exponential snow particle PSDs (N(D) 

= N0e-LD) in each CloudSat range bin from observed CPR reflectivities (Wood & L’Ecuyer, 

2021). The algorithm utilizes temperature-dependent first guesses and novel particle 

scattering models derived from ground-based observations (Wood et al., 2015).  In principle, 

validating 2C-SNOW-PROFILE outputs requires snow particle size distribution and snowfall 

rate measurements from CloudSat under flights but any measurements relating snow 

microphysical and scattering properties to surface snowfall rate in distinct environments have 

proven useful for verifying algorithm assumptions. 

At present, scenes determined to contain possible mixed-phase precipitation (modeled melted 

fractions at the surface between 10% and 90%) are not processed.  This precipitation category 

can best be interpreted as an ‘uncertain phase’ flag for which algorithm assumptions 

appropriate for determining surface precipitation phase are not known.   Validation datasets 

providing explicit discrimination of precipitation phase at the surface as a function of 

temperature, dew point temperature, and other cloud characteristics may provide an avenue 
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for expanding the application of CloudSat’s precipitation intensity algorithms to more of these 

uncertain scenes. 

Following the discussion of key CloudSat products and applied calibration/validation methods, 

the Table 2.7 aims to highlight, in a validation perspective, which geophysical products can be 

expected from correlative to the benefit of CloutSat products validation. 

Table 2.7 CloudSat Level-2 Geophysical Property Profile Parameters to Validate 

Qualitative 
Parameters 

Description Resolution  

(spatial; vertical) 

Cloud presence Probability of hydrometeor echo in radar volume CloudSat FoV; 240 m 

Cloud type Qualitative cloud type CloudSat FoV; Column 

Cloud phase Layer cloud phase: liquid, ice, mixed CloudSat FoV; 240 m 

Precipitation presence Precipitation confidence: 

possible, probable, certain 

CloudSat FoV; Surface range 
bin 

Precipitation phase Rain, snow, mixed/uncertain CloudSat FoV; Surface range 
bin 

Cloud liquid and ice 
water content 

Layer liquid and ice water content (g m-3) CloudSat FoV; 240 m 

Rainfall rate Rainfall rate profile (mm h-1) CloudSat FoV; 240 m 

Snowfall rate Snowfall rate profile (mm h-1 water equivalent) CloudSat FoV; 240 m 

Snow particle size 
distribution 

Profiles of slope (L) and intercept (N0) parameter CloudSat FoV; 240 m 

 

2.3.2. GPM precipitation radar products 

2.3.2.1. GPM Dual-frequency Precipitation Radar (DPR) products 

The Global Precipitation Measurement (GPM) is a NASA/JAXA satellite mission conceived to 

provide measurements of precipitation worldwide every three hours (Hou et al., 2014; 

Skofronick-Jackson et al., 2017). On February 27th, 2014, the GPM Core Observatory (CO) 

satellite was launched and started its operation in March 2014. The satellite orbits the Earth 

16 times per day using a non-sun-synchronous orbit between 65°S and 65°N latitude. The 

GPM CO carries an instrumentation that includes the Dual-Frequency Precipitation Radar 

(DPR) consisting of a Ku-band radar (KuPR; 13.6 GHz) and a Ka-band radar (KaPR; 35.5 

GHz). The GPM-CO follows the Tropical Rainfall Measuring Mission (TRMM), also a joint 

mission of JAXA and NASA. In orbit since 1997 to 2015, it was the first mission using a satellite 

equipped with a radar conceived to measure precipitation, namely the Precipitation Radar 

(PR), that operated at the single frequency of 13.8 GHz in the Ku-band (Kozu et al., 2001; 
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Kummerow et al., 1998; Okamoto, 2003; Takahashi et al., 2016) . With respect to TRMM, the 

GPM CO satellite uses a non-sun-synchronous orbit with an inclination of over 65° to provide 

measurements at mid-latitudes through 16 orbits per day, that were excluded by the TRMM’s 

orbit, with an inclination of 35°. The major innovation of GPM-CO is the addition of Ka-band 

radar designed for increased sensitivity and to take advantage of dual frequency 

measurements for more accurate classification of precipitation and retrieval of precipitation 

properties that include Drop Size Distribution (DSD) estimation. 

During ten years of operation, both scanning modes and products have evolved. Focusing on 

the DPR Level 2 products, the version 03 adopted at launch, was replaced by updates and 

the current one effective from July 1st 23 is the V07B. The reference for the L2 products is the 

Algorithm Theoretical Basis Document (ATBD) document, the latest concerning V07B being 

(Iguchi et al., 2023). Although algorithms have been modified and improved since the at-

launch version and the set of output products enriched, some original ideas and the overall 

processing architecture have been preserved.  

A major change affected the scanning mode of the two radars. DPR radars are not nadir 

looking profilers but have scanning capabilities that allow investigating horizontal structure of 

clouds and precipitation. The KuPR performs a cross-track scan (Normal Scan, NS) consisting 

of 49 beams with incidence varying from −17° to +17° with respect to nadir, resulting in a scan 

width at ground of 245 km. The native range (i.e. height) resolution was 0.250 km, but, after 

oversampling, profiles are presented at a resolution of 0.125 km. KaPR operated two different 

scans. The matched scans (MS) make 25 angle bins in the inner swath with central beam at 

nadir, to match the beams of KuPR with a range resolution resampled to 0.125 km with a 

cross-track coverage between -8.5° and 8.5° corresponding to a 125 km swath at ground. A 

high sensitivity scan (HS) was performed in an interleaved mode, again in the inner swath, but 

allowing an increased sensitivity at the expense of rage resolution that was 0.5 km (3.33 µs 

pulse duration) resampled to 0.250 km L2 products. Dual frequency methods were possible 

only in the inner swath. The ground resolution (footprint size) of DPR in the different modes 

was about 5 km at surface but the minimum detectable reflectivity was estimated in 15.46 dBZ 

for the Ku_PR, and 19.18 and 13.71 dBZ, for the Ka_PR in MS and HS mode, respectively 

(Masaki et al., 2020) implying that, at best range resolution KuPR is more sensitive than KaPR. 

Such sensitivities are suitable for a wide range of liquid and solid precipitation, according to 

the mission goals. 

In november 2023, GPM-CO performed two orbit boost maneuvers that raised its altitude from 

400 km to 435 km in order to allow its life to extend in the early 2030, to make the GPM mission 

overlap with the satellites of Atmosphere Observing System (AOS) mission planned by NASA, 

JAXA, and other agencies, allowing intercalibration between the GPMs’ and AOS satellites’ 

instruments. 

Proper radar calibration is essential for retrieving high quality precipitation products and 

profiles.  The GPM DPR uses an active calibration procedure described in (Masaki et al., 

2020), where four years of calibration results are reported.  A ground-based active calibrator 

to assure that the spaceborne radar at both Ka- and Ku-bands are calibrated within ± 1 dB. 

Calibration consistency between GPM KuPR and TRMM PR measurements of natural 

scatterers was exploited by (Kanemaru et al., 2020) to estimate actual parameters of the 

radars. 
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Later, the high sensitivity beams of the interleaved mode were redirected to the outer swath; 

since then the Ku-band and Ka-band beams have been approximately matched over the full 

245 km swath (JAXA/NASA, 2018, (Awaka et al., 2021). From 21 May 2018, the KaPR HS 

scan was modified to make beams to match those of the Ku-band in the two bands from -17° 

to -8.5° and from +8.5° to +17°, i.e., the outer swath. As a result, matched dual-frequency 

products are possible for the full swath (FS). After testing (Awaka et al., 2021; Seto et al., 

2020, 2021), such products were available from December 2021 as Version 07A. 

Geophysical products pertain to Level 2 (L2) processing, obtained from Level 1 products that 

contain pre-processed radar measurements, surface type classification, but also ancillary 

variables useful for L2 processing. The L2 algorithms yield single frequency (SF) products, 

that involve measurements from one of the two radar and dual frequency (DF) products, that 

advantage on dual-frequency radar measurements and are available for different scans 

depending on the acquisition data (i.e. before or after 21 May 2018). 

The processing for DPR L2 products follows the architecture in Figure 2.2, that is basically the 

same since Version 03 although the 6 modules underwent different and significant changes. 

The architecture is generic enough to describe both DF and SF products although details of 

single modules can contain significant differences. The following subsection summarizes the 

6 interconnected modules and a new module added in Version 07 (Trigger module). Output 

L2 files contain many variables, many of which are used internally by the processing modules. 

Specific tables of this document report a selection of major geophysical outputs available. A 

field with the same name can follow a different coding if obtained with DF or SF algorithms. 

See (Iguchi et al., 2023) for a complete list of products. It should be noted that the latest version 

of TRMM products were obtained with a processing similar to that of DPR (Stocker et al., 

2018). 

  

Figure 2.2 Schematic diagram of the standard DPR algorithm (From (Iguchi et al., 2023)). 
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Preparation (PRE) module 

The Preparation (PRE) is an interface module that prepares raw Level 1 input products and 

external information to be used by the other modules of the L2 processing. Using the 

measurement of the power received by the two radars, system parameters, orbit, and scan 

geometry, it computes the reflectivity factors, reduces the influence of clutter (Kanemaru et 

al., 2021; Kubota et al., 2016, 2018), identifies the surface range bin (using power 

measurements) and lower  clutter-free bin (CFB, i.e. the one with reliable precipitation 

measurements closest to the terrain). The height CFB depends on the orography and the 

range resolution of the considered product and on the local zenith angle that increases as a 

function of the distance from the nadir and at the edges of the outer swath. Differences of the 

CFB height with respect to that at nadir can exceed 1 km, while are lower in the inner swath. 

L2 products are also provided below the CFB through extrapolation.Finally, Preparation 

identifies the pixels with precipitation that will undergo further processing and provides the 

measurements of the normalized surface cross section (NRCS) used for the attenuation 

correction (Kanemaru & Hanado, 2023).  

Vertical profile (VER) module 

The main function of the VER module is to provide vertical profiles of environmental 

parameters such as pressure, temperature, water vapor, and cloud liquid water by ingesting 

the ancillary environmental data provided by the Japan Meteorological Agency (JMA) Global 

Analysis (GANAL) product. From these data, the attenuations resulting from the non- 

precipitating particles, such as water vapor, molecular oxygen, and cloud liquid water, are 

computed and used to correct the measured reflectivities (Kubota et al., 2020).  

Classification (CSF) module 

The CSF module classifies precipitation according to categories such as stratiform and 

convective, as well as precipitation that is neither stratiform nor convective. In addition, it  

provides information on the bright-band characteristics (bright-band top, peak, and bottom 

ranges) using two different products (Awaka et al., 2016, 2021; Awaka & Brodzik, 2019), one 

being DF specific (Le et al., 2016), flags associated with heavy ice precipitation (HIP), anvil 

precipitation, the surface snow, and graupel and hail. Table 2.8 summarizes the information 

available from the CSF module. All the outputs are provided as 2D matrices defined by the 

number of beams depending on the scanning mode, and the number of scans. 

Table 2.8 Summary of major CSF Output Variables 

Geophysical information Description 

Bright band characteristics Bright band detection flag, peak, bottom, width 

Melting Layer Melting layer top, bottom (DF) 

Precipitation classification Classification is provided in terms of stratiform, convective, other, 

transition, convective winter (DF only) 

Shallow rain Shallow rain (isolated or non-isolated) detected. 

Heavy ice precipitation (HIP) HIP detection flags, height of bottom and top of detected HIP 

Hail Hail detection flag 

Anvil precipitation Anvil precipitation detection flag 
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DSD module 

This module plays a critical module for retrievals, providing the size distribution models 

employed for different hydrometeors, along with, mass densities, dielectric constants, and fall 

velocities of the particles are also specified in the module. For the DPR algorithms, the 

drop/particle size distribution is assumed to follow a normalized gamma model that, with with 

the shape parameter µ=3, takes the form of a 2-parameter PSD that can be expressed in 

terms of the mass weighted mean drop diameter Dm (mm-1) and the “normalized intercept 

parameter” Nw (mm-1 m-3), related to liquid water content LWC and Dm is  factorized as 

N(D;Nw,Dm) = Nwf(D,Dm) 

Limiting to a 2-parameter form is somehow necessary for algorithms relying on no more than 

two measurements, that are the equivalent reflectivities measured by the two radars. An R-Dm 

is assumed that allows, in the SLV module, to apply the proper retrieval algorithm. 

Based on different CSF outputs, a profile is subdivided through nodes that imply the use of 

different particle models and related scattering tables. In general, particles are modeled as a 

mixture of air, water, and ice expressed with different volume ratios. Being DSD set in the rain 

phases, conversion of diameter is obtained by assigning to D the role liquid equivalent 

diameter for melting or ice drops and maintaining the same mass flux between the different 

phases of precipitation (see Table 2.9 for a summary of outputs). 

Table 2.9 Summary of DSD outputs 

Geophysical information Description 

Phase 3D matrix (bin x ray x scan) with a code indicating temperature and 

bright band limits 

Nodes 5 bins partitioning the profiles in segments used in solver retrievals. 

Parameters of R-Dm relation Available on the five nodes 

 

Surface Reference Technique (SRT) module 

The primary purpose of SRT is to estimate path integrated attenuation (PIA) using the surface 

returns (Meneghini et al., 1983), a technique already applied at Ku-band for TRMM (Iguchi et 

al., 2000). The SRT charges differences of the NRCS in rain and no-rain areas to the 

attenuation due to rain, although NRCS changes also because of wind and rain over the ocean 

(Tanelli et al., 2005), especially far from nadir, and by rapidly changing scattering properties 

over land.  (Meneghini et al., 2021) presents an overview of the recent implementations of the 

SRT along with an assessment of their performance. The module implements different 

versions of SRT, based on the NRCS provided through the PRE module. One uses rain-free 

areas close to a rainy area whose NRCS  are averaged to obtain the reference NRCS for rain 

areas. Different estimates are obtained using different averaging and the SRT module arrives 

at four PIA spatial reference estimates. The different estimates are combined into an effective 

PIA estimate by weighting the individual estimates by a factor that is inversely proportional to 

the variance of the reference estimate. A further method obtains the reference NRCS in a 

target area when rain is absent from time averaging and obtained values are applied to 

estimate the PIA in the presence of rain. 
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Similarly, differential PIA estimates are obtained from the difference between the NRCS at the 

two frequencies. Since rain-free NRCS are correlated at the two frequencies, the variance of 

the rain-free reference estimate is typically smaller than the SF counterparts resulting in more 

accurate estimates of differential PIA  and, eventually, of the precipitation estimates. 

A further PIA estimation method combines the SRT with the (Hitschfeld & Bordan, 1954) 

method since the first works well in heavier rain and the opposite is true for the second. The 

methods are combined with weights inversely proportional to the variance of their estimates. 

The Solver (SLV) module 

The SLV module uses a set of inputs from other modules, namely the measured reflectivities 

(from PRE), the PIAs from SRT corrected by the output for non-precipitating particles from 

VER and the R-Dm relations, along with phase information from the DSD module. The output 

is a set of “columns” of parameters including precipitation rate R in mm-1 h-1, parameters of 

DSD (Dm, Nw) effective (corrected) reflectivity and specific attenuation k (dB/km). DPR 

algorithms (both DF and SF) relies on a relationship between rain rate R and Dm  adjusted by 

a parameter ε determined through a series of equations aiming at reconciling inconsistencies 

between PIA obtained by the different attenuation estimation techniques with the PIA obtained 

at ground from DSD profiles. A detailed description of latest versions of the algorithms along 

with a rigorous mathematical formulation and preliminary validation can be found in (Liao & 

Meneghini, 2019, 2022) and (Seto et al., 2021), which also describes the derivation of the 

scattering table and the R−Dm relation as well as the procedure correction for non-uniform 

beam filling (NUBF).  

The SF algorithms took origin from the one used for TRMM Ku radar algorithm developed 

using relations between intrinsic reflectivity at Ku band and the specific attenuation k. In GPM 

it has been replaced by an equivalent the R−Dm relation that has the advantage of linking 

geophysical parameters and not frequency-dependent parameters. The advantages of the 

dual-frequency algorithm rely on the increased reliability of the dual-frequency SRT and the 

availability of a method called ZfKa, a method with similarities to SRT, but can use 

measurements from KuPR or KaPR. This is different from the pre-launch and at-launch 

versions of the algorithms, where dual frequency retrievals were based on DFR (the ratio 

between reflectivities at Ka and Ku band), which is, theoretically, an estimate of Dm  (Mardiana 

et al., 2004). However, this approach was proven to be unstable also after validation. 

The rationale of the algorithm can be explained in a narrative form as follows. Having assumed 

a gamma DSD with a fixed shape parameter, it is possible to establish an R- Dm for various 

effective reflectivities. In this way, given an effective reflectivity factor and an initial value of ɛ, 

an (R, Dm) pair can be obtained, and, using the tables established in the DSD module, the 

corresponding Nw and specific attenuation coefficient k can be obtained as well. The process 

starts from the top, where the measured reflectivity is supposed to be unattenuated and can 

be corrected iteratively using the estimated k. Once the procedure is applied to the entire 

column, a PIA profile is also obtained. The process is repeated with different ε profiles to 

minimize the retrieved PIA at the surface level with the SRT-estimated PIA is chosen (Liao & 

Meneghini, 2019). Table 2.10 summarizes information available from the SLV module. 

Outputs can be presented as 3D (bin x ray x scan) or 2D (bin x scan) matrices. The latter are 

used sometimes to express the value of profiles at certain surfaces or their integration along 

the vertical (not shown in the table). 



53 
 

Table 2.10 Summary of major SLV Output Variables 

Geophysical information Description 

Solver Flag (2D) For each profile indicates the presence of precipitation, the 

location below surface or a bad quality of the measurements 

Bin echo bottom (2D) The range bin 176 (or 88 in HS) is at the ellipsoid. The bottom 

of echo is specified. 

Particle size distribution(3D) Profiles of Nw, Dm 

PIA (2D) Path integrated attenuation by precipitation consistent with 

DSD profiles (different from SRT estimate by an offset tha is 

provided as output) 

Reflectivity factor (3D) Effective reflectivity factor profile consistent with DSD 

Precipitation rate (3D) Profiles of precipitation rate in mm/h 

Precipitable water (3D)  Profiles of precipitable water in g/m3 

Correction factor “epsilon” (3D)  Adjustment from the original distribution (ε =1 mean no 

adjustment) 

Correction for NUBF (2D) Parameters used to correct for NUBF (not applied if the ratio 

between the rain area and FOV is equal to 1) 

 

The TRG module 

This module is implemented as a new standard product in L2 algorithm V07 and is executed 

before the call to the SLV module to identify the presence of multiple scattering and NUBF. 

Detection of multiple scattering is based on identification in the measured Ku and Ka band 

reflectivity profiles of the “Multiple-Scattering tail” or “Ghost Echo” that decay from a maximum 

value reached above, or around the 0°C isothermal to a minimum value that appears below 

the surface following a smooth curve with a concave shape. This behavior was first observed 

on the CloudSat DPR (Battaglia et al., 2008; Tanelli et al., 2012) and TRMM PR data. The 

occurrence is quite rare but is more frequent at Ka band (Battaglia et al., 2015; Battaglia, 

Tanelli, et al., 2014). A further multiple scattering feature is the “DFR Knee” (Battaglia, Tanelli, 

et al., 2014). Being multiple scattering triggered by large frozen hydrometeors in the upper 

troposphere and affects more Ka band than Ku, the slope of the measured reflectivity of KaPR 

diminishes towards the surface and can become smaller than that at Ku band, which is unlikely 

under single scattering. 

A second algorithm aims to diagnose NUBF at Ka-band based on consistency between PIA 

at the two frequencies and the PIA related to DSD retrievals in the hypothesis of absence of 

NUBF. Deviations from this behavior are indications of NUBF (Seto et al., 2021). 

2.3.2.2. GPM DPR validation 

An integral part of a successful satellite mission to measure global rainfall is a robust and 

active ground validation program.  The GPM Ground Validation (GV) was designed from the 

start as a key part of the overall GPM program. During the TRMM era, GV was limited to 

simple comparisons of rain rates observed by the TRMM PR and/or TMI instruments to surface 

measurements from radars and/or rain gauges, which is referred to as “Statistical Validation.”   

During TRMM, it became obvious that a more robust GV program needed to be developed to 
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better aid satellite algorithm developers to improve the physics of their algorithms rather than 

just tweaking their outputs. So, for GPM, a three-tiered approach was developed (Hou et al., 

2014): 1) Statistical Validation, as done during TRMM; 2) Physical Validation, where the 

emphasis was on better understanding the physics and microphysics of different precipitating 

systems; and 3) Hydrological Validation, which emphasized improving precipitation retrievals 

on large scale areas (e.g. watersheds).  

To address this new paradigm, the GPM Ground Validation (GV) was launched to assess and 

improve the performance of the different releases of the DPR algorithms. The program was 

included various field campaigns targeting specific precipitation, such as heavy snow and 

mixed-phase precipitation (Skofronick-Jackson et al., 2015), thunderstorms (Heymsfield et al., 

2015; Jensen et al., 2016), intense rain and floods (Petersen & Krajewski, 2013), and 

orographic precipitation (Houze et al., 2017), in addition to supporting to international 

campaigns. To obtain continuous correlative precipitation measurement, fixed sites with dual-

polarization scanning radars such as the GPM Validation Network  consisting of S-band radars 

from the U.S. NEXRAD, network raingauge and disdrometers of different kind (Schwaller & 

Morris, 2011). In addition, the GPM established an international cooperation for GV to obtain 

information from different regions of the globe. Many validation studies have been conducted 

that provided useful feedback to the algorithm developers, despite known issues related to 

validation. Comparison results have shown some variability that can be charged to different 

climatologies but also to issues like space and time mismatches between the spaceborne and 

ground instruments an instrument specific issues, differences in frequencies (that implies 

different attenuation effects), the presence of blind ranges in both in satellite and ground-

based radars (GR) that does not allow a direct comparison between surface in situ 

measurements with DPR measurements collected aloft. In case of point measurements 

(disdrometers or rain gauges), the attempt is to compare continuous measurements in time at 

a single location, with satellite nearly instantaneous but spatially averaged measurements. 

GPM Level I requirements specified that DPR rain estimate biases relative to ground radars 

should be within ± 50% at rates of 1 mm hr-1 and within ± 35% at rates of 10 mm h-1 (Petersen 

et al., 2016). Figure 2.3 shows the Normalized Mean Absolute Error (NMAE), Root Mean 

Squared Error (RMSE) and Bias when comparing the DPR Ku rain estimates to the Kwajalein 

S-band polarimetric radar estimates. The green polygons outline requirement boundary for 1 

and 10 mm/h illustrating that indeed the Level I requirements are met. 
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Figure 2.3 Statistical comparison between ground-based radar rain estimates at Kwajalein Atoll to DPR 
Ku (V07). GPM Level I requirements stated that biases between DPR Ku and ground radars should be 
within ± 50% at 1 mm hr-1 and ± 25% at 10 mm hr-1. The panels show the biases met requirements 
(green shaded polygon) for “All” rain types (top), “Convective” (middle) and “Stratiform” (bottom). The 
blue lines represent that Normalized Mean Absolute Error (NMAE), the black lines represent the Root 
Mean Squared Error (RMSE), and the red lines represent the Bias =  (GV - DPR)/GV in percent. 

 

(Biswas & Chandrasekar, 2018) using the VN network found correlations between reflectivity 

from DPR and GR of ~0.9 at Ku-band and ~0.85 at Ka-band with higher values in stratiform 

rain. Other studies targeting precipitation rates were conducted with radar in Switzerland, were 

a DPR underestimation of winter precipitation was found (Speirs et al., 2017), in Italy (Petracca 

et al., 2018), who pointed out the issue of characterizing the quality of GR estimates), UK 

(Watters et al., 2018), and finally, in Germany, where a three year of comparison of DPR 

precipitation rates with those from precipitation product of the German Weather Service 

correlation provided a correlation coefficient of 0.61 and the root mean square error of 1.83 
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mm h−1 (version 5). Dense gauge networks were used for precipitation rate comparison 

(Lasser et al., 2019; Tan et al., 2018) since they can account for the variation of rain within the 

DPR footprint. However, they cannot account for the vertical variation of rain within the 

sampling volume and between surface and the DPR useful measurement closer to terrain 

(actually several hundred of meters above surface, depending on the orography). 

Concerning snow, GRs have also been used for validation of snow products. (Le & 

Chandrasekar, 2019) evaluated the surface snowfall flag using GR dual-pol classification 

capabilities, while (Mroz et al., 2021) compared the DPR snowfall rate with the US MRMS 

radar snow product (https://www.nssl.noaa.gov/projects/mrms/) over from November 2014 to 

September 2020, highlighting a DPR underestimate snowfall rates by a factor of two attributed 

to the complexity of the ice scattering properties and to the limitations of the remote sensing 

systems such as the limited DPR sensitivity. 

For ground based radars there are several statistical and data-driven methods available, but 

most facilities do not have active calibrators to employ. For dual-polarized radars, the 

properties of the precipitation system can be used to estimate the absolute calibration of the 

radar. (Chandrasekar et al., 2015) discuss multiple techniques for calibration of radar 

reflectivity. 

(Gorgucci et al., 1992) developed a technique that uses a combination of differential reflectivity 

and differential phase measurements in rain to estimate absolute calibration of reflectivity. 

(Scarchilli et al., 1996) quantified the consistency between reflectivity ZH, differential reflectivity 

ZDR, and specific differential phase (KDP). (Gorgucci et al., 1999) showed via theoretical 

calculations and radar observations that the three polarization diversity measurements, ZH, 

ZDR and KDP, lie in a constrained space that can be approximated by a three-dimensional 

surface. Most of these previously mentioned techniques required the presence of large rain 

rates (greater than 50 mm h-1) at S-band for a sufficiently reliable KDP measurement to be 

observed. 

(Ryzhkov, Giangrande, et al., 2005) used Area-Time Integrals (ATI) to develop a self-

consistency methodology that did not require large rain rates. In this method, measured KDP 

is compared to an estimated KDP derived as a function of ZH and ZDR. The bias between 

observed ZH and the absolute reflectivity was then quantified as the ZH needed for the 

respective ATIs to agree. 

Once an absolute calibration has been determined, GPM GV uses a technique referred to as 

the Relative Calibration Adjustment (RCA) (Marks et al., 2011; Silberstein et al., 2008; Wolff 

et al., 2015) to monitor the system calibration on an hourly or daily basis. In this method, the 

95th percentile of clutter-area reflectivity was found to be quite stable in the absence of any 

external calibration differences.  (Louf et al., 2019) utilized both self-consistency and RCA 

techniques to post-calibrate over 20 years of data observed by the Australian Bureau of 

Meteorology C-band Polarized (CPOL) radar.  GPM GV utilizes both methodologies for routine 

quality control and calibration of NASA’s POLarimetric (NPOL) radar (Wolff et al., 2015) and 

other GV radars. 

GR and disdrometer were used also for microphysics. Using C-band dual-pol radars and GPM 

products in Italy, a good agreement between the Dm estimates was found, pointed out by an 

absolute bias generally lower than 0.5 mm (D’Adderio et al., 2019). Based on the S-band 
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radars of the VN network, the DPR Dm estimate was found to be generally affected by a 0.2 

mm bias, with an overestimation of ~0.5–0.6 mm in convective precipitation (Gatlin et al., 

2020). 

An increasing number of studies have been conducted to compare the DPR rain and DSD 

estimates to ground-based disdrometer measurements. Starting from version 4 of DPR 

products, studies show a Dm was in good agreement with disdrometer measurements but 

uncertainties in normalized intercept parameter (Nw) occurred (this is consistent with findings 

obtained with dual-pol radars). Studies based on long-term datasets of disdrometer were 

performed in China (Wu et al., 2019) with five years of Parsivel measurements, in Italy with a 

network of disdrometers (Adirosi et al., 2021) some of which operated in the period 2014 to 

2020 and in North Taiwan (Seela et al., 2024). All of them generally agree on the different 

behavior of Dm and Nw, although report different values of uncertainties for the different DPR 

modes. 

In general, DPR precipitation retrieval algorithms are complex and use many assumptions. 

Detecting specific issues in DPR algorithms based on specific GV is not a straightforward 

process. Despite this, the performance of different versions of the algorithms has improved 

significantly  with respect to the performance of the DPR algorithms at launch. 

2.3.3. EarthCARE Cloud Profiling Radar product 

EarthCARE is equipped with a 94-GHz Cloud Profiling Radar (CPR), developed by JAXA and 

the National Institute of Information and Communications Technology (NICT). It is a coherent 

pulse radar using the same frequency of the Cloudsat CPR although its minimum sensitivity 

is better than -35 dBZ at 20-km height ASL with 10 km horizontal integration, (i.e. 5 dB better 

than Cloudsat due to lower orbit and the larger antenna of 2.5-m diameter) to measure profiles 

of reflectivity, and for the first time from space, Doppler velocity. The range of the Doppler 

velocity depends on the pulse repetition frequency (PFR). The unfolded Doppler Velocity 

(i.e..the Nyquist velocity, takes takes the value from 5.7 to 6.0 ms-1  for high PRF and from 4.9 

to 5.2 ms-1  for low PRF, respectively (Hagihara et al., 2023; Okamoto, Sato, Nishizawa, Jin, 

Nakajima, et al., 2024), with an accuracy of at least 1.3 ms-1 from specification for 

homogeneous cloud echoes of more than -19 dBZ integrated over a 10 km horizontal distance.  

The transmit pulse width is 3.3 microseconds corresponding to the vertical resolution of 500m 

(the same as CloudSat CPR). However, the received echo is over-sampled to achieve a 100 

m resolution (it was 250 m in CloudSat after oversampling). The vertical observation ranges 

from -1 km below surface to a height of 16, 18 or 20 km, which is selectable according to 

latitude. The PRF varies with satellite altitude and observation height considering the 

contrasting needs for Doppler accuracy and width of vertical range. The antenna allows an 

instantaneous footprint size of 750 m at the ground while along track averaged data are 

produced every 500 m. To compare, the instantaneous footprint of the Cloudsat CPR 

measures 1.4 km in diameter and is integrated over 0.16 seconds, resulting in an effective 

footprint of 1.4 km by 1.8 km produced every 1.1 km. 

The CPR Level 1 product contains radar reflectivity and Doppler velocity detected from cloud 

and precipitation particles that can be used to derive L2 products also in synergy with other 

EarthCARE instruments. The CPR uses several methods to calibrate and verify performance 

along time including also internal sources to monitor transmit power and receiver. External 
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calibration means for Transmitter, Receiver and end-to-end include ARCs (Active Radar 

Calibrator) at ground which can also provide the antenna pattern and pulse shape during 

overpasses. 

For the sea surface calibration, the EarthCARE satellite performs a roll maneuver at regular 

intervals (e.g. once a month) in order to take into account NRCS sea variability on wind and 

incidence angle. CPR level 1 processing also includes detection surface echo bin, estimation 

of NRCS and calculation of Doppler velocity of the surface, while CPR Level 1b product 

contains the measured radar reflectivity and vertical Doppler velocity profiles. 

2.3.3.1. ESA EarthCARE cloud products and their validation needs 

The National Aeronautics and Space Administration (NASA) A-Train satellite constellation, as 

demonstrated by (Stephens et al., 2002), showcased the potential of W-band radar 

observations from space. The EarthCARE mission, recently launched on 28 May 2024, 

introduces the first space-borne cloud profiling radar (CPR) with Doppler capability (Kollias et 

al., 2023), which in comparison to its predecessor CloudSat, boasts higher sensitivity (5-6 dB 

more sensitive), better vertical sampling (100 versus 240 m), improved along-track resolution 

(500 versus 1100 m), a smaller Instantaneous Field of View (IFOV, 800 versus 1400 m), and 

includes Doppler velocity measurements (Illingworth et al., 2015). Leveraging these 

advancements, the EarthCARE CPR is poised to generate an improved set of radar 

observables, encompassing radar reflectivity, Path Integrated Attenuation (PIA), and Doppler 

velocity. Following post-processing and quality control, these observables are fed into the 

CPR-only Cloud and Precipitation Microphysics Retrieval (C-CLD) product. 

The Cloud and Precipitation Microphysics (C-CLD) represents an L2 data product that 

leverages data from the EarthCARE 94-GHz Doppler Cloud Profiling Radar (CPR) to furnish 

microphysical details regarding cloud and precipitation systems. Adopting a profile-by-profile 

approach, the C-CLD algorithm utilizes radar-only measurements, including CPR feature 

mask and radar reflectivity (C-FMR), CPR Cloud Doppler parameters (C-CD), and CPR target 

classification (C-TC), as detailed by (Kollias et al., 2022). Employing an optimal estimation 

(OE) approach, the algorithm balances information derived from the CPR measurements with 

a-priori knowledge about the climatology of cloud and precipitation systems. Its primary goal 

is to retrieve profiles of two moments of the particle size distribution (PSD), specifically, the 

mean mass-weighted diameter and the condensed water mass content in the CPR 

measurement volumes.  Initially, the C-TC hydrometeor classification output is used to 

determine the occurrence of specific hydrometeor types (such as ice cloud, snow, rimed snow, 

melting snow, cold rain, warm rain, non-drizzling liquid cloud, drizzling liquid cloud), playing a 

crucial role in selecting the appropriate branch of the C-CLD retrieval process. In scenarios 

involving drizzle-free and lightly drizzling warm clouds, the OE framework is substituted with 

climatological relationships linking measured reflectivities to the microphysical parameters of 

interest. The algorithm's outputs feed into the composite cloud and aerosol profiles product 

(Cole et al., 2023), contributing essential data for further analysis, as explained in (Eisinger et 

al., 2024). The discussion below highlights the key components of the algorithm. For more 

detailed information on the C-CLD algorithm, please refer to (Mroz et al., 2023). 

As depicted in the flowchart presented in Figure 2.4, the C-CLD processor exhibits a modular 

structure. Specific algorithms have been designed to retrieve various cloud system types, 

encompassing liquid clouds, drizzle, ice/snow, cold rain resulting from snow melting aloft, and 
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warm rain. The choice of algorithm relies on the radar-based Target Classification product (C-

TC). The retrieval process for liquid clouds and light drizzle relies on power law relationships, 

as more sophisticated methods yield comparable uncertainties in microphysical parameters 

 

Figure 2.4 Schematic diagram of the standard C-CLD algorithm (Mroz et al., 2023) 

 

For profiles containing only liquid clouds, the vertical structure of cloud Liquid Water Content 

(LWC) is deduced from reflectivity values using the LWC − Ze relationship 

LWC = <A> Ze
1/2, 

with the value of <A> determined from path-integrated attenuation estimates. The retrieval of 

LWC for light drizzling clouds combines an estimate of cloud mass content based on the 

adiabatic profile assumption and the LWC derived from reflectivity (Baedi et al., 2000; 

Sauvageot & Omar, 1987). It's important to note that the retrieval of heavy drizzle is 

incorporated within the rain retrieval process, categorized as a subset of warm rain. 

For solid precipitation, ice clouds and rain, the C-CLD algorithm employs an Optimal 

Estimation framework. This framework seamlessly integrates all available information from the 

EarthCARE CPR with statistical knowledge about the precipitation process. The statistical 

insights into the precipitation process stem from a dataset of NASA disdrometer data (Dolan 

et al., 2018). This dataset is utilized to create joint probability distribution functions of 

microphysical parameters relevant to the algorithm, so-called “a-priori” estimates.  

Similar to the DPR retrieval, the drop/particle size distribution assumes a normalized gamma 

model in which the shape parameter (μ) is dependent on the mass-weighted (melted-

equivalent) diameter (Dm) through 

μ = 10 Dm
-0.8

  - 4, 
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as this relation is deduced from the NASA disdrometer data. The PSD is parameterized using 

the concept of double moment normalization, with mass-weighted mean diameter (Dm) and 

condensed Mass Content (MC) being used as the characteristic parameters: 

N(D; Dm, MC) = MC f(D; Dm) , 

where f denotes the shape function of the DSD model. Estimating vertical profiles of Dm and 

MC for clouds and precipitation across the entire tropospheric column is the primary task of 

the C-CLD algorithm.    

The disdrometer dataset also plays a role in establishing forward model relations between 

bulk precipitation properties and radar observables, and the associated simulation uncertainty 

is quantified, with quantified associated simulation uncertainty. Different modules of the C-

CLD algorithm share forward model components; for instance, the radar simulator in cold rain 

is the same as in warm rain, and the simulation of snow overlying cold rain mirrors that of 

snow falling on the ground. 

The scattering properties of snow particles are obtained using the discrete dipole 

approximation corresponding to realistic snowflake shapes (Leinonen et al., 2016). These 

snowflakes consist of dendrites of different sizes and are subject to varying degrees of riming. 

The terminal velocity of ice crystals and snowflakes was estimated using the hydrodynamic 

model of (Böhm, 1992). In contrast, the scattering properties of rain are less variable and are 

simulated using the T-matrix approximation assuming the aspect ratio of raindrops follows the 

formula of (Brandes et al., 2005). Terminal velocities were estimated from a dataset of (Gunn 

& Kinzer, 1949). 

The effectiveness of the C-CLD retrieval framework was evaluated using simulated 

observations from the EarthCARE CPR in high-resolution weather system simulations across 

three distinct climatological settings (Donovan et al., 2023): tropical climate, humid continental 

climate (Halifax), and mid-latitude conditions over North America (Baja). This evaluation 

demonstrated that the CPR reflectivity and Doppler radar measurements provide sufficient 

information to confidently retrieve two moments of the PSD, especially in rain, where Doppler 

measurements offer additional value. On average, Dm of rain can be estimated within a 

precision of 23% while the uncertainty of the MC estimate is estimated to be 67%. 

However, the retrieval of Dm for ice poses the most significant challenge, as the terminal 

velocity of snowflakes is not strongly dependent on particle size. Additionally, simulations used 

for validation lack precipitation events with melted equivalent Dm exceeding 1 mm. These 

conditions pose a particular challenge for W-band retrievals due to significant signal 

attenuation and saturation of radar reflectivity and Doppler measurements (Mróz et al., 2020). 

There is a need for increased effort in validating the product in this regime, as it is crucial for 

accurate precipitation quantification. Notably, 88% of the total precipitation volume reported 

by NASA disdrometers is generated by DSDs with Dm greater than 1 mm. 

The C-CLD algorithm was crafted to align with ground-based disdrometer measurements, a 

strategy that proves advantageous for precipitation quantification. However, this approach 

may introduce biases in radiative closure studies, as the assumptions about the DSD shape 

derived from disdrometer data might not accurately represent light rain and drizzle (Bringi et 

al., 2020). Furthermore, the same disdrometer data were used to derive assumptions for snow, 

based on the assumption that rain originates from snow melting and neglects interactions 
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between hydrometeors en route to the disdrometer. Particle concentration has also been 

adjusted to accommodate differences in sedimentation velocities of snow and rain particles, 

ensuring mass flux preservation. 

 

Figure 2.5 Probability distribution functions of W-band radar reflectivity in rain. The orange line shows 
CloudSat effective reflectivity from the 2C-RAIN-PROFILE product, while the blue line represents 
simulated reflectivity based on NASA disdrometer measurements. The vertical lines indicate 5th and 
95th percentiles.  

 

For instance, the validity of the μ-Dm relationship used across the size range becomes 

questionable for Dm values below 0.8 mm, as traditional disdrometers face challenges in 

capturing small drops. Notably, only 5% of CloudSat retrievals in rain align with radar 

reflectivity exceeding 3.5 dBZ, while disdrometer-simulated reflectivities never dip below this 

threshold. Conversely, 95% of disdrometer data corresponds to W-band reflectivity greater 

than 12 dBZ, a threshold exceeded in only 0.2% of CloudSat rain measurements (Figure 2.5). 

This stark contrast underscores the complementary nature of these two datasets, offering 

valuable insights into rain processes across different regimes. However, it also implies that 

the C-CLD product may not be well-suited for light rain conditions as it is biased toward higher 

precipitation rates. This proposition warrants testing with real data rather than relying solely 

on model simulations, which inherently carry some assumptions about the DSD.  

Furthermore, this underscores the radar community's need for broader access to DSD 

datasets that encompass the entire spectrum of particle sizes, from drizzle to precipitation 

mode. To our knowledge, such datasets are scarce in airborne measurements, where the 

primary focus tends to be on ice microphysics. Ground-based efforts in this direction have only 

started in recent years (Bringi et al., 2020) and, unfortunately, are not totally available to the 

public. To address this knowledge gap, utilizing data from vertically pointing radars, particularly 

those operating in W or G bands, becomes a viable alternative. These radars not only provide 

accurate wind retrievals, crucial for high-quality DSD products (Battaglia, Westbrook, et al., 

2014; Schoger et al., 2021), but also offer sensitivity surpassing that of the EarthCARE radar. 

Moreover, their sample volumes are significantly larger than those of disdrometers, enhancing 

compatibility with space-borne observations. 
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Finally, characterizing the distribution of the liquid cloud mass in the radar profiles, including 

supercooled clouds, is essential for reducing uncertainties in path-integrated attenuation 

simulations and retrieved rain/snow mass content below the liquid cloud. As suggested by 

(Battaglia & Panegrossi, 2020), this issue can be mitigated by assimilating the W-band 

brightness temperatures in the retrieval. This opportunistic measurement, estimated from the 

receiver noise, has been proven to provide important insight on the cloud and precipitation 

microphysics (Lebsock & Suzuki, 2016). 

In addition, in order to produce realistic transitions in the retrieved state vector between 

consecutive profiles, future algorithms could make use of the two-dimensional information 

provided by the radar. This should help not only in preserving the continuity of the state vector 

but also in the quantification of NUBF (and its correction) and in the detection of non-

precipitating liquid clouds whose boundaries tend to have long correlation lengths and 

therefore can be detected outside from precipitating systems where they may be visible and 

extrapolated inside precipitating systems where their signal is masked by the larger 

hydrometeors.  

2.3.3.2. JAXA EarthCARE cloud products 

2.3.3.2.1. JAXA EarthCARE CPR and CPR-synergy products 

JAXA EarthCARE products are divided in two categories, Standard Product (ST) and 

Research Product (ER/LR). Majority of the algorithms in the Standard Products are already 

well researched and have heritage from past studies. They are strongly promoted to be 

developed, which are processed and released from JAXA Mission Operation System. The 

algorithms of the Research Product contain new research developments that are challenging, 

yet scientifically valuable. They are promoted to be developed and are processed and 

released as standard products when the release criteria are satisfied from either JAXA Earth 

Observation Research Center and/or Japanese Institute/Universities. The CPR L2 products 

are processed using 1-km and 10km horizontally integrated CPR reflectivity and Doppler 

velocity. Both versions of the products are reported at each 1km and 100m horizontal and 

vertical grid spacing. The overview of the major JAXA L2 products and algorithms are provided 

in (Okamoto, Sato, Nishizawa, Jin, Nakajima, et al., 2024) and Figure 2.6 shows the flow of 

the JAXA L2 cloud products. 

Table 2.11 provides a taxonomy of both Level 1 and Level 2 CPR products. Details of 

processing are provided in the ATBD (JAXA, 2024). Stand-alone CPR products are obtained 

by L1 products, although some basic corrections are applied at Level 2, such as the clutter 

echo correction, and gas attenuation correction for reflectivity and Doppler unfolding, the latter 

likely occurring in strong rainfall. Products are obtained at 1 km and 10 km horizontal 

integration resolution and associated quality flags are provided. Processing includes surface 

detection and the estimation of NRCS (normalized radar cross section), Gas attenuation 

correction (obtained by NWP and ITU specific recommendations) and PIA (Path Integrated 

Attenuation) estimation. Finally, the processing maps the products onto the joint standard grid 

(JSG grid) for EarthCARE. 
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Figure 2.6  Flow of the JAXA L2 cloud products (from Figure 1 of (Sato et al., 2024)) 

 

Table 2.11 Name and primary parameters of CPR-only and CPR synergy products (please refer to text 
and JAXA EarthCARE CPR ATBD Level 2, 2024, for a more precise description of parameters) 

Product Primary parameter Product 

Type 

● CPR one-sensor Received Echo Power and 
Doppler Product (L1b) 

(1)  Received Echo Power 

(2)  Radar Reflectivity Factor 

(3)  Surface Radar Cross Section 

(4)  Doppler Velocity 

(5)  Pulse Pair Covariance 

(6)  Spectrum Width 

ST 

● CPR One-sensor Echo Product (L2a) (1)  Integrated radar Reflectivity 

(2)  Integrated Doppler Velocity 

(3)  Gas Correction factor 

ST 

● CPR One-sensor Cloud Product (L2a) 

● CPR-ATLID Synergy Cloud Product (L2b) 

● CPR-ATLID-MSI Synergy Cloud Product (L2b) 

  

(1) cloud mask (cloud and precipitation) 

(2) cloud type :warm water, supercooled 
water, randomly oriented ice crystal 
(3D-ice), horizontally oriented plate 
(2D-plate), 3D-ice + 2D-plate, liquid 
drizzle, mixed-phase drizzle, rain, 
snow, mixed-phase cloud, water + 
liquid drizzle, water + rain, melting 

layer   

(3) cloud particle category: warm water, 
super-cooled water, 2D-plate, 2D-
column,bullet rosette/3-D aggregate 
type,  droxtal/compact type, 

ST 
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Voronoi/irregular type, fractal snow 
aggregates 

(4)  cloud-and precipitation-    
microphysics: Effective 
radius(Reff)/LWC/IWC/Number 
concentration (No), Reff1, Reff2, 
WC1, WC2, Cloud phase1, Cloud 
phase2, No1, No2, LWP/IWP 

(5)  Optical Thickness 

● CPR One sensor Doppler Product (L2a) (1)  Doppler velocity correction value 
(considering inhomogeneity) 

(2)  Doppler Velocity Unfolding value 

ER/LR 

● CPR One sensor Rain and Snow Product (L2a) 

●  CPR One sensor Vertical Velocity Product (L2a) 

● (CPR-ATLID Synergy Rain and Snow Product 
(L2a) 

● CPR-ATLID Synergy Vertical Velocity Product 
(L2a) 

● CPR-ATLID-MSI Synergy Cloud Doppler 
Product (L2a) 

● CPR-ATLID-MSI Synergy Rain and Snow 
Product (L2a) 

● CPR-ATLID-MSI Synergy Vertical Velocity 
Product (L2a) 

(1)  Attenuation Corrected Radar 

Reflectivity Factor 

(2) LWC*/IWC*/No*/LWP*/IWP* /Rain 

Rate/SnowRate /OpticalThickness*  

(3) In-cloud Doppler velocity/Vertical Air 
Motion /  Sedimentation velocity 

(* ST with Doppler) 

ER/LR 

 

JAXA EarthCARE L2 CPR Echo Product 

The primary parameters contained in the JAXA CPR L1b Received Echo Power and Doppler 

Product are received echo power, radar reflectivity factor, surface radar cross section, Doppler 

velocity, covariance of pulse pair, and spectrum width. The JAXA L2a CPR Echo Product 

contains, integrated radar reflectivity factor integrated Doppler velocity and gas correction 

factor as primary standard product. For research products, the JAXA L2a CPR Doppler 

product contains corrected Doppler velocity considering inhomogeneity and Doppler velocity 

unfolding. These products are developed by National Institute of Information and 

Communications Technology (NICT) (Okamoto, Sato, Nishizawa, Jin, Nakajima, et al., 2024).  

 

JAXA EarthCARE L2 cloud- and precipitation- Products 

The JAXA L2 cloud algorithms consists from cloud mask, cloud type, cloud microphysics and 

vertical velocity products and have been extended from those developed for CloudSat, 

CALIPSO and MODIS to produce KU-JAXA EarthCARE A-train products (provided via JAXA 

A-Train Product Monitor). The KU CloudSat-CALIPSO merged data sets and cloud products 

(developed by Kyushu University), CALIPSO aerosol products (developed by National 

Institute for Environmental Studies (NIES)), MODIS cloud products (developed by Tokai 

University) are provided and updated to the latest version by JAXA EarthCARE Research A-

Train Product Monitor 
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(https://www.eorc.jaxa.jp/EARTHCARE/research_product/ecare_monitor_e.html). These L2 

products were assessed using simulated EarthCARE L1 orbit data created from the Japanese 

global cloud-resolving model, the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) 

with Joint simulator (Okamoto, Sato, Nishizawa, Jin, Nakajima, et al., 2024).The standard 

cloud products are derived without the usage of Doppler velocity (VD). Similar products are 

produced for the research products but derived by additional use of VD. Brief description is 

provided in the following. 

 (1) cloud mask (cloud and precipitation) products 

The JAXA standard L2 CPR cloud mask algorithm considers the signal to noise ratio and 

spatial continuity (coherent filter) to identify significant signals from noise, reduce the 

misclassification of clouds, and to assign a confidence level (Hagihara et al., 2010, 2014; 

Okamoto, Sato, Nishizawa, Jin, Ogawa, et al., 2024). Here, in order to remove the effect due 

to noise, a threshold for the radar echo power proposed by (Okamoto et al., 2007, 2008) are 

used, which was evaluated against lidar and sky camera. The Doppler function is used to 

improve discrimination between clouds, precipitation and phase of precipitation for ER/LR 

products (Okamoto, Sato, Nishizawa, Jin, Ogawa, et al., 2024). For the CPR-ATLID synergy 

products, the hydrometeor mask and aerosol mask for ATLID use vertically varying criteria 

function determined from ALTID observables and atmospheric profiles, and a spatial coherent 

filter for the hydrometeor mask (Hagihara et al., 2010; Nishizawa et al., 2024; Okamoto, Sato, 

Nishizawa, Jin, Ogawa, et al., 2024). The cloud masks for ATLID and CPR are combined to 

produce CPR cloud mask (C1), ATLID cloud mask (C2), CPR and ATLID cloud mask (C3), 

CPR or ATLID cloud mask (C4) products (Okamoto, Sato, Nishizawa, Jin, Ogawa, et al., 

2024). 

 (2) cloud particle (cloud and precipitation) type products 

The JAXA Standard L2 CPR-cloud particle type algorithm, extended from (Kikuchi et al., 2017) 

primary uses information of radar Ze and temperature from the European Center for Medium-

range Weather Forecasting (ECMWF) to infer cloud phase, shape and orientation, cloud or 

water or ice precipitation (Okamoto, Sato, Nishizawa, Jin, Ogawa, et al., 2024). Two-

dimensional diagrams of Ze and temperature, normalized radar cross section, vertical Ze profile 

and a spatial continuity test scheme are used to discriminate nine hydrometer types (warm 

water supercooled water, 3D-ice, 2D-plate, liquid drizzle, mixed-phase drizzle, rain,snow, 

melting layer). The CPR particle discrimination scheme is trained with CALIOP cloud particle 

type classification (Yoshida et al., 2010) and Tropical Rainfall Measuring Mission (TRMM) 

radar measurements collocated with CloudSat radar (Kikuchi et al., 2017). JAXA Research L2 

CPR- cloud particle type algorithms further combine VD in addition to Ze for improved 

discrimination of clouds and liquid precipitation (Okamoto, Sato, Nishizawa, Jin, Ogawa, et al., 

2024). To improve the CPR estimates, the JAXA L2 CPR-ATLID and CPR-ATLID-MSI synergy 

cloud particle type algorithms further combines the ATLID-only hydrometeor particle type 

(Nishizawa et al., 2024; Okamoto, Sato, Nishizawa, Jin, Ogawa, et al., 2024), which produces 

7 particle types (e.g., warm water, super-cooled water, 2-D plate, 3-D ice, 2D-plate and 3D-

ice mixture, mixed phase (water+3D-ice), unknown), and produces total 14 type classification 

(warm water, supercooled water, randomly oriented ice crystal (3D-ice), horizontally oriented 

plate (2D-plate), 3D-ice + 2D-plate, liquid drizzle, mixed-phase drizzle, rain, snow, mixed-

phase cloud, water + liquid drizzle, water + rain, unknown and melting layer) (Okamoto, Sato, 

Nishizawa, Jin, Ogawa, et al., 2024). The  liquid- and ice- phase discrimination in the ATLID-

https://www.eorc.jaxa.jp/EARTHCARE/research_product/ecare_monitor_e.html
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only hydrometeor particle type algorithm was developed based on 355nm Multiple-Field-of-

view Multiple Scattering Polarization Lidar developed in (Nishizawa et al., 2021; Okamoto, 

Sato, Nishizawa, Jin, Ogawa, et al., 2024). 

(3) cloud particle category products 

JAXA L2 cloud particle category product enables a more detailed comprehensive exploration 

of the dominant particle habit category contained within each JSG grid (warm water, super-

cooled water, 2D-plate, 2D-column, bullet rosette/3-D aggregate type, droxtal/compact type, 

Voronoi/irregular type and fractal snow aggregates) (Sato et al., 2024). For ice phase particles, 

the 2-D ice, 3-D ice, snow and mixed-phase particle types in the CPR-only and synergy cloud 

particle type products are further classified into 6 ice categories based on (Sato & Okamoto, 

2023), where estimation of cloud particle category was demonstrated using complementary 

observations from CALIPSO lidar. The cloud particle category product is based on information 

from ATLID depolarization ratio and lidar ratio (Okamoto et al., 2019, 2020). This ATLID-based 

classification method is extended to cloud scenes detected by CPR, and the CPR-ATLID and 

CPR-ATLID-MSI cloud particle category products are created (Sato et al., 2024). 

(4) In-cloud velocity products  

The JAXA Research L2 CPR vertical velocity product reports the Doppler velocity at cloud and 

precipitation masked radar bins. Doppler velocity folding is corrected based on vertical and 

horizontal patterns of Ze and VD (Okamoto, Sato, Nishizawa, Jin, Nakajima, et al., 2024). The 

in-cloud vertical velocity can be derived from the difference between VD and the estimated 

reflectivity-weighted particle sedimentation velocity (Vtz). Further, simultaneous microphysics, 

sedimentation velocity, and vertical air-motion(Vair) retrieval algorithm combining CPR Ze, VD 

and their normalized vertical structures, ATLID backscattering coefficient and depolarization 

ratio are also developed for the  JAXA Research L2 CPR-ATLID/CPR-ATLID-MSI synergy 

vertical velocity products (Sato et al., 2009). 

(5) cloud- and precipitation- microphysics products 

The JAXA L2 CPR, CPR-ATLID and CPR-ATLID-MSI synergy algorithms for cloud and 

precipitation extend previous algorithms developed for CloudSat and CALIPSO synergy. Lidar 

depolarization ratio was combined with Ze and β to retrieve the microphysical properties of 

mixture of 2D and 3D nonspherical ice particle types based on physical optics (Iwasaki & 

Okamoto, 2001) and the discrete dipole approximation (DDA) (Okamoto, 2002; Sato & 

Okamoto, 2006) from CloudSat and CALIPSO, where the variation of mean lidar ratio was 

treated (Okamoto et al., 2010). Further, a framework to extend the applicability of the 

microphysics retrieval algorithm to the entire cloud and precipitating region observed by 

CloudSat or CALIPSO was developed (Sato & Okamoto, 2011, 2020). 

The JAXA L2 CPR, CPR-ATLID and CPR-ATLID-MSI synergy algorithms retrieve the 

microphysics corresponding to each particle category (Sato et al., 2024). ATLID σext, δ, β and 

CPR Ze, VD, and s0/PIA are used to determine the microphysics. The single scattering 

properties of the nonspherical ice particle categories are calculated using physical optics 

(Borovoi et al., 2012) and modified geometrical optics integral equation methods (Masuda et 

al., 2012) for the ATLID specification (Okamoto et al., 2019, 2020) and using the discrete 

dipole approximation (DDA) and finite difference time domain method (FDTD) for the CPR 

wavelength, and multiple scattering effects are estimated based on (Sato et al., 2018, 2019) 
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and (Sato & Okamoto, 2020). The cloud microphysics scheme considers the maximum of two 

different size distributions at each JSG grid (i.e., Reff1, Reff2, WC1, WC2, No1, No2, Cloud 

phase 1, Cloud phase 2). 

Additional information about cloud properties are obtained also from MSI sensors. The JAXA 

L2 MSI one-sensor Cloud Products for liquid clouds and the JAXA L2 MSI one-sensor Ice 

Cloud Product report cloud mask from the cloud/clear discrimination algorithm (CLAUDIA) and 

cloud properties such as cloud optical thickness from the cloud microphysical properties 

algorithm (CAPCOM) (Ishida & Nakajima, 2009; Nakajima et al., 2019), respectively. The 

CPR-ATLID-MSI synergy algorithms use the output from JAXA L2 MSI and improve the CPR- 

and  CPR-ATLID microphysics retrieval. 

2.3.3.2.2. Validation needs and observations planned for EarthCARE 

Evaluation of EarthCARE cloud mask, cloud particle type, cloud/precipitation microphysics 

and corrected Doppler velocity products can be categorized into those using (1) ground-based 

radar and synergistic sensors, (2) Space borne sensors and (3) JAXA EarthCARE L1 synthetic 

data from the Nonhydrostatic ICosahedral Atmospheric Model (NICAM) and Joint-Simulator. 

(1)   Evaluation of EarthCARE products by ground-based radar and synergistic sensors 

Several unique collocated radar and lidar instruments installed at EarthCARE super-site in 

Koganei, Tokyo (Japan), are planned for the evaluation of EarthCARE measurements and 

products.  

 There are two 94GHz cloud radars installed targeting EarthCARE; High-sensitivity 

Ground-based Super Polarimetric Ice-crystal Detection and Explication Radar (HG-

SPIDER) and Electronic Scanning SPIDER (ES-SPIDER) (Horie et al., 2000) 

 . HG-SPIDER has a minimum sensitivity of -40dBZ at 15km and exceeds -60dBZ at 

1km. Although, it is expected that higher sensitivity of EarthCARE CPR will detect more 

thin ice clouds and low-level clouds that consist of small particles compared with 

CloudSat, some clouds with Ze smaller than the CPR minimum sensitivity may not be 

detected. HG-SPIDER with its high sensitivity can provide an assessment of the 

limitation of CPR cloud detections. The Doppler function of HG-SPIDER can be utilized 

to first evaluate EarthCARE CPR velocity products. Aliasing correction in CPR velocity 

products will be tested by using the HG-SPIDER data where much higher accuracy of 

VD is expected. VD from HG-SPIDER is also crucial for the evaluation of cloud particle 

types because precipitation can be easily discriminated. ES-SPIDER has an 

electrically scanning function so that horizontal inhomogeneity of clouds can be 

detected. By using ES-SPIDER, non-uniform beam filling (NUBF) effect in VD 

measured by EarthCARE can be evaluated. 

 

 There are several lidars with new capabilities developed to aid the CPR- and CPR-

synergy cloud and velocity products for EarthCARE. Multiple-Field-of-view Multiple 

Scattering Polarization Lidar (Nishizawa et al., 2021; Okamoto et al., 2016) can be 

used to investigate the effect of multiple scattering on microphysics retrieval and test 

multiple scattering schemes (Sato et al., 2018, 2019; Sato & Okamoto, 2020). High 

spectral resolution lidar (HSRL) (Jin et al., 2020, 2022) is effective for cloud 

particle/aerosol typing (Kong et al., 2022; Okamoto et al., 2019, 2020). Doppler lidar 
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information is another key source of information to evaluate velocity products. For the 

evaluation of air-motion and terminal velocity products, wind profiler and Doppler lidars 

(Coherent Doppler lidar at 2µm (Iwai et al., 2013) and incoherent (direct detection) 

Doppler lidar (Ishii et al., 2022) can be effective. Doppler radars with different 

frequencies produce different Doppler velocity for the same target, and the same is 

true for the difference between radar and lidar Doppler velocity. Therefore, terminal 

velocity and air motion comparisons among radars or lidar are preferable. Wind profiler 

has been proven to be effective to validate Vair retrieved from 94GHz cloud radar. Full 

one-to-one validation of the retrieved Vair has been performed by collocated 94GHz 

Doppler cloud radar and VHF Doppler radar measurement (Equatorial Atmospheric 

Radar) every 3 min. The spatial structure of the retrieved in-cloud up-/downward Vair 

agreed closely with direct measurements (Sato et al., 2009). A large improvement in 

the microphysical retrieval was achieved due to accurate estimation of Vtz from VD.  

 

 Ground-based validation of solid/liquid precipitation products from satellites is not 

trivial due to differences in sampling areas, blind zones close to the ground where 

satellite measurements are unreliable, and the imitation of overpasses with 

precipitation. The use of a longer radar wavelength has the advantage of being less 

affected by attenuation from hydrometeors. The disdrometer and Micro Rain Radar, a 

24 GHz (K-band) Doppler radar profiler are relatively common precipitation instruments 

suitable for unattended operation and available in many ground observation sites 

worldwide and in most of the research stations in Antarctica observation sites. Recent 

studies in Antarctica (Bracci et al., 2021) have demonstrated the usefulness of the 

synergy in providing reliable information on precipitation for the validation of satellite 

products. During the EarthCARE validation activities, a validation methodology for 

space-borne Doppler radar (here after K2W methodology) was developed which 

obtains the 94 GHz (W-band) radar reflectivity and Doppler profiles from radar Doppler 

spectrum at 24 GHz (K-band) and disdrometer observations through frequency 

conversion (Bracci et al., 2023). This K2W approach allows comparison and validation 

of radar reflectivity and Doppler profiles between ground-based and satellite-borne 

radar using affordable and low-maintenance instrumentation at the surface. By 

defining the appropriate sampling strategies and frequency conversion procedure for 

the simulation of space-borne measurements using ground-based observations, 

assessment of the K2W conversion methodology with coincident CloudSat 

measurements concluded that the K2W methodology could evaluate space-borne W-

band radar reflectivity and Doppler velocity within 0.2 dB and 0.2 m s-1 for snow 

precipitation, respectively. Latest assessment of EarthCARE CPR Doppler velocity 

measurement accuracy from global simulations for precipitation suggests values <0.5 

m s−1 for Ze > 0 dBZ at 10 km integration for low pulse repetition frequency (PRF) case 

and a smaller value for high PRF case (Hagihara et al., 2023). The unattenuated W-

band profile obtained by the K2W methodology is also useful to evaluate spaceborne 

W-band radar retrievals. The K2W method can provide particle velocity - diameter 

relation (i.e., habit information) and particle size distribution (therefore ice/liquid water 

content and effective radius) information at high temporal resolution along with the 

simulated W-band Doppler spectrum within and above the blind zone of EarthCARE 

CPR. The K2W method has a wide application and is highly valuable for long-term 

validation of satellite measurements and products. For the vertical profile, ground-
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based radars at different frequencies have been used for the validation of radar 

precipitation products. In the case of hydrometeor type discrimination, the dual 

wavelength ratio (DWR) and the Doppler velocity difference from synergy analysis of 

X-, Ka- and W-band radar have been used. 

(2) Assessments of EarthCARE products using Space borne sensors 

There are several candidates such as CloudSat, CALIPSO, MODIS, AMSR-E, CERES to 

evaluate EarthCARE CPR and synergy products. As an example, the recent advancement in 

ice-particle backscattering theories (Okamoto et al., 2019, 2020) enables a more 

comprehensive exploration of the geographical distribution and seasonal dependence of ice-

particle shape categories before (Sato & Okamoto, 2023). These datasets are used to 

statistically assess the EarthCARE hydrometeor category product. The new particle type 

discrimination data obtained in such study are also expected to be useful for deriving the ice 

particle fall velocity information globally, a key parameter in ice cloud parameterizations, which 

affects cloud amount, and the appropriate ice optical models to calculate ice cloud radiative 

fluxes. The EarthCARE single sensor and synergy sensor products can also be evaluated 

using the same products produced with higher-order synergy algorithms. The JAXA L2 four-

sensors synergy radiative products (developed by University of Tokyo), generated by radiative 

transfer simulations with retrieved cloud and aerosol microphysical profiles used as input, are 

assessed for the consistencies among the retrieved microphysical profiles and the radiative 

fluxes through comparing the simulated and measured radiative fluxes as a “radiative closure 

assessment” (Yamauchi et al., 2024). This assessment is conducted through one-dimensional 

radiative simulations using MSTRN-X (Nakajima et al., 2000; Sekiguchi & Nakajima, 2008) 

that generate the radiative flux of the standard product (Yamauchi et al., 2024), and through 

three-dimensional radiative transfer simulations using MC-star (Okata et al., 2017) that 

generates the research product of radiative flux and heating rate. 

(3) Assessments of the JAXA L2 products using JAXA EarthCARE L1 synthetic data from the 

Nonhydrostatic ICosahedral Atmospheric Model and Joint-Simulator 

Simulated L1 satellite data are highly required for the development and assessment of L2 

retrieval algorithms and products before launch. For this purpose, JAXA’s EarthCARE L1 

synthetic data are constructed (Roh et al., 2023) using a 3.5km horizontal-mesh global storm-

resolving model simulation performed with NICAM (Satoh et al., 2008, 2014; Tomita & Satoh, 

2004) and a satellite simulator (Hashino et al., 2013, 2016). CPR Radar reflectivity, Doppler 

velocity and ATLID data were simulated by the EarthCARE Active Sensor Simulator (EASE) 

(Nishizawa et al., 2008; Okamoto et al., 2007, 2008), MSI signals were calculated by System 

for Transfer of Atmospheric Radiation (RSTAR) (Nakajima & Tanaka, 1986, 1988), and the 

radiative fluxes were simulated by the Model Simulation Radiation Transfer code (MSTRN) -

X (Sekiguchi & Nakajima, 2008). This JAXA L1 synthetic data have helped to assess the 

expected errors of the EarthCARE CPR Doppler velocity obtained from pulse-pair covariances 

for different pulse-repetition-frequencies (PRF), along-track integration, and with and without 

unfolding corrections (Hagihara et al., 2021, 2023), as well as the MSI spectral misalignment 

(SMILE) effect on the cloud retrieval (Wang et al., 2023). JAXA L1 synthetic data are also 

being used to evaluate and improve the cloud, precipitation and aerosol retrieval algorithms 

(Nishizawa et al., 2024; Okamoto, Sato, Nishizawa, Jin, Ogawa, et al., 2024; Sato et al., 2024). 
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2.3.4. INCUS Mission Overview 

The INvestigation of Convective UpdraftS (INCUS) mission was competitively selected as the 

3rd NASA Earth Ventures Mission (EVM-3) and is planned to be operating in orbit with possible 

overlap to EarthCARE (with launch planned for no earlier then 2026). INCUS will provide the 

first tropics-wide investigation of the evolution of the vertical transport of air and water by 

convective storms (convective mass flux), one of the most influential, yet unmeasured 

atmospheric processes. 

The goal of INCUS is to understand why, when and where tropical convective storms form, 

and why only some storms produce extreme weather. To this end, state of the art atmospheric 

modeling, a novel observing strategy and a machine-learning retrieval approach are essential 

integrated components. The INCUS observing concept hinges on the observation of the 

change of the vertical profile of the measured effective radar reflectivity factor Zm by three 

copies of the Ka-band Dynamic Atmospheric Radar (DAR) over the timescale of 30 to 120 

seconds (i.e., commensurate to convective processes), and on the near-simultaneous and 

collocated observations of brightness temperature by the multi-channel, scanning, millimeter-

wave radiometer (Dynamic Microwave Radiometer, DMR) over a wider swath inclusive of the 

narrow swath where the radar measurements are acquired. The former provides the means 

to observe the vertical evolution of the water condensate at a particular location, while the 

latter provides the information needed to put that particular small-scale observation in the 

larger context of the storm or the atmospheric environment surrounding it. The DAR and DMR 

have significant heritage from their predecessors: the technology demonstrations in orbit of 

RainCube and TEMPEST-D, respectively. The primary difference between DAR and 

RainCube is that each radar will use a 1.6 m antenna (instead of RainCube’s 0.5m) with 7 

beams partly overlapped in the cross-track direction (instead of RainCube’s single beam). 

The primary scientific objective of INCUS is different, and yet related to EarthCARE’s. Both 

missions include a significant component aiming at improving our understanding of convection 

and cloud dynamics: but the W-band instantaneous Doppler measurements by the 

EarthCARE CPR and the vertical change Ka-band reflectivity over 30 to 120 second baselines 

are expected to have quite different strengths and weaknesses. Given their unprecedented 

nature it is conceivable that joint analysis of their data, if made possible by their respective 

periods of operation in space, will reveal opportunities for cross-comparison and vicarious 

validation in some atmospheric scenarios, while providing completely complementary 

information or extension of applicability in other scenarios. The products released by INCUS 

are summarized in Table 2.12. 

 



71 
 

Table 2.12 INCUS products 

Product Name Description 

Level 1 Products 

1A-PWR and 1B-ZM Received power [dB] from each DAR, calibrated and geolocated, converted to 
measured reflectivity factor Zm [dBZ]. 1B-Zm includes also an echo mask and 
surface normalized radar cross section [dB]. 

1C-ZRG and 1C-ZPAC Equivalent radar reflectivity factor Zm from all spacecrafts, resampled on a 
regular grid. ZRG includes relative pointing error correction, ZPAC includes both 
pointing and advection corrections. 

1B-Tb Calibrated DMR brightness temperature (Tb) [K] 

Level 2 Products  

2B-MASS Vertical profile of condensate for each radar profile [kg m-3] 

2B-MASS-RATE Profile of temporal change in condensate for each radar pair [kg m-3 s-1] 

2B-FLUXES Profile of vertical mass flux of air and condensed-water estimated for every 
detected updraft [kg m-2 s-1] 

2B-DT 2 min evolution of local advection, condensate and vertical fluxes in each cloud 
column 

2A-HD IWP [kg m-2] derived from the radiometer brightness temperature 1B-Tb 

Level 3 and 4 Products  

3A-LIFE Storm-centric LEVEL 2 and AUX data reported at half-hourly temporal resolution, 
labeled by storm 

3B-CONV Storm-wide statistics of vertical flux and environmental data, labeled by storm 

4-CONV Convection nowcasting system machine learning from 3B-CONV 

Auxiliary Products  

AUX-GEOIR Lifecycle from geo-IR, convection type from cold Tbs, anvil size from IR Tb 
threshold 

AUX-REANAL Large-scale environmental variables include CAPE, RH, T and shear 

AUX-RSURF Surface precipitation from Integrated Multi-satellite Retrievals and GPM (IMERG) 

AUX-LIGHT Lightning locations and flash rates from ground-based networks and spaceborne 
sensors 

AUX-GPM-KA Coincident (GPM combined retrievals of IWC) and (DPR Ze) 

 

2.4. Synergistic products 

The exploitation of the complementary characteristics of lidar and cloud radar for the 

synergistic detection and retrieval of the profile of clouds, aerosols and precipitation was 

established in ground-based ((Donovan, 2003; Hogan & Connor, 2004; Illingworth et al., 2007; 

van Zadelhoff et al., 2004), and many others) and airborne ((Tinel et al., 2005), and others) 

applications ahead of the age of spaceborne radar-lidar synergy, beginning with the launches 

of CloudSat and CALIPSO in 2006. 

While radar-lidar synergy from space has enabled unprecedented detail in the detection and 

measurement through the profile of the atmosphere, its insights are not omniscient. Lidar is 

sensitive to aerosols and small ice particles, but strong interactions with liquid cloud droplets 

quickly extinguish the lidar beam. Cloud radars are capable of detecting ice and liquid clouds, 

but the radar reflectivity is dominated by larger snowflakes, drizzle and raindrops. The radar 

beam is most strongly attenuated by liquid hydrometeors, and subject to multiple scattering in 
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heavily precipitating profiles. While the combination of lidar and radar measurements allows 

detection of targets from cirrus to the surface, synergistic radar and lidar measurements are 

mostly available near the tops of ice clouds where the lidar is not yet extinguished (e.g. the 

first three to five optical depths). In complex and layered cloud scenes, many uncertainties 

remain. 

In this section we provide an overview of available synergistic CloudSat-CALIPSO products 

from the A-Train of satellites (Section 2.4.1), and of upcoming synergistic products from ESA 

for the EarthCARE mission (Section 2.4.2), whereas JAXA EarthCARE products involving 

radar were described in section 2.3.2.1. 

We distinguish between two broad categories of synergistic products: 

 Synergistic target classifications exploiting the complementary detection and 

classification from radar and lidar, in combination with a numerical weather forecast 

model profile of atmospheric temperature, to produce a near-complete profile of 

clouds, aerosols and precipitation in the atmosphere. This may be either a combined 

radar-lidar algorithm (e.g. DARDAR-MASK; (Ceccaldi et al., 2013)) or a two-stage 

production model (e.g. EarthCARE’s ESA AC-TC product, which is a relatively simple 

merging of the ESA A-TC and C-TC) or the JAXA CPR-ATLID synergy products 

described in Section 2.3. Most of these products owe to the experience of A-train 

satellite synergy products. 

 

 Geophysical retrievals exploiting radar and lidar measurements, as well as synergies 

with imaging radiometers. We may distinguish between different approaches to 

synergistic retrievals. For CloudSat-CALIPSO, distinct synergistic retrieval products for 

ice and snow have been created: DARDAR-CLOUD (Delanoë & Hogan, 2008, 2010) 

and 2C-ICE (Deng et al., 2010, 2013, 2015). For retrievals of other classes of 

hydrometeors, other synergies are applied, such as radar-radiometer for liquid cloud 

water content (Leinonen et al., 2016), or lidar-radiometer retrieval of liquid cloud 

(Schulte et al., 2023). For ESA EarthCARE products, a single unified synergistic 

retrieval estimates the properties of ice clouds, snow, liquid clouds, rain and aerosols 

simultaneously (Mason et al., 2023). 

2.4.1. CloudSat-CALIPSO Synergy Products 

The most heavily utilized products developed under the CloudSat mission are those that 

incorporate measurements from the CALIOP lidar to detect thin and boundary-layer clouds 

missed by CloudSat because their backscatter signals fall below the minimum detectable 

signal of the radar or are obscured by ground clutter.  Capturing these clouds is critical for 

mapping the three-dimensional distribution of clouds and quantifying their impact on Earth’s 

radiation budget (e.g. (Henderson et al., 2013)). Indeed, the synergy of radar and lidar 

measurements for providing a more complete description of global cloudiness was the primary 

motivation for flying CloudSat and CALIPSO in a tight formation (L’Ecuyer & Jiang, 2010).  As 

a result, each of the CloudSat cloud products described in Section 2.3.1 have corresponding 

radar-lidar synergy products that include CALIOP information to augment CloudSat 

measurements. 



73 
 

Many CloudSat-CALIPSO synergy products are discriminated by appending -lidar to the name 

of an original radar-only product (Table 2.13).  An exception is two widely used ice cloud 

microphysics products, 2C-ICE and raDAR/liDAR (DARDAR), that combine radar and lidar 

measurements seamlessly via optimal estimation to derive profiles of ice water content and 

particle size.  Complete algorithm descriptions for each of these products can be found in 

(Cazenave et al., 2019) and (Deng et al., 2015), respectively.  In all cases listed in Table 2.14, 

however, CloudSat and CALIOP synergy products report similar parameters to the radar-only 

parameters listed in Table 2.10.  However, the combination of radar and lidar information 

occasionally allows additional parameters to be retrieved that can also be verified via sub-

orbital measurements.  Some examples of associated validation needs are described below. 

Table 2.13 CloudSat-CALIPSO Synergy Products (not comprehensive). 

Product Name Description 

2B-GEOPROF-LIDAR Cloud layer boundaries 

2B-CLDCLASS-LIDAR Cloud classification 

2C-ICE Cloud ice water content and effective diameter profiles 

Combined CloudSat-CALIPSO Snow (C3S) Virga; shallow snowfall intensity 

DARDAR Ice cloud visible extinction; Lidar ratio; Ice particle number 
concentration 

 

Cloud Boundaries and Phase 

Soon after the launch of CloudSat and CALIPSO the radar-only CloudSat 2B-GEOPROF and 

2B-CLDCLASS products underwent revisions to include additional information supplied by the 

CALIOP lidar.  The 2B-GEOPROF-LIDAR product summarizes all hydrometeor layers 

identified by either the CloudSat or CALIOP or both and identifies which sensor detected the 

cloud.  This provides a much more comprehensive picture of the vertical character of global 

cloudiness than either sensor alone and adds some new requirements for ground validation 

efforts.  Like the original 2B-GEOPROF cloud mask, the primary validation for this product 

consists of measurements of cloud vertical boundaries and horizontal scales from airborne or 

ground-based radar and lidar.  Merging spaceborne radar and lidar measurements, however, 

is complicated by their distinct footprints as well as the fact that the instruments fly on distinct 

platforms.  Specific uncertainties in cloud geometric profiles owing to footprint mismatches 

between the CloudSat and CALIOP need to be assessed statistically using multiple A-Train 

under flights. 

The CloudSat 2B-CLDCLASS-LIDAR product builds on its radar-only predecessor by 

including lidar-detected clouds and adding a much more robust discrimination of cloud phase 

that incorporates lidar linear depolarization ratio and new classification rules based on 

combined radar and lidar backscatter measurements.  Additional measurements of the vertical 

profiles of cloud liquid and ice water contents are required to validate the vertical profile of 

cloud phase (liquid, ice, or mixed) output by 2B-CLDCLASS-LIDAR. 

Ice Clouds (2C-ICE and DARDAR) 

The CloudSat 2C-ICE and DARDAR ice cloud microphysical property retrievals ((Deng et al., 

2015) and (Cazenave et al., 2019), respectively) use simultaneous measurements of radar 

and lidar backscatter to improve radar-only ice cloud water content and particle size retrievals.  
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The underlying principle of both algorithms is the same: radiation in the vastly different regions 

of the electromagnetic spectrum spanned by the lidar (visible) and radar (microwave), exhibit 

distinct sensitivities to ice cloud particles providing independent information for retrieving cloud 

properties.  There are, however, several challenges in combining profiles of radar and lidar 

backscatter owing to the different instrument spatial and vertical resolutions and their 

susceptibility to attenuation and multiple scattering.  Both algorithms employ variational 

schemes to seamlessly integrate these distinct profile measurements and retrieve cloud 

microphysical properties on a common vertical resolution.  The output from these products is 

not too different from 2B-CWC and can generally be validated using similar airborne in situ 

measurements.  However, both algorithms output profiles of visible extinction at the resolution 

of the CloudSat field of view and vertical range bin that also need to be validated.  DARDAR 

further retrieves lidar extinction-to-backscatter ratio that can be evaluated using airborne multi-

wavelength lidar or high spectral resolution lidar (HSRL). 

Snow (Combined CloudSat-CALIPSO Snow, C3S) 

Recognizing the value of exploiting synergies between radar and lidar for characterizing deep 

and shallow snowfall, respectively, a new synergy product has recently been developed that 

refines surface snowfall estimates from 2C-SNOW-PROFILE using CALIOP observations.  

The Combined CloudSat-CALIPSO Snowfall (C3S) applies a series of CALIOP-based tests to 

every CloudSat profile to correct false and missed snowfall detections in the radar blind zone.  

Ground clutter between the surface and about 1 km (somewhat higher over land) in radar 

reflectivity profiles leads to two common errors in CloudSat snowfall: reporting no snow from 

shallow snow that resides entirely in the blind zone and reporting surface snowfall based on 

snow signals aloft that don’t reach the surface.  C3S utilizes CALIOP measurements in the 

radar blind zone to identify shallow snowfall in scenes with no discernable radar backscatter 

and snow virga in scenes where a gap exists in lidar backscatter between radar-detected 

snowfall aloft and the surface (L’Ecuyer et al., 2024).  A lidar-based snowfall estimate trained 

using observations from Summit Station, Greenland is further used to supply an estimate of 

snowfall intensity when CALIOP observes shallow snow.  

Combining CloudSat and CALIPSO snowfall measurements adds two new variables relative 

to the radar-only product described above that need to be validated.  Ground-based or 

airborne observations are needed to verify the frequency of snow virga reported in C3S while 

CALIPSO surface snowfall estimates need to be validated against in situ surface snowfall 

measurements, especially in shallow snow events. 

Table 2.14 CloudSat-CALIPSO Synergy Profile Products not captured in Table 2.10 

Qualitative Parameters Description Resolution 
 (spatial; vertical) 

Cloud phase Layer cloud phase: liquid, ice, mixed CloudSat FoV; 240 m 

Virga presence Precipitation confidence: possible, 
probable, certain 

CloudSat FoV; Column 

Shallow snowfall rate Surface snowfall rate (mm h-1 water 
equivalent) 

CloudSat FoV; Surface 
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2.4.2. ESA EarthCARE synergy products 

EarthCARE synergy is based on the atmospheric lidar (ATLID) and cloud profiling radar 

(CPR), with additional contributions from the multispectral imager (MSI). The ESA EarthCARE 

radar-lidar synergy products comprise the ATLID-CPR target classification (AC-TC) and the 

ATLID-CPR-MSI cloud-aerosol-precipitation product (ACM-CAP).  

AC-TC determines the location, extent and context of what can be retrieved in ACM-CAP, so 

development on the two products has been closely coordinated. In general, the target 

classification product is formulated to be explicit about the detection limits of the radar and any 

uncertain or incomplete classifications, such as highlighting volumes that “may contain liquid” 

once the lidar beam is extinguished. In some cases, judgment on these unknowns must be 

made within the retrieval: for example, ACM-CAP may optionally place supercooled liquid 

clouds wherever the radar detects rimed snow. 

2.4.2.1. AC-TC 

EarthCARE’s synergistic target classification AC-TC consists of a pixel-wise combination of 

the CPR radar and ATLID lidar target classifications (C-TC and A-TC, respectively) using a 

decision matrix. The full description of all three products is provided in (Irbah et al., 2023). In 

many parts of the atmosphere only one product provides information: AC-TC inherits pure lidar 

classifications of aerosols and ice clouds not detected by the radar, and the radar classification 

of precipitation dominates when the lidar is extinguished. In some cases, synergistic radar-

lidar information yields a new classification that is not included in either of the input products: 

e.g. mixed-phase cloud, where radar identifies ice cloud and lidar liquid cloud; in other 

situations, the synergy may provide clarification: e.g. an uncertain discrimination between 

optically thin ice and aerosols by the lidar may be resolved if the radar detects ice clouds.  

AC-TC necessarily inherits any limitations of the radar and lidar instruments that are not 

resolved by radar-lidar synergy. Once the lidar beam is extinguished in optically thick clouds, 

the target classification is solely determined by the radar, with the additional information that 

the presence of liquid cloud (or, indeed, aerosols) is unknown. When undetected by the active 

instruments, the effects of undiagnosed liquid cloud may be non-negligible in terms of radar 

attenuation, microwave emission, and shortwave radiation—with the latter affecting both 

assimilation of MSI solar channels in the ACM-CAP retrieval, and in terms of radiative closure 

assessments against EarthCARE’s broadband radiometer (BBR; in the ACMB-DF product). 

Undiagnosed liquid clouds may be isolated cloud layers at any level where the radar does not 

detect targets (e.g. supercooled layers below an optically thick anvil cloud, or boundary-layer 

clouds below optically thick cloud layers aloft), as well as areas where the radar does detect 

another class of hydrometeor (e.g. embedded mixed-phase layers within optically thick ice 

clouds and snow, or warm liquid clouds that are coincident with rain).  

Where radar is obscured by surface clutter, attenuated, or affected by multiple scattering in 

heavy precipitation, C-TC uses contextual information to provide some guidance to the user 

on the likely contents of pixels in which no useful radar measurements are available: 

 Regions of surface clutter that are contiguous with precipitation have classes denoting, 

e.g. “possible rain”, “possible snow”, based on the classification immediately above the 

clutter zone. 
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 Where the CPR becomes strongly affected by attenuation or multiple scattering various 

“heavy precipitation” classes are assigned all the way to the surface. 

These contextual classes are inherited in AC-TC, and need to be further interpreted within 

geophysical retrievals to decide if—and, if so, how—to represent hydrometeors that are 

undetected by radar-lidar synergy.  

Validation needs related to the limitations of the lidar: 

 Quantify the undiagnosed presence of mixed-phase cloud layers embedded within 

deep and complex cloud scenes. 

 

 Quantify the undiagnosed presence of liquid clouds coincident with rain or below 

optically thick clouds aloft. 

 

 Validate the discrimination between aerosols and optically thin ice clouds 

Validation needs related to the limitations of the radar: 

 Quantify the undiagnosed presence of shallow cloud within surface clutter (especially 

in complex and layered scenes, where lidar is not available) 

 

 Quantify the continuity of precipitation throughout the surface clutter zone. 

 

 Quantify the continuity of heavy precipitation when the radar is fully attenuated or 

dominated by multiple scattering. 

 

 Validate the classification of rimed snow 

While direct validation of the target classification product is possible and necessary, the critical 

importance of an accurate target classification for the formulation of a geophysical retrieval 

means that there is also scope for an indirect evaluation based on the performance of retrieval 

products and ultimately the radiative closure assessment. Of special importance would be:  

 Evaluation of how clouds undiagnosed by radar-lidar synergy are interpreted within 

retrievals and radiative closure assessments 

 

 Quantifying the sensitivity of the radiative closure assessment to the accurate detection 

and thermodynamic phase classification of cloud-tops, especially of mixed-phase 

clouds from radar-lidar synergy. 

 

2.4.2.2. ACM-CAP 

ACM-CAP is novel among spaceborne synergistic retrievals in that it performs a unified 

retrieval of all clouds, precipitation and aerosols in the atmospheric column. The ACM-CAP 

product and the underlying optimal estimation retrieval algorithm CAPTIVATE are described 

in (Mason et al., 2023). The unified approach maximizes the use of the synergy of profiling 

radar and lidar measurements, with passive or integrated measurements such as thermal 

infrared and solar channels from the MSI radiometer, or the path-integrated attenuation from 

CPR—especially in complex and layered scenes. 

Some novel aspects of the CAPTIVATE retrieval have been developed in preparation for 

EarthCARE’s Doppler radar and high-spectral resolution lidar, but cannot be directly tested in 

application to CloudSat-CALIPSO retrievals, and have been evaluated so far only in ground-
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based or airborne applications. Some novel aspects of ACM-CAP that will require validation 

include (see Table 2.15): 

 In ice clouds and snow, the retrieval of an ice density factor, chiefly constrained by the 

terminal fallspeeds of snowflakes implied by the radar mean Doppler velocity. This 

allows the representation of a transition between aggregate snowflakes and denser 

graupel particles ((Mason et al., 2018, 2019); using ground-based Doppler radars from 

the BAECC campaign); however, the retrieval of snow microphysics is not fully 

constrained at a single radar wavelength (or even two), and will need to be applied 

cautiously. 

 In rain, the use of mean Doppler velocity observations to constrain an additional 

parameter of the drop size distribution (DSD), based on the relation between raindrop 

size and terminal velocity ((Mason et al., 2017); using airborne Doppler radars from 

the TC4 campaign). This should improve the capacity to resolve microphysical 

processes through the rain profile, as well as regional and regime-specific variability in 

the DSD. 

 In aerosols, the retrieval of pre-determined aerosol species is specified by A-TC using 

the HETEAC scheme (Wandinger, Haarig, et al., 2023), based on the lidar extinction-

to-backscatter and depolarization ratios measured by ATLID. ACM-CAP takes the 

scattering properties of these species as given, and retrieves the number concentration 

of the dominant HETEAC species in each volume, using a Kalman smoother to resolve 

large-scale features from the measurement noise. 

 Informed by the uncertainties in AC-TC related to the detection of liquid cloud layers 

below or embedded within cloud and precipitation, certain assumptions can be 

configured to enable the retrieval of a simple profile of liquid cloud that is not detected 

by the active instruments, e.g. within rain, or where rimed snow is diagnosed. In testing 

with A-Train and synthetic data, it has been found that including these undiagnosed 

liquid cloud layers can facilitate better representation of solar radiances and radar path-

integrated attenuation, with improvements in radiative closure and rain retrievals; 

however, the widespread applicability of these assumptions and their optimal 

configuration are yet to be evaluated  
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Table 2.15 ACM-CAP validation needs according to observational constraints and target class 

 Observational constraints 

Target class Radar Lidar Synergetic Indirect 

Ice cloud & 
snow 

Microwave 
scattering 
properties 
 
Ice particle density  
(i.e. riming) 

Optical 
scattering 
properties 
 
Lidar ratio  

Ice effective 
radius 
 
Mixed-phase 
cloud 

Assumptions of continuous mixed-
phase precipitation when radar is 
fully attenuated or dominated by 
multiple scattering in ice/snow 

Liquid clouds Cloud/drizzle 
partitioning 

Droplet 
number 
concentratio
n 

Properties and 
structure of 
mixed-phase 
cloud tops 
 
Contribution of 
solar radiances 

Vertical profiles of undiagnosed 
liquid cloud: 

- Embedded mixed-phase layers 
- Supercooled liquid 
- Collocated with rain 
- Boundary layer clouds in layered 

scenes 

Rain DSD parameters 
(D0 & Nw) in warm 
and cold rain 
Collision/coalesen
ce and 
evaporation 
processes 

  Assumptions of continuous 
precipitating through surface clutter 
zone 
 
Assumptions of continuous heavy 
precipitation when radar fully 
attenuated or dominated by multiple 
scattering 

Aerosols  Microphysica
l properties 
of HETEAC 
& HETEAC-
2 species 
Spatial 
smoothness 

  

 

2.5. Radiative flux and heating rates products 

2.5.1. CloudSat-CALIPSO Radiative Flux and Heating Rate Profiles 

A primary objective of cloud radar and lidar measurements is to characterize atmospheric 

aerosol and clouds with sufficient accuracy to estimate their influence on Earth’s radiative 

balance.  To these ends, two widely used datasets have been produced that couple CloudSat 

and CALIPSO retrieved products, along with ancillary temperature, humidity, and surface 

property information, to broadband radiative transfer models to estimate vertical profiles of 

radiative fluxes and heating rates.  Due to the integrating nature of these derived products, 

they provide an opportunity to assess the integrated by assessing the degree to which 

radiative closure can be achieved from the underlying atmospheric reconstructions. 

The CloudSat 2B-FLXHR-LIDAR product (Henderson et al., 2013) provides vertical profiles of 

shortwave (SW) and longwave (LW) radiative fluxes and heating rates. These calculations 

employ a two-stream plane-parallel doubling-adding radiative transfer model (Henderson et 

al., 2013; L’Ecuyer et al., 2008). The vertical profiles are derived from radar and lidar 

backscatter data from the CloudSat CPR and CALIOP aboard CALIPSO. European Centre 
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for Medium-Range Weather Forecasts (ECMWF) analyses provide ancillary temperature and 

humidity profiles. Spectral surface albedo and emissivity are assigned using the International 

Geosphere–Biosphere Programme (IGBP) global land surface classification (Henderson et 

al., 2013), supplemented by snow and sea ice measurements from the Near-real-time Ice and 

Snow Extent (NISE) dataset. 

Though it employs somewhat different ancillary inputs and methods, the CERES-CALIPSO-

CloudSat-MODIS (CCCM) algorithm also derives LW and SW radiative flux and heating rate 

profiles largely based on radar and lidar measurements from CloudSat and CALIPSO.  CCCM 

uses the enhanced CERES-MODIS cloud property retrieval algorithm that uses cloud altitude 

information from CALIOP and CPR to produce more reliable estimates of effective radius, 

effective diameter, and cloud optical depth and distribute them vertically using the lidar-derived 

vertical feature mask.  Temperature, humidity, and ozone profiles are specified based on the 

Goddard Earth Observing System (GEOS) Data Assimilation System reanalysis while spectral 

surface albedos for each IGBP surface type are specified using MODIS-derived albedo 

product.  LW and SW radiative flux and heating rate profiles at 137 atmospheric layers are 

computed from these inputs using the CERES two-stream flux model.  (Ham et al., 2017) 

provide a complete description of the CCCM approach, including the methods used to merge 

cloud and aerosol information obtained over the different MODIS, CALIPSO, and CloudSat 

fields of view. 

The radar and lidar data allow for a detailed representation of vertical cloud properties, 

enhancing the depiction of multilayered cloud structures and improving the assessment of 

cloud impacts on top-of-atmosphere (TOA) and surface radiation (Hang et al., 2019; L’Ecuyer 

et al., 2019). The FLXHR-LIDAR algorithm utilizes ice and liquid effective radius, ice water 

content (IWC), and liquid water content (LWC) from the CloudSat radar-only 2B-CWC-RO 

product. However, there are cases where the cloud layer is detected by CALIPSO alone or 

when cloud parameters are not available from the CWC-RO product. To address this, cloud 

properties for ice clouds detected by CALIPSO are derived from the CloudSat 2C-ICE product 

(Deng et al., 2013), and mixed-phase clouds are more explicitly represented (Tricht et al., 

2016), resulting in improved surface flux comparisons against ground sites in Greenland 

(McIlhattan et al., 2017). Additionally, auxiliary cloud information from MODIS is incorporated 

to constrain single-layer liquid cloud cases. The CloudSat 2B-FLXHR-LIDAR also provides 

aerosol information extracted from the CALIPSO 5-km aerosol layer product (Omar et al., 

2009; Young & Vaughan, 2009). Aerosol optical properties are assigned to each aerosol layer 

on the basis of the aerosol optical depth and mean radius from CALIPSO following the method 

of (D’Almeida et al., 1991) and (Deepak & Gerber, 1983), similar to the models used by the 

Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS) global transport model 

(Takemura et al., 2002). 

Radiative heating rate profiles derived from A-train data with 2B-FLXHR-LIDAR and CCCM 

have been compared by (Ham et al., 2017). Although the observations used to derive the 

heating rates are the same, namely observations taken by CoudSat, CALIPSO, and MODIS, 

heating rates of two data products [FLXHR-LIDAR (Henderson et al., 2013) and CCCM (Ham 

et al., 2022)] are significantly different over some regions. The difference is partly caused by 

the difference in cloud vertical profiles. CALIPSO and CloudSat are unable to provide a full 

vertical profile of deep convective clouds. In addition, some of the small boundary layer clouds 

(e.g. fair weather cumulus) are likely to be missed by CALIPSO due to cloud overlap and by 

CloudSat due to surface clutter (Marchand et al., 2008). These clouds introduce the 
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uncertainty in heating rate computations. While satellite-based active sensors tend to miss 

boundary layer clouds, ground-based active sensors tend to miss high cirrus (Thorsen et al., 

2011). 

Irradiance profiles measured by aircraft under clear-sky conditions have also been used to 

evaluate modeled irradiance and aerosol radiative effect profiles (e.g. (Fiebig et al., 2002; 

Redemann et al., 2000; Russell et al., 1997)). The focus of these evaluations is on aerosol 

optical properties used in the computations. While aerosol properties are relatively spatially 

uniform and do not change significantly with time during the aircraft measurements, cloud 

properties are highly inhomogeneous and change with time. Therefore, evaluating irradiance 

profiles under cloudy conditions by aircraft is more challenging compared to the evaluation of 

clear-sky irradiance profiles.  

While evaluating cloudy-sky irradiance profiles with aircraft observations is difficult, computed 

TOA and surface irradiances have been evaluated with observations. For TOA irradiance, 

computed irradiances are compared with irradiances derived from broadband radiance 

observations and angular distribution models (Ham et al., 2022; Kato et al., 2011). When 

NASA’s A-train observations are used for the evaluation, cloud properties over the CALIPSO 

and CloudSat ground track whose width is ~1.4 km do not cover the entire CERES footprint, 

which is approximately 20 km in diameter. When the ground-track within a CERES footprint is 

cloud free according to CALIPSO and CloudSat, the cloud fraction of the entire CERES 

footprint of approximately 3 out of 10 CERES footprints (i.e. 30%) can be up to 15% (Ham et 

al., 2015). The cloud contamination is mitigated by using 3D cloud fields constructed by the 

EarthCARE cloud-construction algorithm (Barker et al., 2011). The bias error of modeled 

radiances with a 3D Monte Carlo code decreases from 2.9 Wm-2 sr-1 to 2.1 Wm-2 sr-1 compared 

to observed CERES radiances when the 3D construction algorithm is used to obtain full 

footprint coverage of clouds (Ham et al., 2015). 

Surface observations have also been used to evaluate modeled surface irradiances. Because 

of nadir-view only observations by satellite-based active sensors, a 150 km radius centered at 

a ground site is used to collocate satellite and surface observations (e.g. (Kato et al., 2011)). 

Because the distance between the ground site and satellite observation is larger than 

evaluations of surface irradiances computed with imager derived cloud properties, the noise 

in the comparison tends to be larger. To reduce the noise, (Kato et al., 2011) use all CERES 

footprints within a 150 km radius from a surface site and average them. They also average 

irradiances observed at the site within 15 min from the overpass time. This averaging reduces 

the relative RMS difference to ~10% for downward longwave irradiances (Kato et al., 2011), 

which is comparable to the relative RMS difference of instantaneous downward longwave 

irradiance computed with retrieved cloud properties form passive sensors reported by (Scott 

et al., 2022).  

While TOA and surface observations can provide validation data for an extended time as long 

as satellite and surface observations continue, aircraft observations can only provide data for 

relatively short time periods. When Level 3 data products (gridded irradiances) need to be 

evaluated, multiple flights with well-coordinated flight patterns are needed to increase the 

statistical significance of the difference between modeled and observed irradiances (Smith et 

al., 2017). However, when irradiances are computed with a high resolution using active sensor 

derived cloud properties, achieving statistical significance with a few flights might be possible. 

An aircraft flies below or above clouds and measures downward or upward irradiances nearly 
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collocated with satellite observations by pyranometers and pyrgeometers. Because 

irradiances are modeled at ~1 km resolution over the ground track of the active sensors with 

a 3D radiative transfer model, many ~1 km irradiance comparisons are possible. This allows 

us to compare not just the mean irradiance over a flight-leg under the ground track of active 

sensors, but also compare the distribution of ~1 km irradiances.  

2.5.2. EarthCARE radiative products 

2.5.2.1. Introduction 

Following prior related satellite missions such as CERES, CloudSat, and CALIPSO, 

EarthCARE will routinely produce numerous shortwave (SW) and longwave (LW) radiative 

products. These products result from application of atmospheric radiative transfer (RT) models 

to geophysical properties inferred from EarthCARE observations, NWP model estimates, and 

auxiliary sources. Additionally, EarthCARE will employ observations of broadband (BB) 

radiances, made by its BB radiometer (BBR), and its RT model-generated counterparts to 

conduct a continuous radiative closure assessment of its inferred cloud and aerosol properties. 

As these inferences do not utilize BBR data, with some BBR measurements stemming from 

the fixed nadir view of its other sensors, its radiative assessments have the potential to form 

a stringent test of the chain of processes that culminate at the mission’s objective of providing 

cloud and aerosol properties well enough that when used in RT models, estimated top-of-

atmosphere (TOA) SW and LW fluxes are, more often than not, within 10 W m-2 of estimates 

obtained from BBR data. 

There are several variables related to EarthCARE’s RT modeling effort that will be in need of 

verification. These include data and assumptions that will go into the RT models as well as 

their outputs. The following sections give brief overviews of these variables. 

2.5.2.2. Overview 

Geophysical variables retrieved from observations made by EarthCARE’s lidar (ATLID), cloud-

profiling radar (CPR), or multi-spectral imager (MSI) sensors are referred to as L2 products. 

Products that arise from a single sensor’s data are designated as L2a, while all others are L2b 

products. Most L2 products are reported on the Joint Standard Grid (JSG), which has 

horizontal resolution of ~1 km and extends across-track 35 km to the right and 115 km to the 

left, relative to the satellite’s motion vector, thereby covering the MSI’s swath. Vertically-

resolved L2 variables, defined from nadir observations, are at 0.1 km-thick layers extending 

from surface to 30 km. Together they form the L2-plane.  

Figure 2.7 summarizes the flow of products leading to, and including, EarthCARE’s ex situ 

radiative closure experiment. It begins with L2b variables and auxiliary information, from NWP 

model reanalysis and climatological statistics (Qu, Donovan, et al., 2023), being used by the 

3D Scene Construction Algorithm (SCA) (Barker et al., 2011; Qu, Barker, et al., 2023).  

Information from the SCA gets ingested into various forward radiative transfer models (Cole 

et al., 2023) that predict profiles of BB radiative fluxes as well as upwelling BB radiances at 

TOA, commensurate with observations made by the BBR. The essence of the closure 

assessment, which marks the end of version 1 of EarthCARE’s production chain, is 

comparison of TOA pseudo-fluxes derived from modeled and measured radiances and 

averaged over domains D that measure naccess JSG pixels along-track by 2maccess+1  JSG 



82 
 

pixels across-track half-width. The current plan (Qu, Barker, et al., 2023) is naccess = 21 and 

maccess = 2, implying that closure assessments are done for D measuring ~ 5x 21 km, or ~100 

km2, which follows from BBR development guidelines. 

 

Figure 2.7 Flowchart shows EarthCARE’s RT effort. Version 1 (ver. = 1) represents EarthCARE’s initial 
processing plan. It terminates unconditionally after comparing modeled to measured BBR quantities 
and reporting the likelihood of their differences being within  W m-2. For subsequent processings (ver. 
> 1), if modeled and measured BBR quantities compare unsatisfactorily, potentially all steps in the 
processing chain will be interrogated and possibly adjusted until some level of satisfaction is reached. 

 

2.5.2.3. 3D Scene Construction Algorithm (SCA) 

In light of EarthCARE’s ambitious goal of limiting differences between measured and modeled 

TOA fluxes to ± 10 W m-2 when averaged over “assessment domains”, the success of its 

radiative closure programme depends on reducing errors and uncertainties in: BBR 

measurements; variables needed by RT models that are not provided by EarthCARE 

observations; and RT models. This includes issues of observational geometry facing use of 

BBR data for closure assessment. First, L2-retrieved profiles are ~1 km in diameter, while the 

BBR was designed to perform best for footprints of ~10 x 10 km. For this configuration, fluxes 

and radiances computed for sequences of retrieved profiles contribute only ~10% to BBR 

pixels. Second, at only ~1 km wide, net horizontal fluxes for each retrieved column, and 

sequences of them (Barker & Li, 1997; Marshak et al., 1998). This requires that 3D RT models, 

as opposed to their ubiquitous 1D counterparts, are needed for EarthCARE’s radiative closure 

assessment (Illingworth et al., 2015). Hence the need for 3D arrays of data that describe the 

Earth-atmosphere system adjacent to the ~1 km-wide retrieved L2-cross-section. 

Fortunately, point-spread function widths of BBR native radiances are ~0.7 km, and this offers 

much flexibility to the design of the closure assessment (e.g., (Tornow et al., 2015)). The 
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extreme case is to use a single along-track line of BBR radiances that overlap the ~1 km wide 

curtain of L2-retrieved profiles, referred to hereinafter as the L2-plane. Presumably, however, 

this would degrade BBR performance and thus weaken closure assessments. Alternatively, 

one could attempt an across-track “broadening” of the L2-plane so as to cover as many BBR 

native radiances as necessary. Regardless of the route taken and the size of domains over 

which closure assessments are performed, there is constant lateral flow of photons both within 

assessment domains and between assessment domains and their adjacent areas. Taking 

these issues together, it was decided that EarthCARE utilize 3D RT models as much as 

possible (Illingworth et al., 2015). 

The core of the SCA is passive narrowband radiance-matching, has been presented, 

assessed, and applied elsewhere (Barker et al., 2011; Qu, Barker, et al., 2023; Sun et al., 

2015). Using MSI radiances, the SCA associates an off-nadir JSG pixel with its closest 

matching nadir pixel. L2b profiles, and surface properties, associated with the donor nadir pixel 

get replicated at the off-nadir recipient to form a 3D surface-atmosphere system around, and 

consisting entirely of data in, the L2-plane. 

Thus far, the SCA’s reconstructed radiances have been assessed with MODIS observations 

and model-generated radiances. The bigger challenge, however, is verification of its 3D 

geophysical fields. (Barker et al., 2021) performed a partial verification using an entirely virtual 

system, but as yet this portion of the SCA has not been assessed with real observations. 

Suggestions for verification tests include collocation of passive satellite imagery with surface-

based scanning active sensors and/or arrays of surface-based radiometers. 

2.5.2.4. RT model input requirements 

Following previous satellite missions (e.g., (Kato et al., 2013; L’Ecuyer et al., 2008)), 

EarthCARE computes SW and LW BB flux and HR profiles by applying 1D RT models to each 

JSG profile in the L2-plane. It makes a step forward, however, with its operational use of BB 

3D RT models for both SW and LW. 

The 3D RT solvers are Monte Carlo solutions of the plane-parallel 3D RT equation. The SW 

model produces profiles of fluxes and HRs, and TOA BB radiances commensurate with the 

BBR’s three telescopes. The LW model computes the same radiances along with an upwelling 

flux at a “reference height” as defined by Angular Distribution Models (ADMs) (see (Velázquez-

Blázquez, Baudrez, Clerbaux, & Domenech, 2024)). All 3D RT computations are done for 

“radiation computation domains” that consist of a closure assessment domain and surrounding 

buffer-zones that marginalize and minimize impacts due to use of cyclic boundary conditions.  

RT model inputs 

The requirements of EarthCARE’s RT models are like those of all other multi-layer RT models. 

They need, at as high spatial and temporal resolution as possible, profiles of atmospheric 

pressure, temperature, humidity, and various trace gases. These profiles will come from NWP 

model reanalyses via X-MET process files and climatological assumptions of gaseous 

concentrations. These quantities are assumed, in practice, to be errorless, which is, as 

everyone knows, untrue. Ideally, they should be quantified with some confidence and used to 

help estimate uncertainties in RT modeled radiances and fluxes, for these uncertainties will 

have an impact on the quality of radiative closure assessments. 
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Additionally, all RT models surface optical properties are required. Ideally, this includes 

spectral values of albedo and emissivity, as well as associated bidirectional reflection 

distribution functions (BRDFs). For open water surfaces with surface winds, (Hansen et al., 

1983) definition of albedo is assumed to be spectrally-invariant, while (Huang et al., 2016) 

formulation of emissivity is used. SW BRDFs are handled by (Cox & Munk, 1956) ergodic 

wave parametrization. 

For snow-free land, SW surface albedos are calculated from climatological BRDF parameters 

for 16-day periods based on 12 years of MODIS MCD43GF data (Schaaf et al., 2002). 

Terrestrial snow albedos for the same spectral bands are based on (Moody et al., 2007) whose 

calculations were, in turn, based on climatological statistics of Northern Hemisphere white-sky 

albedos for 16 International Geosphere–Biosphere Program (IGBP) ecosystem classes with 

accompanying snow. For ice-covered land or water surfaces, BB averaged albedos are 

provided by X-MET. While the SW 3D RT model has the provision to use (Rahman et al., 

1993) land surface BRDF model, global spectral parameters were deemed to be too lacking 

for operational use. Hence, for all land surfaces, the Lambertian assumption is used. 

Where possible, 1D and 3D RT models use the same atmospheric and surface optical 

properties. Optical properties for pristine atmospheres, free of aerosol and cloud, come from 

the RRTMG models (Iacono et al., 2008; Morcrette et al., 2008). The default is for 1D and 3D 

RT models to use ACM-CAP profiles of retrieved cloud and aerosol properties. Otherwise, 

L2a-composite profiles are used (see (Cole et al., 2023)). The 3D RT solvers use detailed 

representations of all scattering phase functions while the 1D solvers use just the 

corresponding asymmetry parameters. The other cloud and aerosol optical properties are 

used by both models. 

2.5.2.5. RT model outputs 

An obvious set of predicted variables that could be verified are surface irradiances. These 

quantities arise from entirely different photon pathlength and scattering distributions than 

upwelling quantities at TOA, which are all that a satellite works with. The following surface 

variables should be considered: 

 direct-beam BB SW irradiance (all-sky conditions for both 1D and 3D RT models) 

 

 diffuse-beam BB SW irradiance (all-sky conditions for both 1D and 3D RT models) 

 

 down-welling BB SW irradiance (all-sky conditions for both 1D and 3D RT models) 

 

 down-welling BB LW irradiance (all-sky conditions for 1D RT models) 

The more challenging verification measurements to make are from an elevated platform, which 

is likely to be aircraft, but could be balloon or tower as well. The obvious measurements are 

BB up- and down-welling SW and LW irradiances at some altitude. The obvious location to 

make these observations is along paths that under fly EarthCARE; i.e., along the L2-plane. A 

potential useful test of the SCA might be to fly parallel to, but at some distance removed from, 

the L2-plane and make up- and down-welling irradiance measurement. While EarthCARE 

does not archive these quantities, they could be produced easily using 1D RT results along 

the L2-plane and indices that come from the SCA. Doing this for the SW 3D RT and 3D LW 



85 
 

model, however, would be more complicated, and requiring specialized versions of the ACM-

RT processor. Naturally, when making observations such as these an (array of) aircraft would 

also be equipped with other instruments ranging from remote sensors, to in situ particle 

samples, to extinctiometers. 

At this point, it is difficult to see how meaningful and reliable “observations” of flux convergence 

(i.e., radiative heating rates) can be made. As such, reference here is limited to level fluxes. 

2.5.2.6. Radiative closure assessment 

The integrity of a radiative closure assessment rests much on reliable quantification of 

uncertainties associated with both modeled and measured variables that are to be compared. 

Regarding uncertainties for modeled radiances and fluxes, the main concern is provision of 

uncertainties for input variables be they geophysical retrievals or state variables provided by 

NWP reanalyses or climatological records. The obvious way to estimate uncertainties for 

retrieved variables is via multiple realizations of retrieval algorithms subject to ranges of 

assumptions, parameter settings, and L1 measurement uncertainties. These coupled with 

plausible ranges of estimated state variable would be ingested into the RT models resulting in 

distributions of radiances and fluxes. 

When closure assessments are confined to L1-level radiances, measurement uncertainties 

will likely be small. This is why EarthCARE’s assessments are based on summations of up to 

three BBR radiances, using the same summation weights for both measured and modeled 

radiances (i.e., rudimentary yet straightforward ADMs) (Barker et al., 2021). If, however, one 

intends to perform assessments using estimates of TOA fluxes, additional uncertainties enter 

the fray via ADMs (Velázquez-Blázquez, Baudrez, Clerbaux, & Domenech, 2024; Velázquez-

Blázquez, Baudrez, Clerbaux, Domenech, et al., 2024), as well as definition of upwelling flux 

at TOA. Clearly, such a flux is not meant to be that that would be measured by a down-facing 

pyranometer for its view would vastly exceed that of the small assessment domain. On the 

other hand, definition of flux at the top of a small narrow column is rooted in notions of 1D RT, 

but EarthCARE has decidedly moved away from that paradigm. 

While there are no intentions to perform radiative closure assessments using measurements 

other than those made on EarthCARE, EarthCARE’s RT models could be altered easily to 

produce estimates of radiances other than that align with the BBR. For instance, more often 

than not, EarthCARE L2-columns are in the field-of-view of other satellites, most notably 

geostationary satellites. Generally, their view(s) of an L2-column can be expected to differ 

radically from the BBR’s. As such, comparing their measured radiances to corresponding 

estimates from EarthCARE’s altered RT models represents an additional constraint on closure 

assessment in which new (radiative) information gets utilized. The same goes for airborne or 

surface-based radiometers. As they stand, EarthCARE’s RT models do not produce radiances 

at these levels, but they could with minor modifications. A point to remember is that photon 

path length and number of scattering event distributions differ greatly between transmitted and 

reflected SW radiation and downwelling LW radiation at the surface and upwelling LW 

radiation at TOA. Thus, closure assessments of satellite-based retrievals performed with 

quantities measured at the surface can be very powerful; notwithstanding problems associated 

with potentially poor sample sizes.  
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2.6. Conclusions 

Based on the discussions in previous sections, this section summarizes the main suggestions 

and recommendations from developers’ experiences, along with the anticipated validation 

needs for new mission products, particularly focusing on profile validation.products validation. 

The importance of sensor calibration reflected in Level 1 products has been highlighted for all 

the missions. Different missions and instruments have used different approaches. Methods 

described in previous sections include monitoring satellite-borne sensors (active and passive) 

and internal parameters using internal references. Calibration verification includes end-to-end 

methods, and typically applied are generally: 

a) Measurements collected in the presence of favorable conditions of stable natural targets, 

like cirrus clouds, or reference surfaces. Observations can be planned to monitor calibration 

over time and, in some cases, latitude dependency. 

b) Comparison with measurements from ground-based profiling instruments (as in (Pauly et 

al., 2019) for CATS), possibly (but not necessarily) at similar wavelengths to the satellite-borne 

instruments. This assumes that the ground instrument is properly calibrated, in 

((Chandrasekar et al., 2015)) for ground-based, scanning radars used for GPM DPR product 

validation. 

c) Underflights to collect coincident measurements obtained with wavelengths comparable (or 

not) with that of satellite-borne instrument (e.g., the CALIPS-CloudSat Validation experiment 

with coordinated underflights but many others are mentioned in the chapters) are considered 

important and effective for validation. 

d) Active calibrators (e.g., for GPM DPR and EarthCARE CPR). 

e) Self-consistency checks among measured parameters. 

Particular attention is given to critical behaviors of instruments that critically impact the 

retrievals, such as the ATLID spectral cross talk between the Mie and the Rayleigh channel 

that is monitored from the impact it has on specific measurements. A specific Level 1 product 

has been designed to facilitate its monitoring. 

Concerning L2 products, they are typically obtained through complex processing, like those 

described by the flow charts in figures 2.1, 2.5, 2.6, 2.7. A common first step of L2 processing 

is the discrimination of signal from noise in measurements available from the L1 products. 

Parameters of thes module, specific for each mission/sensor, are determined in various ways, 

including statistical analysis or simulated scenes (Donovan, 2003). This very important step 

affects all subsequent processing, implying the correct detection and delineation of layers of 

clouds and aerosols. 

Measurements from the ground are important in validating the determination of layers in 

profiles, whether they are clouds or aerosols. They can be conducted not necessarily using 

the same wavelength as the satellite-borne instrument, have been used, since using multiple 

wavelengths can help identify more features of the scene observed from the satellite than a 

single instrument (see considerations in sections 2.3.3.1 and 2.3.2.2) and, depending on the 

achievable resolution, a more precise delineation of boundaries of detected layers. 
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A common product of atmospheric profiling missions is the classification that can be either a 

cloud classification (e.g., liquid or ice, convective/stratiform) or an aerosol typing. In this case, 

in situ measurements from underflights have been used along with statistics provided by 

measurement networks as in (Sato & Okamoto, 2006). In the experience of CALIPSO, ground-

based Raman lidar and AERONET classification products have been beneficial for statistical 

validation of aerosol typing. 

For validation of profiles of cloud and precipitation, the availability of reliable profiles of particle 

size distribution seems essential to validate most of the products, whether they are profiling 

or columnar. In addition to airborne campaigns, such profiles can be achieved by ground-

based Doppler profilers and/or multi-frequency radar profilers. However, since one of the key 

factors affecting the uncertainties of radar products is the attenuation, especially at W-band 

(that of CloudSat and EarthCARE CPR), the use, in ground-based radars, of frequencies less 

prone to attenuation than W, has also been proposed (see section 2.3.3.2.2 where the use of 

K-band profilers is mentioned for EarthCARE in Antarctica). However, chances of overpasses 

in the presence of clouds and precipitation over fixed installations are not so many and lack of 

colocated measurements can be mitigated using networked profilers and operational, 

scanning dual polarization weather radar, massively used in the validation of GPM both for 

validating precipitation microphysics products and their compliance with mission requirements 

and classification (see section 2.3.2.2 on GPM validation). It should be noted that the problem 

of obtaining coincident measurements even from a network of lidar was also highlighted for 

Aeolus validation of aerosol/backscatter extinction profiles. (see 2.2.3) 

A recent novelty from space missions is the Doppler capability, present in recent missions 

Aeolus (the Atmospheric Laser Doppler Instrument ALADIN) and EarthCARE with the Doppler 

Cloud Profiling Radar. Co-located and independent measurements were used for validation 

of Aeolus wind products (section 2.3.3), like super pressure balloons, atmospheric motion 

vectors from geostationary satellites, although their limitation is validating vertical profiles. 

Useful indications for Aeolus were obtained using remote sensing instruments research 

aircrafts, but useful feedback was obtained also by comparing winds from ECMWF converted 

into ALADIN observations.  

The new Doppler capabilities and products of EarthCARE CPR deserve novel approaches. A 

combination of two Doppler radars operating at 94 GHz operating in the supersite of Koganei 

(Japan) has been proposed (see section 2.3.3.2.2). One radar has a sensitivity higher than 

EarthCARE CPR and the other has scanning capability to detect the possible presence of 

NUBF. Moreover, VHF profilers allow separating the contribution of air motion from the 

sedimentation velocity. As previously mentioned, chances for coincident measurements in the 

presence of clouds or precipitation are not too many and therefore, more accessible and 

available radars at frequencies different from 94 GHz, including those operational of weather 

services can be proposed also for Doppler products. 

This section underscores the significance of the experiences discussed, particularly in relation 

to the development of robust and efficient validation activities. These activities are crucial for 

gathering valuable information that can enhance the retrieval algorithms integral to Level 2 

products. Despite the challenges and complexities associated with these activities, their 

importance cannot be overstated. The results derived from validation activities play a pivotal 

role in refining satellite products, further emphasizing the necessity of these validation 

endeavors. 
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3. Chapter 3: Survey of validation measurements 

Plain language summary:  

This chapter provides an overview of instruments and systems of instruments (hereafter 

“measurement systems”) that are available for the validation of spaceborne atmospheric 

profiling instruments. We start with a description of instrument types, broken down by 

application, i.e., aerosol, cloud, and precipitation measurements (3.2). We then provide 

surveys of specific instruments and instrument suites that are available for validation of 

measurements in each of the three applications, with discussions separated between ground-

based, airborne, and space-borne systems (3.3). This subchapter includes a list of airborne 

platforms that have been used extensively for validation purposes. The ground-based and 

airborne categories are further broken down into remote sensing and in-situ instruments, while 

the spaceborne remote sensing category discusses primarily intercalibration approaches. 

After the instrument survey, we discuss the validation measurements in their ability to 

represent the spatiotemporal variability of validation scenes (3.4), followed by a discussion of 

measurement quality (3.5), which we define primarily as measurement uncertainty, sensitivity, 

and quality assurance protocols. We proceed to discuss methodologies for remote sensing 

system synergy, i.e., the opportunity to combine different data sources to improve the ability 

to address a validation need (3.6). Conceptual recommendations for how to use the various 

validation measurements described in this chapter will be provided in Chapters 5, 6, and 7.       

3.1. Introduction 

In this chapter, we survey the tools available to validate the vertical profiles of aerosol, cloud, 

and precipitation properties retrieved from spaceborne sensors. Validation of observations 

from active spaceborne remote sensing measurements is severely challenged by their 

typically small spatial footprints near the satellite ground-track. For aerosols, clouds, and 

precipitation whole properties vary greatly in space and time, this means that validation 

measurements have to be carefully coordinated to be meaningfully interpreted for the purpose 

of satellite measurement validation. We discuss the instruments available for such validation 

efforts and provide examples of previous successful validation exercises. In addition to the 

instruments themselves, we provide surveys of the platforms that these instruments have been 

deployed on. We discuss in some detail the requirement to characterize the spatiotemporal 

variability of the geophysical variables, and how that variability needs to be incorporated into 

the validation studies themselves. Inherently, the diversity of tools discussed here varies 

greatly in their spatial resolution and in their ability to characterize the spatiotemporal variability 

of observables. Figure 3.1 shows a schematic of the trade space between measurement 

resolution and spatiotemporal representativeness for the instrument and platform 

combinations discussed in this chapter. 
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Figure 3.1. Trade-space between measurement resolution and spatiotemporal representativeness for 
a variety of instrument type and platform combinations discussed in this chapter.  

 

3.2. Types of validation instruments 

3.2.1. Lidar 

Elastic backscatter lidar / Ceilometer 

The simplest systems are the so-called elastic backscatter lidars, measuring the attenuated 

backscattered signal at one or more wavelengths. The relative contribution of molecular 

scattering processes to the backscatter signal depends on the wavelength, with a higher 

contribution at short wavelengths and vice versa. Thus, measurements at longer wavelengths 

are well suited for detecting aerosols and cloud particles and determining their layer 

boundaries, while shorter wavelengths may be useful for particle type characterization. The 

signal scattered from molecules in aerosol and cloud-free regions is used as a reference for 

the Fernald/Klett (Fernald, 1984; Klett, 1985) lidar inversion to derive extinction and 

backscatter profiles. For longer wavelengths, a calibration method using returns from 

stratocumulus clouds has been proposed (O’Connor et al., 2004). For all methods, the 

extinction-to-backscatter ratio (lidar ratio) has to be assumed or derived from additional 

auxiliary data, and this introduces uncertainties in the derived parameters. We note that the 

lidar ratio assumption can be better constrained if the aerosol optical depth of the aerosol 

layers is known a priori, for example from sun photometric observations (Marenco et al., 1997; 

Takamura et al., 1994) or from satellite instruments (Burton et al., 2010; Painemal et al., 2019); 

the lidar ratio can be constrained using lidar observations alone where molecular signals can 

be clearly measured below and above an aerosol layer (Di Girolamo et al., 1994). Among the 

elastic backscatter lidars, the ceilometers represent a subspecies: they are low-power, simple 

and robust, fully automated systems, usually measuring at longer wavelengths. Ceilometers 

are often employed in networks to determine aerosol and cloud layer boundaries on national 

and continental scales.  
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Raman lidar 

The aerosol Raman lidar technique makes use of the inelastic scattering by air molecules, 

adding an additional detection channel to the elastic one. In this way, it enables the 

measurement of the extinction coefficient independently (Ansmann et al., 1992). Combining 

the elastically backscattered and the inelastically backscattered signals, one can also derive 

the lidar ratio and the backscatter coefficient. In most systems, the vibrational-rotational 

Raman technique is used. This technique is limited by the solar background, and often this 

results in a limitation to nighttime observations, whereas the pure rotational Raman technique 

(e.g., (Veselovskii et al., 2015)) is able to deliver the extinction coefficient at daytime as well, 

at least over a somewhat larger height range. The DOE ARM program operates vibrational-

rotational Raman lidars that provide daytime and nighttime measurements of water vapor and 

aerosol (e.g.(Thorsen et al., 2015; Turner et al., 2002)). As the Raman lidar technique exploits 

the scattering by molecules, most systems are deployed at shorter wavelengths, with the 

exception of (Haarig et al., 2016), who reported rotational Raman measurements at 1064 nm 

as well.  Multiple wavelengths (e.g. 355 nm and 532 nm) can be used to provide information 

on the backscatter and extinction wavelength dependence (i.e. Angström exponent and color 

ratio).  

High-Spectral-Resolution Lidar (HSRL) 

The high-spectral-resolution lidar technique (Shipley et al., 1983) exploits the difference in 

Doppler broadening of backscattered light by particles and molecules (quasi-elastic 

scattering). Through optical filtering, the molecular- and particle-dominated backscattered 

signal can be separately determined and thus the extinction coefficient and backscatter 

coefficient (and thus the lidar ratio) can be directly derived. Conceptually, this is similar to the 

aerosol Raman technique. The advantage of HSRL over Raman lidar is the better signal-to-

noise ratio, making it more suitable when the limitations due to large background signals are 

critical (daytime observations or fast-moving platforms). Continuous ground-based 

observations with HSRL systems are rare, due to the large effort in maintaining stable 

instrument conditions (e.g., temperature of the laser). The HSRL technique is widely used for 

airborne (e.g., (Esselborn et al., 2008; Hair et al., 2008)) and spaceborne applications 

(Ansmann et al., 2007; do Carmo et al., 2021; Liu et al., 2024; Wehr et al., 2023) because a 

short signal averaging period is sufficient to retrieve high-quality measurements. Adding a 

second (or more) wavelength in a multiwavelength HSR lidar enables the determination of the 

extinction and backscatter Angström exponents and the color ratio (Ferrare et al., 2023; Gross 

et al., 2013).  

Polarization lidar 

A polarization lidar is an elastic backscatter, Raman, or HSR lidar with the additional capability 

of measuring the cross-polarized (depolarised) elastic return signal. The depolarisation signal 

helps distinguish non-spherical atmospheric particles such as mineral dust, volcanic ash, and 

ice crystals from spherical particles like sulfate aerosols, pollution, and water droplets. From 

the volume depolarization ratio and the backscatter coefficient, the particle depolarization ratio 

can be determined. Calibration of the polarization channels is crucial for retrieving high-quality 

observations (Freudenthaler, 2016; Freudenthaler et al., 2009). Polarization-sensitive lidar 

measurements can be performed at different wavelengths (e.g. (Burton et al., 2015; Gross, 
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Tesche, et al., 2011)), but also using different polarization states, i.e.circular or linear 

polarization (Sassen, 2003). 

Lidar capability combinations and information content 

The combination of different lidar techniques (e.g. multi-wavelength lidar and polarization 

sensitive high spectral resolution or Raman lidar) allows the determination of higher level 

products, e.g., the Angström exponent and color ratio and thus information on the size range 

(coarse vs. fine) of the measured particles or hydrometers. Combining information about the 

lidar ratio and the depolarization ratio allows a first discrimination between aerosol types 

(Burton et al., 2012; Floutsi et al., 2024; Gross, Tesche, et al., 2011; Wandinger, Floutsi, et 

al., 2023b). The combination with multi-wavelength information further refines this aerosol 

typing (Gross et al., 2013). The combining information about the depolarization, color ratio, 

and lidar ratio also allows the estimation of aerosol components (Nishizawa et al., 2007, 2011; 

Sugimoto et al., 2003). In specific cases, multi-wavelength depolarization measurements can 

even allow inferences about the aerosol lifecycle (Gross et al., 2013; Gross, Freudenthaler, 

Schepanski, et al., 2015; Haarig et al., 2018) as well as different aerosol mixtures (Gross et 

al., 2016; Gross, Tesche, et al., 2011; Tesche et al., 2009). 

Table 3.1. Derived quantities and geophysical variables observed by different types of lidars 

Derived Quantities / 

Geophysical Variables 

Elastic 

backscatter lidar 

Raman 

lidar 
HSR lidar 

Polarization- 

sensitive lidar 

Layer heights X X X   

Backscatter coefficient (X)4 X2 X   

Extinction coefficient  (X)4 X2 X   

Lidar ratio   X2 X   

Depolarization ratio       X 

Ångström exponent (X1)  x1 x1   

Colour ratio (X1)  x1 x1   

Aerosol optical depth  (X)4 X X   

Cirrus optical depth  (X)4 X X  

Aerosol typing  X3 X3 X 

1for multiwavelength option only, 2mostly restricted for nighttime, 3in combination with polarization-sensitive 

measurements, 4quantity retrievable with additional assumptions on the atmospheric layers. 

 

3.2.2. Radar   

Radars that are used in the atmospheric sciences and meteorology can be divided into two 

types: weather (precipitation) and cloud radars. Weather radars operate at cm-wavelengths, 

and are intended to provide large-scale observations, with a maximum range of a few hundred 

kilometers, of cloud and precipitation systems. The majority of weather radars are part of 

national weather radar networks. Cloud radars operate at mm-wavelengths and are intended 
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for relatively short-range observations: the typical range is about 10-20 km. Given the 

wavelength, cloud radar systems are smaller than precipitation radars and are ideally suited 

for airborne and spaceborne deployments. 

Table 3.2. Overview of different types of radars 

Type of radar Frequency / 

GHz 

Wavelength / 

cm 

Liquid 

clouds 

Ice clouds 

& snow 

Rain 

Weather radars 

S 2 --— 4  7.5 — 15 — + ++ 

C 5 — 8  3.75 — 7.5 — + ++ 

X 8 — 12  2.5 — 3.75 — + ++ 

Cloud radars 

Ka 27 — 40  0.75 — 1.11 + ++ + 

W 75 – 110  0.273 — 0.4 + ++ + 

G 110 — 300  0.273 — 0.091 -/+ ++ — 

Other types  

Ku  12 — 18 2.5 — 1.67 — + + 

K-band profilers (aka 
MRR*) 

24.23 1.23 — + + 

cm-wavelength profilers   — + ++ 

Multi-frequency systems 
(e.g. Ku/Ka, Ka/W, cm- 
/mm- wavelengths) 

  ++ ++ ++ 

*Micro Rain Radar 

 

Precipitation (weather) radars   

The majority of weather radars operate at either S or C-bands, which correspond to 

wavelengths of 10 and 5 cm, respectively. In the last two decades, X-band weather radars 

have been more frequently used for weather observations. Typical weather radar 

measurements include radar reflectivity factor and Doppler velocity. The dual-polarization 

radar variables, such as differential reflectivity, co-polar correlation coefficient, and specific 

differential phase, significantly improve observations of precipitation microphysics, 

precipitation evolution, hydrometeor classification, and quantitative precipitation estimation. 

They are used to improve the quality of radar observations (Bringi & Chandrasekar, 2001). It 

was shown that such observations provide valuable data for the validation of satellite-based 

precipitation products (e.g. (Chandrasekar et al., 2008)). 

Typical weather radar observations are collected using a set of plan position indicator (PPI) 

scans carried out at different elevation angles, normally ranging between 0.5 and 20 deg. 
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Research radars also perform range-height indicator (RHI) scans, which have better vertical 

resolution. The sensitivity of weather radars usually ranges between -35 and -50 dBZ at 1 km 

distance. These sensitivity values are comparable to what is achieved by cloud radars, but 

other limiting factors affect the applicability of weather radars for cloud studies (Kollias et al., 

2007; Maesaka, 2018). At short ranges, weather radars tend to have larger clutter 

contamination than cloud radars (Kollias et al., 2007). Bragg scatter, visible in cm-wavelength 

radar observations (10 dBZe with an S-band radar, 0 dBZe with a C-band radar, and −10 dBZe 

with an X-band radar), can mask shallow liquid clouds (Knight & Miller, 1993).  

Cloud radars 

Cloud radars are mm-wave radars that typically operate in Ka or W-bands (Kollias et al., 2007). 

Recently, cloud radars operating in G-band were introduced (Battaglia, Tanelli, et al., 2014). 

These new radar systems show promise in improving the characterization of ice clouds 

(Cooper et al., 2021). Given the higher frequencies of the cloud radars as compared to a 

typical precipitation radar, cloud radars tend to be more sensitive. Their sensitivity is ideally in 

the order of -50 dBZ at 1 km. They also provide a higher spatial resolution thanks to a narrower 

beam width for a given aperture. Note that thanks to their sensitivity these radars are also well 

suited for studying weak precipitation events, such as drizzle and snow. The downside of the 

higher radar frequency is that the cloud radar observations are more affected by attenuation 

by water vapor, clouds, and precipitation (e.g. (Tetoni et al., 2021)), which tend to limit the 

maximum range. 

The radar reflectivity factor is the main radar variable used for the retrieval of cloud and 

precipitation properties (e.g. (Tetoni et al., 2022)). The reflectivity factor depends on the size 

distribution, shape, and dielectric properties of observed hydrometeors. Sizes of observed 

hydrometeors range from around 5-10 𝛍m for cloud water droplets, 100 𝛍m - 3 mm for ice 

crystals, 0.1-8 mm for raindrops, and 0.5 mm - 5 cm for snowflake aggregates. The range of 

sizes implies that for some hydrometeors non-Rayleigh scattering effects (and sometimes 

multiple scattering) should be taken into account.  

The difference in scattering regimes provides an opportunity for retrieving effective particle 

size by utilizing multifrequency observations (e.g. (Matrosov, 2011)). In such observations, 

one frequency is selected such that the observed particles fall within the Rayleigh scattering 

size range and the other frequency is higher where non-Rayleigh scattering occurs. In addition 

to using differences in scattering, differences in path attenuation between several frequencies 

can be used to improve retrievals of cloud microphysical properties (Hogan, 1998). 

Dual-polarization radar  

Dual-polarization radar observations are valuable for precipitation microphysics studies and 

for quantitative precipitation estimation (Chen et al., 2017). They provide information about 

hydrometeor shapes, sizes, composition, and phase (liquid, ice) by interpreting radar waves 

probing clouds and precipitation with two orthogonal polarizations (Tetoni et al., 2021). For 

example, in the case of hydrometeors in the liquid phase, the value of dual-polarization 

technology builds on the relationship between the size and the shape of raindrops. Raindrop 

size changes are more prevalent in the horizontal dimension, i.e. raindrops become more 

oblate as they become larger. Common dual-polarization variables include the radar 

reflectivity factor at horizontal polarization (𝑍), the differential reflectivity (𝑍DR), the specific 
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differential phase shift (𝐾DP), and the co-polar correlation coefficient (𝜌HV). 𝑍 is a size-

sensitive radar product proportional to the returned signal power, which is also proportional to 

the sixth power of the horizontal dimension of particle 𝐷6 when Rayleigh scattering applies as 

illuminated particles are small compared to the radar wavelength. In the radar sampling 

volume, 𝑍 is proportional to the particle number density and measured as the sum of all 

scattering particles. 𝑍DR is the difference (in logarithmic scale) between the returned powers 

of the vertically and horizontally polarized radar waves, and it provides an indication of the 

particles’ shapes and sizes. 𝐾DP is the difference between the phases of the vertically and 

horizontally polarized radar waves, and it is proportional to the concentration of nonspherical 

(large) particles. 𝜌HV is the correlation between the horizontally and vertically polarized 

received pulses and a measure of the homogeneity in size and shape of hydrometeors within 

a radar resolution volume. 𝑍, 𝑍DR, and 𝐾DP are used for applications such as hydrometeor 

classification, particle size distribution estimation, and quantitative precipitation estimation. In 

addition to being used for hydrometeor classification, 𝜌HV is commonly used for quality control 

of dual-polarization radar data. 

Other radar types 

There are a number of radars that do not fall within the above-specified categories but are 

used for cloud and precipitation studies. These radars are wind profilers (Williams et al., 1995), 

and vertically pointing and scanning radars operating in various radar bands that are used for 

cloud and precipitation studies. These radars include vertically pointing cm-wavelength radars 

typically operating in X- or C- bands. Since the launch of TRMM and GPM 

(https://gpm.nasa.gov/missions/GPM), the Ku-band radars have also been used. Relatively 

inexpensive micro rain radars (MRR), which operate at 24 GHz, have shown to be very 

valuable for precipitation studies by providing high-resolution vertical profiles of reflectivity and 

Doppler velocity.  

3.2.3. Other remote sensing instruments and techniques 

Spectroradiometers 

Spaceborne imaging spectroradiometer retrievals can provide constraints useful in the context 

of validating profiling instruments, e.g., column AOD measurements that can be used to 

validate vertically-integrated aerosol extinction profiles from lidar. They provide important 

constraints for retrieving column average lidar ratios that can further be used to improve 

backscatter lidar retrievals of aerosol extinction profiles (Burton et al., 2010). AOD derived 

from the passive instruments may be more accurate than the AOD derived from the lidar, but 

in other cases, the lidar retrievals of AOD using the HSRL molecular channel are likely to be 

more accurate than spectroradiometer retrievals of AOT over land. Cloud top height and cloud 

optical thickness (COT) retrieved from these instruments can also be used to validate 

retrievals of these parameters from spaceborne lidar and radar. However, the cloud top height 

derived from spectroradiometers is a ‘radiative height’ and in many cases not comparable with 

the geometric cloud top height measurements, especially for semi-transparent clouds. Thus 

its use has to be handled with care for validation purposes (Haarig et al., 2023). Short-wave 

spectroradiometers measure TOA reflectances at multiple wavelengths. Clouds are detected 

by evaluating contrast relative to background surface reflectance at different wavelengths, 

while cloud top heights are retrieved using the CO2 slicing technique to determine cloud top 

pressure and NCEP GFS data to convert to height (Frey et al., 2008; Menzel et al., 2008). 
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COT is retrieved by comparing measured reflectances at targeted wavelengths to values in 

lookup tables for ice and water clouds computed from radiative transfer model calculations of 

plane-parallel clouds over a dark surface (Platnick et al., 2003). AOD is retrieved by eliminating 

cloudy pixels, correcting for atmospheric gaseous absorption and attenuation, subtracting 

surface reflectances, and then similarly comparing these measured spectral reflectances to a 

lookup table of modeled aerosol optical properties (Levy et al., 2013). Though the underlying 

principle is the same for aerosol retrievals, different algorithms exist to account for surface 

brightness regimes (ocean, vegetation, desert).  

Multi-angle spectroradiometers also provide retrievals of cloud top height, COT, and column 

AOD, though with expanded information content provided by observing the atmosphere at 

multiple viewing angles. Aerosol and cloud top heights are retrieved by the observed parallax 

between measurements at different angles, corrected for atmospheric winds (Moroney et al., 

2002). Therefore, these retrievals are less reliant on the accuracy of measured radiances. 

Retrievals of COT are determined from measured radiances at visible wavelengths (Marchand 

et al., 2010) and estimates of microphysical aerosol properties are also possible, including 

SSA and particle size (Kahn et al., 2010). Multi-angle polarization-sensitive 

spectroradiometers observe the polarization state of the reflected radiances, principally 

enabling the retrieval of additional aerosol properties. 

Solar occultation scattering 

Spaceborne solar occultation and limb scattering measurements provide a means to validate 

aerosol and polar stratospheric cloud observations in the stratosphere along with cirrus 

altitudes. Typical vertical resolutions are on the order of 1 km (Taha et al., 2021).  Instruments 

employing the solar occultation technique vertically scan the sun as it rises and sets along the 

limb of the Earth, and pass the light through a grating spectrometer to achieve vertical profiles 

of extinction at multiple wavelengths (Thomason et al., 2010). This allows observations of 

stratospheric aerosol, trace gases, and polar stratospheric clouds. The occultation technique 

is beneficial because it is self-calibrating, making measurements highly accurate, and the 

multiple wavelengths observed facilitate the retrieval of intensive aerosol properties. It is also 

applied to lunar and stellar targets. Because the occultation technique relies on a bright target 

passing across Earth’s limb, measurement opportunities are less common than for other 

techniques. Detection of subvisible and visible cirrus is also possible with these instruments 

using measurements of extinction and their ratios at different wavelengths (Schoeberl et al., 

2021).  

The spaceborne limb scattering technique observes the limb of the Earth's atmosphere that is 

illuminated by the sun, thereby allowing more measurement opportunities than solar 

occultation. Extinction is retrieved from the multi-wavelength radiance measurements using a 

radiative transfer model and assumptions on the optical properties of aerosol present in the 

stratosphere (Taha et al., 2021). Instruments using the limb scattering technique provide 

vertical profiles of aerosol extinction that are directly comparable to extinction retrievals from 

lidar, with the highest accuracy in the stratosphere.  

Ground-based photometer 

A photometer is a passive ground-based instrument that uses the direct radiation from the sun 

(sun photometer) or moon (lunar photometer) to derive aerosol and cloud optical thickness 
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(Chiu et al., 2010; Sinyuk et al., 2020). The Ångström exponent of aerosol optical thickness 

(columnar extinction Angstrom exponent) is derived from the observation at several 

wavelengths. The sun photometer is limited to daytime observations, while the lunar 

photometer is limited to nighttime observations of the moon. Photometers are globally 

widespread and organized in networks such as the Aerosol Robotic Network (AERONET, 

(Holben et al., 1998)) or SKYNET (Nakajima et al., 2007, 2020). Sun photometers are often 

also sky radiometers, providing measurements of diffuse light at different scattering angles 

(during Almucantar or Principle Plane measurements). This allows the retrieval of column-

integrated aerosol microphysical properties, e.g. particle size distribution, refractive index, 

absorption optical depth, asymmetry parameter, and phase function.  Photometer 

measurements can be used to validate column-integrated aerosol or cloud extinction (AOD, 

COD)  from active and passive spaceborne sensors. 

3.2.4. In-situ instruments 

Aerosol, cloud, and precipitation particles are complex and can be described under several 

perspectives, approaches, and techniques, yielding information on concentration, particle size 

distribution (PSD), particle shape, hygroscopicity, optical properties, phase, and composition, 

all of which vary in space and time. Satellite calibration and validation efforts may need to 

cover most of the above-mentioned perspectives, although some properties may be more 

directly linked to remote sensing observables (e.g., scattering and extinction, single-scattering 

albedo, refractive index) while the connection must be made for others through complex 

retrievals (e.g., particle speciated composition, particle shape, and size distribution). 

Each in-situ observation only provides information where the instrument is located. Extensive 

spatial networks are possible, enabling mapping for statistical validation at the surface to 

identify first-order discrepancies between spaceborne and ground-based estimates that 

require in-depth examination, to characterize uncertainties in satellite retrievals, and to 

estimate the convergence of these two types of estimates. Yet, such networks are usually 

limited to the surface and can be hard to relate to spaceborne measurements (which are more 

representative of the atmospheric column). Mobile platforms (using aircraft, balloons, and 

UAVs: covered in section 3.3.2.2) can provide better spatial and/or vertical coverage for in-

situ observations. They are usually preferred to improve the understanding of the physical 

relationships between aerosols, clouds, and precipitating particles, although due to the cost 

involved their use is usually temporally limited compared to long-term ground-based networks. 

Moreover, they are useful to understand the relationship between the microphysical properties 

and the radiances observed by satellite sensors at different frequencies. For aerosols, size 

distribution and size-resolved shape, phase, composition, and mixing state are required for 

the evaluation of remote sensing retrieval schemes as well as bulk properties (concentration, 

extinction). For clouds and precipitation, size distribution, phase, and composition are the 

targeted properties.  

Nephelometers measure the aerosol scattering coefficient, usually at multiple wavelengths, 

with high temporal resolution (Anderson & Ogren, 1998). Aethalometers measure the aerosol 

absorption coefficient. When combined, the extinction coefficient can be derived for a direct 

comparison to lidar profiles and multispectral imagers (the latter usually report the aerosol 

optical thickness, i.e. the column-integrated extinction), and the single-scattering albedo 

(useful to estimate the contribution to absorption, that can be related to species such as black 

carbon). 
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The collection of samples using filters (Formenti et al., 2003) or impactors (Lieke et al., 2011) 

allows offline analysis to yield information on aerosol particle shapes, composition, and mixing 

state. Information that can be derived from samples typically reflects the bulk properties, but 

can also be more detailed with for example a particle-by-particle image and the observation 

of the size-resolved elemental or mineralogical composition.  

Optical Particle Counters (OPCs) or scattering probes are amongst the most useful in-situ 

instruments, although their use in cal/val activities is mainly indirect. They provide particle size 

distribution (PSD), from which a mass size distribution and a mass concentration can also be 

estimated. Aerosol size, concentration, and number density span several orders of magnitude, 

and suborbital constraints on them are very important to constrain a priori assumptions in 

satellite retrievals, despite their observational uncertainties. OPCs are broadly deployed on 

aircraft (Baumgardner et al., 1992; Osborne & Haywood, 2005; Ryder et al., 2015; Turnbull et 

al., 2012); and many others) and UAVs (Kezoudi et al., 2021; Renard et al., 2016; Smith et 

al., 2019). PSD measurements allow for the reduction in uncertainties on parameters useful 

to remote sensing, such as the lidar ratio (Jager & Hofmann, 1991; Marenco et al., 2016) and 

the specific extinction (Marenco et al., 2011). Furthermore, OPCs offer a complementary 

picture to the remote sensing observations, and the validation occurs from the coherence of 

the enhanced knowledge brought by the closure of the two approaches (Tsekeri et al., 2017). 

Recent advances in scattering probes for cloud research involve the acquisition of scattered 

light at multiple and larger scattering angles (e.g., the Small Ice Particle Detector, PHIPS 

HALO and the Backscatter Cloud Probe) which allows one to distinguish between solid ice 

and liquid water drops. (Baumgardner et al., 2017) summarize the different types of in-situ 

cloud probes that exist, and (McFarquhar et al., 2017) describe the different algorithms that 

are used to process data from these probes. Although we generally distinguish cloud probes 

from aerosol probes, they can be exploited synergistically (i.e. to make observations of large 

aerosol particles such as mineral dust; see (Ryder et al., 2015)). 

Optical array probes (OAPs) illuminate an array of photodiode detectors and count the 

number of diodes shadowed by each particle (Knollenberg, 1970). This allows the acquisition 

of two-dimensional images of the particles and infer information on their size and shape. The 

cloud probes cover the size range from 15 μm to 1 mm, and precipitation probes cover the 

size from about 1 mm to 1 cm. Examples of these probes include Two-Dimensional Cloud and 

Precipitation spectrometers (2DC and 2DP), Cloud Imaging and Precipitation Imaging Probes 

(CIP and PIP), and the Two-Dimensional Stereo Probe (2DS) that uses two separate 

orthogonal arrays oriented horizontally and vertically to obtain particle images. 

High-resolution particle imagers are distinguished from OAPs in that an actual two-

dimensional image of a hydrometeor is obtained. Examples of such probes include the Cloud 

Particle Imager (CPI), the High-Speed Imaging Probe (HSI), and the imaging component of 

the PHIPS HALO probe. The images have higher resolution than available with OAPs but 

typically have smaller sample volumes that are not always well-defined, complicating the 

numerical calculation of size-resolved and bulk properties. 

Bulk liquid water probes are heated wires that are typically used to measure the total amount 

of liquid water in clouds but do not provide information on how this mass is distributed with 

particle size. Examples of these probes include the King Probe, the Johnson-Williams probe, 

and the LWC sensor on the WCM-2000 and Nevzorov probes. 
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Bulk total water content (TWC) probes measure the total water content regardless of phase. 

Examples of these probes include the Counterflow Virtual Impactor (CVI), and the Nevzorov 

probe. 

Holographic probes, such as the Holographic Detector for Clouds (HOLODEC, (Fugal & 

Shaw, 2009)) provide information on the three-dimensional position, shape, and size of each 

particle in a sample volume, as derived from an interference pattern of the incident wave and 

light scattered by an illuminated particle. The time and computer power needed to reconstruct 

the holograms limit the extensive use of this probe. 

Other probes provide measurements of cloud bulk extinction and the observation of 

supercooled water. 

Among precipitation sensors, rain gauges directly measure precipitation rates or time 

accumulations and provide reliable records frequently spanning more than 100 years, useful 

for long-term studies, extremes, and trends. Their global distribution is heterogeneous, with 

higher densities in more populated regions and lower densities in rural and remote areas. 

Critically, the number of gauges available also depends on their temporal sampling resolution, 

with stations sampling at finer scales being rarer. The spatial representativeness of each 

gauge measurement depends on the autocorrelation distance of precipitation (e.g., (Delahaye 

et al., 2015)). While the autocorrelation increases with time integration, it varies greatly with 

the precipitation regime and is typically short for extreme events (e.g., convective events; 

(Lebel et al., 1987)). Rain gauges provide local quantitative accuracy that can be combined 

with the spatial distribution of precipitation provided by weather radar observations to derive 

more accurate surface precipitation estimates.  

Disdrometer observations are useful for providing a temporally continuous record of the size 

distribution and falling velocity of precipitation at the surface. The measured drop size 

distribution is then used to derive other moments of the size distribution, such as reflectivity. 

These observations are also spatially limited at the point of measurement. Precipitation 

estimates from active and passive sensors rely on relations between precipitation rate and 

remote sensing observations (e.g., radar reflectivity to rain rate, i.e., the Z–R relations) that 

are moments of the PSD. 

3.2.5. Synergistic observations for enhanced validation capabilities 

In this section, we describe two types of synergistic observations for enhanced validation 

capabilities. The first is synergistic retrievals of geophysical variables using observations from 

multiple instruments, a process that normally increases the information content, thereby often 

reducing the reliance on a priori assumptions in retrievals. The second type of synergistic 

observation refers to collocated observations from multiple instruments to provide 

complementary views of the observation target without using the measurements from multiple 

instruments in a joint retrieval network. An example of the latter is the use of lidar and radar to 

detect cloud boundaries. Rather than providing a comprehensive survey of each synergistic 

observation type, we provide only a few illustrative examples of synergistic retrievals that are 

relevant for the validation of the spaceborne observations considered here.   
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Synergistic Retrievals: Lidar + sun photometer 

By collocating an elastic backscatter system with a ground-based sun photometer, the aerosol 

optical depth measured by the sun photometer can be used as a constraint on the lidar 

inversion problem, because the AOD is the column integral of aerosol extinction (e.g., 

(Ganguly et al., 2009; Lopatin et al., 2013, 2021; Marenco et al., 1997; Takamura et al., 1994)).  

In addition, it has been shown that lidar and sun-photometer measurements can be used in 

synergy to retrieve microphysical particle properties and concentration (Gasteiger, Gross, et 

al., 2011). Lidar measurements provide vertical information at a limited number of wavelengths 

(usually 3 wavelengths) and sun photometers (Haarig et al., 2023) can only provide columnar 

information but usually at several spectral channels (standard AERONET sun photometers 

with 8 wavelengths). The inversion of microphysical aerosol properties such as size and 

number concentration from the measured optical properties is an ill-posed inverse problem 

(e.g. (Müller et al., 1999)). State-of-the-art lidar systems provide the profiles of 3 backscatter 

coefficients, 2 extinction coefficients, and at least 1 depolarization ratio (Engelmann et al., 

2016; Müller et al., 2014; Veselovskii et al., 2015). The additional use of the spectral 

information from a sun photometer constrains the inversion (Gasteiger, Gross, et al., 2011) 

and improves the results (e.g., in the framework of the Generalized Retrieval of Atmosphere 

and Surface Properties (GRASP), (Kudo et al., 2016; Lopatin et al., 2013, 2021). However, 

this requires optical modeling assuming realistic particle properties (Gasteiger, Wiegner, et 

al., 2011). 

Synergistic Retrievals: Lidar + polarimeter 

Similar to the combination of lidar and other measurements that constrain column-integrated 

aerosol properties, recent work has focused on combining lidar measurements with 

polarimetric observations of total and polarized radiances. This approach was the fundamental 

methodology considered for the retrieval of higher-level aerosol properties for the NASA AOS 

mission. In an early application to airborne lidar and polarimeter observations, HSRL-derived 

AOD and aerosol vertical distributions were used to improve the aerosol retrievals from an 

airborne polarimeter. More recently, the approach was used to derive full profiles of aerosol 

microphysical and radiative properties from joint airborne lidar and polarimeter observations 

in a full Bayesian optimal estimation framework (Xu et al., 2021). 

Synergistic Retrievals: Remote sensing + in-situ measurements 

Remote sensing and in-situ techniques are quite different in the methods used and in the 

atmospheric volumes that they can sample. However, they offer complementary information 

on the atmosphere and its constituents, and it can be at times really useful to combine them 

in order to increase our knowledge of the atmosphere and the techniques themselves. In most 

of the examples that we give below, these techniques have been combined ad hoc to answer 

specific questions that have arisen for a given experiment; therefore, we do not have the 

ambition of being exhaustive. 

An application of remote sensing and in-situ synergy allows one to compute mass 

concentrations of a chosen aerosol type from lidar observations of the full aerosol mixture, 

complemented with airborne PSD measurements. This was done on the occasion of the 

eruption of Eyjafjallajökull when it was important to quantify atmospheric volcanic ash in terms 

of absolute concentration, to address aviation safety concerns (Marenco et al., 2011). The in-
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situ measurements permitted the evaluation of a coarse extinction fraction (making it possible 

to disregard the scattering contribution of fine particles, which is believed not to be volcanic 

ash) and a coarse mode-specific extinction (mass-to-extinction conversion factor). These 

quantities, evaluated on a flight-by-flight basis, were used to convert lidar‑derived aerosol 

extinction to ash concentration, expressed in micrograms per cubic meter. The relatively large 

uncertainty of those conversions (estimated to be a factor of 2) was deemed smaller than 

many other uncertainties on volcanic ash quantitative estimates so that the derived dataset 

was found very useful for both model and satellite validation (see e.g. (World Meteorological 

Organisation, 2015)). 

As a general consideration, OPCs offer a complementary picture to remote sensing, so that 

combining their observations reduces the knowledge gap on the aerosol mixture under 

examination. If the goal is validating the remote sensing observations, the validation occurs 

from the coherence of the enhanced knowledge brought with the closure of the two 

approaches. If the goal is retrieving information on the atmosphere that neither method can 

provide alone, then we can speak of a true synergistic retrieval. The latter concept is 

exemplified for example with the In-situ/Remote sensing aerosol Retrieval Algorithm (IRRA) 

(Tsekeri et al., 2017). In that study, airborne in-situ measurements and lidar remote sensing 

were combined to retrieve vertical profiles of ambient optical and microphysical properties of 

an aged smoke plume. Observations included lidar extinction profiles, the in-situ dry PSD, dry 

scattering and dry absorption, and the chemical composition. The combination of these pieces 

of information allowed the characterisation of the aerosol growth due to humidity content and 

the ambient PSD. 

Synergistic Use of Observations: lidar and radar 

Active remote sensing with lidar and radar provides height-resolved information on aerosol 

and cloud distribution and properties. Due to the different wavelengths of lidar and radar, they 

are sensitive to different properties. Measuring at shorter wavelengths, the lidar is sensitive to 

the particle concentration and can detect small particles and hydrometeors. However, the 

signal can be extinguished at high particle concentrations or from large particles or droplets. 

The radar, in contrast, is sensitive to the particle size and thus misses aerosols and small 

hydrometeors. Due to this different sensitivity, both instruments complement each other 

(Ewald et al., 2021; Stephens et al., 2018). This provides information on the full extent of the 

vertical aerosol and cloud distribution.  

Synergistic Retrievals: lidar and radar 

Since the radar reflectivity is proportional to the sixth moment of the particle size distribution 

(PSD), and the lidar backscatter coefficient is proportional to the second moment of the PSD, 

two moments of the PSD can be determined in the overlap region of both instruments from 

synergistic use of the two measurements.  

The first steps towards a synergistic lidar-radar retrieval to derive ice microphysical properties 

from lidar and radar backscatter were done by (Intrieri et al., 1993; Okamoto, 2003). The 

methods use the differences in backscatter returns widely separated in wavelength to derive 

information on the characteristics on sizes of the scatterers. However, their approaches are 

based on an assumed extinction-to-backscatter ratio (lidar ratio). (Donovan & van Lammeren, 

2001; Tinel et al., 2005) solved that problem by replacing the unknown lidar ratio with the ratio 
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between radar reflectivity Ze and extinction α within the lidar equation. This approach retrieves 

the extinction α independently of assumptions on the particle size spectra and particle density. 

These methods are still limited to regions where both cloud radar and lidar measurements are 

available. Recent approaches try to combine lidar and radar measurements within a 

framework that naturally bridges the gap between these altitude regions: For the ground-based 

measurement network Cloudnet (Illingworth et al., 2007), various techniques for ice clouds 

(Delanoë & Hogan, 2008; Donovan & van Lammeren, 2001; Tinel et al., 2005) have been 

incorporated into a combined cloud product. For satellites, the CAPCOM approach (Sato & 

Okamoto, 2011) will combine radar and lidar measurements from EarthCARE; it is based on 

an optimal estimate of cloud properties including specular reflection of ice crystals and residual 

Doppler particle fall speeds (Sato et al., 2009) to retrieve cloud particle phase, size, and their 

number concentration. The CAPTIVATE approach (Mason et al., 2023) is based on a 

variational optimal estimation algorithm (VarCloud/DARDAR, (Delanoë & Hogan, 2008, 2010)) 

which combines radar, lidar, and infrared radiance measurements in a unified framework. The 

current version of the VarCloud algorithm was transformed from C++ to Python (VarPy) to 

make it more flexible and to allow the use of different wavelength combinations from different 

platforms (Cazenave et al., 2019). Furthermore, the capability of Varpy was extended to also 

account for mixed-phase clouds (Aubry et al., 2024). 

Synergistic Retrievals of Precipitation: Weather Radar + Gauges 

Remote sensing is the only way to explicitly observe the spatial distribution of precipitation. 

However, complex interactions between the spatiotemporal variability of precipitation 

processes, underconstrained relationships between precipitation-related quantities and 

remote sensing measurements, sensor resolution, sensitivity, calibration, and the indirect 

nature of precipitation retrievals introduce complications. In the last decades, weather radar 

systems have become a valuable tool to fill multiple observational gaps in time, surface 2D 

and 3D. As active sensors, ground-based radars provide range-resolved information on 

precipitation that is not available from gauges and from most satellite sensors. Radar systems 

reveal precipitation characteristics, including intermittency, types (e.g., stratiform, convective, 

snow, and hail), and rates, with better resolution than gauges and better accuracy than 

satellites. Through real-time and high-resolution volume scanning, weather radars offer more 

comprehensive information on the horizontal and vertical structure of precipitation. Radar 

networks upgraded with dual-polarization technology give additional insights into precipitation 

microphysics specifically on the size, shape, orientation, and phase of hydrometeors. Ground-

based weather radar data are now widely used by national weather services for quantitative 

precipitation estimation (QPE) at fine scales (e.g., 1 km/5 min). Radar QPE is subject to 

specific uncertainties (i.e., sensor calibration, attenuation depending on the radar frequency, 

ground clutter, and beam blocking, variation of reflectivity with height, conversion from radar 

moments to precipitation rate, etc.; e.g., (Berne & Krajewski, 2013; Delrieu et al., 2009). The 

characterization of these uncertainties has motivated studies for several decades. Radar–rain 

gauge merging approaches combining the fine spatio-temporal resolution of radar and the 

local accuracy of gauges have been proposed for QPE (e.g., (Delrieu et al., 2014)) and are 

applied operationally, while novel approaches are being developed to integrate uncertainty as 

part of the quantitative estimation process (e.g., (Kirstetter et al., 2015; Neuper & Ehret, 

2019)). To overcome these individual sensor limitations, it is crucial to recognize that no single 

sensor combines accuracy, resolution, and representativeness over relevant spatial and 

temporal scales. Achieving these characteristics requires an expert combination of 
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observations that maximize each sensor’s advantages while minimizing its weaknesses. 

Ultimately, such a combination does not produce perfect estimates with no uncertainty, but 

estimates with uncertainties that are deemed sufficiently low.  

3.3. Specific instruments 

3.3.1. Ground-based observations 

3.3.1.1. Fixed-location systems and networks 

A typical goal of measurement networks is to provide measurements over a broad and diverse 

geographical area. There is, of course, a tradeoff between spatial coverage and site 

complexity. Many measurement networks that are particularly focused on broad spatial 

coverage tend to have focused and limited measurement capabilities. Some applications, in 

particular those that study the interactions among system components, require more 

comprehensive measurements at a single location and time. Historically, requirements for 

such comprehensive measurements were met through intensive field campaigns. Such field 

studies have been invaluable; however, they are very limited in time so do not sample 

seasonal or interannual environmental variability, which may be important for understanding 

physical processes. Supersites address the dual need for comprehensive and long-term 

measurements. Supersites may be operated as a single system or a limited network but are 

constrained in spatial coverage. 

Some networks described below include supersites, which we define as sites with expansive 

suites of instrumentation and/or sites that serve multiple user communities (e.g., aerosols, 

clouds, radiation). The measurement scope of supersites is not truly comprehensive but 

depends on the science goals of the target science community. For sites supporting studies 

of climate processes, and particularly the earth’s energy balance, measurements of the 

components of the atmosphere and earth surface that impact that balance are needed. This 

includes measurements of cloud and aerosol optical properties, profiles of the atmospheric 

thermodynamic state, precipitation properties, and surface properties including temperature 

and (over land) soil moisture. For some applications, additional detailed measurements may 

be required, such as measurements of aerosol chemical properties and trace gases, which 

may serve as aerosol precursors. As with any network, there is a trade-off with increasing 

complexity. 

Examples of programs that operate supersites include the US Department of Energy 

Atmospheric Radiation Measurement (ARM) facility and the pan-European Aerosol, Clouds 

and Trace Gases Research Infrastructure (ACTRIS). ARM and ACTRIS provide 

measurements to support the global climate research community and other earth science 

applications. Both programs are described in brief below. 
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Table 3.7. Available networks, deployed instruments, location, number of stations, and corresponding 
products 

Networks Type Geographical 
Coverage 

Number of 
Stations 

Products 

Multi-Instrument 

ACTRIS Multi-Instrument Europe*** 112 1-9, 11 

ARM Multi-Instrument Global 6* All products listed in 
Chap. 2 

NDACC Lidar, FTIR, Various 
Spectrophotometers and 
Radiometers 

Global 70 1,2,3,4 

Lidar Networks 

GALION Framework for lidar networks 
below 

Global   

AD-NET Lidar East Asia 22 1,2,3,4,5,7,8,9 

EARLINET Lidar Europe 22 1,2,3,4,5,6,7,8,9 

LALINET Lidar South America 7 1,2,3,4,6,7 

MPLNET Micropulse Lidar Global 72 1,2,5 

E-profile Ceilometers Mainly Europe 280** 1, 2a 

Radar Networks 

NEXRAD S-Band radar USA 159 10, 11, 12 

OPERA C-Band, X-Band, S-Band 
radars 

Europe 200 10, 11, 12 

Radiometers 

AERONET Sun photometer Global 1146 6,9 

SKYNET Sun photometer Asia + Europe 159 6,9 

(1) Layer heights, (2) backscatter coefficient, (2a) attenuated backscatter, (3) extinction coefficient, (4) lidar ratio, 

(5) depolarization ratio, (6) angström exponent, (7) colour ratio, (8) cirrus optical depth, (9) aerosol optical depth, 

(10) rain rate, (11) atmospheric movement, (12) radar reflectivity 

* In 2024-2025, ARM locations will include: US Southern Great Plains (Oklahoma), US North Slope of Alaska, 

Southeastern US (Bankhead National Forest in Alabama), Graciosa Island (Azores), and Cape Grimm, Australia 

(location of 6th observatory to be announced in August). 

** Considering only E-PROFILE network 

***and selected non-European sites 

 

Multi-instrument networks 

ACTRIS - The Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS; 

https://www.actris.eu/) is the pan-European research infrastructure that is currently operating 

in 22 countries and combines observations from 112 facilities. The ACTRIS infrastructure 

https://www.actris.eu/
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includes aerosol in-situ, aerosol remote sensing, cloud in-situ, and cloud remote sensing 

measurement facilities as well as reactive trace gas in-situ measurements and remote 

observations.  

The cloud remote sensing facilities carry out observation using Doppler Cloud Radars (Ka- 

and/or W-band), microwave radiometers for profiling of temperature and humidity, and 

observations of liquid water path, and Doppler lidars for wind profiling. Additionally, automatic 

low-power lidars or ceilometers are used for cloud profiling purposes. 

ARM - The ARM user facility includes a network of six atmospheric observatories. Multi-year 

ARM sites (www.arm.gov) overlapping with EarthCARE will be the U.S. Southern Great Plains, 

North Slope of Alaska, and Southeast U.S. and the Eastern North Atlantic in the Azores. Each 

observatory includes cloud radar, backscatter or extinction lidar, thermodynamic profiling, 

various radiometers, and aerosol in-situ instruments. Two of the observatories are deployed 

for approximately a year at a time on a proposal-driven basis. See additional information in 

section 3.3.1.1.   

NDACC (https://ndacc.larc.nasa.gov/) -  NDAAC (Network for the Detection of Atmospheric 

Composition Change) is a Network of various types of instrumentation such as Brewer 

Spectrophotometer,  Dobson Spectrophotometer, FTIR Spectrophotometer, Lidar, Microwave 

Radiometer, Sondes, UV and Visible Spectro & Radiometers and is composed of more than 

70 globally distributed, ground-based, remote-sensing stations with more than 160 currently 

active instruments. Most of the products are related to greenhouse gases, trace gases and 

aerosols in the stratosphere, and UV radiation. 

Lidar networks 

GALION - GAW Aerosol Lidar Observation Network and other networks -  The World 

Meteorological Organization (WMO) Global Atmospheric Watch (GAW) Aerosol Lidar 

Observation Network (GALION) was formed in 2008. GALION is a lidar network of networks 

organized through the GAW program to coordinate network activities and provide 

comprehensive profiling of atmospheric aerosols, clouds, gases, and thermodynamic 

structures. GALION chair and steering committee leadership is run by the heads of the 

individual lidar networks. Each GALION network is an official GAW contributing network. 

AD-NET (https://www-lidar.nies.go.jp/AD-Net/)  -  AD-Net is a lidar network for continuous 

observation of vertical distributions of Asian dust and other aerosols in East Asia (Shimizu et 

al., 2004). The standard lidar system in AD-Net is a two-wavelength (1064 nm, 532 nm) 

polarization-sensitive (532 nm) Mie-scattering lidar (Sugimoto et al., 2008). Extinction 

coefficient estimates for non-spherical and spherical aerosols are also derived with the method 

using the backscattering and depolarization ratio (Shimizu et al., 2004; Sugimoto et al., 2002). 

For quantitative analysis of aerosol optical characteristics, HSRLs (Jin et al., 2020, 2022) and 

Raman lidars (Nishizawa et al., 2017) have been constructed at primary sites. At present, 

there are 22 stations, the majority in Japan, some in South Korea, Mongolia, and Thailand. 

Also, some stations are collocated with SKYNET skyradiometers. 

EARLINET (https://www.earlinet.org) - The European Aerosol Research Lidar Network, 

EARLINET (Pappalardo et al., 2014), was established in 2000 as a research project with the 

goal of creating a quantitative, comprehensive, and statistically significant database for the 

horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then 

http://www.arm.gov/
https://ndacc.larc.nasa.gov/
https://ndacc.larc.nasa.gov/stations
https://ndacc.larc.nasa.gov/instruments
https://public.wmo.int/
https://public.wmo.int/
https://public.wmo.int/en/programmes/global-atmosphere-watch-programme
https://community.wmo.int/activity-areas/gaw/research-infrastructure/contributing-networks#:~:text=Networks%20contributing%20to%20the%20GAW,GAW%20network%20as%20Contributing%20stations
http://atmos.cr.chiba-u.ac.jp/
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EARLINET has continued to provide the most extensive collection of ground-based data for 

the aerosol vertical distribution over Europe. 

A major part of the measurements is performed according to a fixed schedule to provide an 

unbiased statistically significant data set. Additional measurements are performed to 

specifically address important processes that are localized either in space or time. Back-

trajectories derived from operational weather prediction models are used to characterize the 

history of the observed air parcels, accounting explicitly for the vertical distribution. EARLINET 

is a key component of the ACTRIS infrastructure, which represents a big step towards better 

coordination of the atmospheric observations in Europe towards the establishment of the 

European component of an Integrated Atmospheric Global System as part of GEOSS, the 

Global Earth Observation System of Systems (GEOSS, 2005). Several active stations 

distributed over Europe are part of the network. Most but not all of the participating stations 

are members of ACTRIS. The organization of the observing capabilities including Quality 

Assurance and Data Center services is now handled by ACTRIS.  EARLINET remains a 

network for lidar expertise and scientific applications. EARLINET is also a contributing network 

to the GAW Programme. 

LALINET (http://lalinet.org/) - The Latin America Lidar Network (historically LALINET is also 

known as ALINE) is a Latin American coordinated lidar network measuring aerosol backscatter 

and extinction profiles for climatological studies of the aerosol distribution over Latin America, 

as well as other atmospheric species such as ozone and water vapor. This federative lidar 

network aims to establish a consistent and statistically sound database for the enhancement 

of the understanding of the aerosol distribution over the continent and its direct and indirect 

influence on climate.  At present, there are 14 stations in LALINET, however after the 

pandemic of COVID there is a restructuring of the network. Most of the stations operate 

multiwavelength backscatter lidars, some have Raman channels and a few depolarization.  

MPLNET (https://mplnet.gsfc.nasa.gov/) - The NASA Micro-Pulse Lidar Network (MPLNET; 

(Welton & Campbell, 2002)) is a federated network of Micro-Pulse Lidar (MPL; (Spinhirne et 

al., 1995)) systems designed to measure aerosol and cloud vertical structure, and boundary 

layer heights. The data are collected continuously, day and night, over long time periods from 

sites around the world. Most MPLNET sites are co-located with sites in the NASA Aerosol 

Robotic Network (AERONET). MPLNET is also a contributing network to the World 

Meteorological Organization (WMO) Global Atmospheric Watch (GAW) Aerosol Lidar 

Observation Network, GALION. MPLNET data have contributed to many studies and 

applications. Key focus areas for MPLNET include (i) domestic and international aerosol and 

cloud research, (ii) climate change and air quality studies, (iii) support for NASA satellite and 

sub-orbital missions, and (iv) aerosol modeling and forecasting. 

MPLNET is composed of NASA sites and others run by, or with help from, partners from 

around the world. Principal investigators for individual network sites may be from NASA, other 

US government agencies, universities, or foreign institutions. MPLNET core activities and the 

NASA staff are funded by the NASA Radiation Sciences Program and the NASA Earth 

Observing System (EOS). The evolution of the MPL from the initial (Spinhirne et al., 1995) 

optical design to the standard design now used in MPLNET is described in detail by (Campbell 

et al., 2002) and (Welton & Campbell, 2002), including on-site maintenance, and calibration 

techniques. Post 2002 enhancements include a new data system, telescope, fiber-coupled 

detectors, and a new laser.  Post 2013 changes: The original MPL design from the early 1990s 

http://lalinet.org/
http://aeronet.gsfc.nasa.gov/
http://aeronet.gsfc.nasa.gov/
https://galion.world/
https://science.nasa.gov/earth-science/focus-areas/atmospheric-composition
http://eospso.gsfc.nasa.gov/
http://eospso.gsfc.nasa.gov/
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was unpolarized, providing only total signal power. The MPL was first polarized with an 

approach described by (Flynn et al., 2007). In total, there are 81 sites in MPLNET, 23 active.  

E-PROFILE (https://e-profile.eu/) - E-PROFILE  is part of the EUMETNET 

(https://www.eumetnet.eu/) Composite Observing System, EUCOS, managing the European 

networks of radar wind profilers (RWP) and automatic lidars and ceilometers (ALC) for the 

monitoring of vertical profiles of wind and aerosols including volcanic ash. E-PROFILE 

coordinates the measurements of vertical profiles of wind from radar wind profilers (vertically 

pointing Doppler radars) and weather radars from a network of locations across Europe and 

provides the data to the end users. The main goal is to improve the overall usability of wind 

profiler data for operational meteorology and to provide support and expertise to both profiler 

operators and end users. 

Due to technical advances of the last years, ceilometers (automatic low-cost lidars) provide 

nowadays not only cloud base height but also information on the vertical distribution of 

aerosols derived from the backscatter profile. To make this new observation capacity 

available, E-PROFILE is developing a framework to produce and exchange profiles of 

attenuated backscatter profiles. Automatic lidars and ceilometers of stations across Europe 

are added to the operational network. 

Weather radar networks 

Because weather radars typically operate as part of national weather radar networks (e.g. 

United States Weather Surveillance Radar Doppler (WSR-88D) radar network) or are a part 

of networks, such as OPERA (European Operational Programme for the Exchange of weather 

RAdar information), they can provide synoptic scale observations.  

OPERA - In Europe, national weather services are responsible for observing the weather in 

their respective countries. However, they also collaborate under the umbrella of the European 

Meteorological Services Network, EUMETNET. The work of weather radar within EUMETNET 

is coordinated by the Operational Program for Exchange of Weather Radar Information 

(OPERA), which was established in 1999. The development and activities of OPERA are 

described in (Saltikoff et al., 2019) and (Huuskonen et al., 2014). The OPERA network 

consists of 30 members operating over 200 radars, mostly in C-band but with some in X- and 

S-bands. Currently, about 70% of the radars have dual-polarization capability, but dual-pol 

variables are not yet collected within OPERA. The production lines consist of three 

components: CUMULUS/STRATUS for gathering and distributing incoming single-site radar 

data, CIRRUS for producing 5-minute maximum reflectivity composites with 1 km spatial 

resolution, and NIMBUS for generating rain rate and 1-hour rainfall accumulation composites, 

wind profile products, and quality-controlled volume data.  

Four filters are centrally applied for quality control: an anomaly-removal module (Peura, 2002), 

a hit-accumulation filter (Scovell et al., 2013), beam blockage correction (Henja & Michelson, 

2012), and a satellite-based filter of residual non-precipitation echoes based on the 

EUMETSAT Nowcasting SAF Precipitating Clouds product (Marcos & Rodríguez, 2019). A 

quality indicator, defined as the minimum of the first three quality indicators presented above, 

is added to the radar metadata. Finally, this quality indicator is weighted according to the 

distance from the radar and the height of the beam above the ground and used for generating 

the OPERA composite products. In 2022, an open climatological OPERA-based radar 

https://e-profile.eu/
https://www.eumetnet.eu/glossary/eumetnet/
https://www.eumetnet.eu/glossary/eumetnet/
https://www.eumetnet.eu/
https://www.eumetnet.eu/
https://www.eumetnet.eu/glossary/eucos/
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precipitation dataset, EURADCLIM (EUropean RADar CLIMatology), was published 

(Overeem et al., 2023). This dataset covers a variety of climates from Mediterranean to 

temperate, mountain, continental, and arctic regions. In processing the dataset, additional 

algorithms are applied to remove non-meteorological echoes, and gauge adjustment is applied 

hourly. The rerun of EURADCLIM is performed once a year over the entire period, using all 

available rain gauge data, and the dataset is extended with one year of data.  

NEXRAD or Nexrad (Next-Generation Radar) and the Multi-Radar/Multi-Sensor System 

(MRMS) - NEXRAD is a network including high-resolution S-band Doppler weather radars at 

159 locations. They are operated by the National Weather Service (NWS) which is an agency 

of the National Oceanic and Atmospheric Administration (NOAA) within the United States 

Department of Commerce, the Federal Aviation Administration (FAA) within the Department 

of Transportation, and the U.S. Air Force within the Department of Defense. 

The standard operation is in the S-band range, at a frequency of around 2800 MHz, with a 

typical gain of around 53 dB using a center-fed parabolic antenna. The pulse repetition 

frequency (PRF) varies from 318 to 1300 Hz with a maximum power output of 700 kW at 

Klystron output, although dependent on the volume coverage pattern (VCP) selected by the 

operator. All systems within NEXRAD have a dish with a diameter of 9.1 m (30 ft) and an 

aperture diameter of 8.5 m (28 ft). Using the predetermined VCPs, the NEXRAD systems have 

a traditional elevation minimum and maximum ranging from 0.1 to 19.5 degrees, although the 

non-operational minimum and maximum can span from −1 to +45 degrees. The antenna can, 

however, not be manually steered by the operator. Spatial resolution varies with data type and 

scan angle – level III data has a resolution of 1 km x 1 degree in azimuth, while super-res level 

II, (implemented in 2008 nationwide), has a resolution of 250m by 0.5 degrees in azimuth 

below 2.4 degrees in elevation. The National Centers for Environmental Information (NCEI) 

provides access to archived NEXRAD Level-II data and Level-III products. 

In Norman, Oklahoma, a project built upon data collected by the NEXRAD network is the 

NOAA’s Multi-Radar/Multi-Sensor system (MRMS: 

https://www.nssl.noaa.gov/projects/mrms/), developed by researchers at the National Severe 

Storms Laboratory (NSSL) and the University of Oklahoma (OU). The MRMS system 

automatically combines information from all ground-based radars comprising the National 

Weather Service’s NEXRAD network, performs quality control procedures (Lakshmanan, 

2007), mosaics radar data onto a common 3D grid, and generates a suite of severe weather 

and hydrometeorological products including precipitation. Other data sources are used,  that 

include hourly analyses and forecasts from the High-Resolution Rapid Refresh (HRRR) and 

the Rapid Refresh (RAP) numerical weather prediction models (Benjamin et al., 2004) as well 

as rain gauge networks, upper air soundings, geostationary satellite observations, and surface 

observations. Surface precipitation accumulations are blended with collocated rain gauge 

networks to arrive at ground-based estimates of rainfall. The uniqueness of the MRMS system 

lies in its high resolution (1 km horizontal) and high-frequency product generation (2 min). A 

significant amount of research has been conducted over the past 10 years to improve the data 

quality and accuracy of the MRMS rainfall products (e.g. (Kirstetter et al., 2015; Lakshmanan, 

2007). The NEXRAD network was upgraded with dual-polarization technology in 2013, which 

benefitted radar quality control, hydrometeor classification, and quantitative precipitation 

estimation (QPE). The MRMS system was transitioned to operations at the National Centers 

for Environmental Prediction (NCEP) in Fall 2015 and, more recently, MRMS dual-polarimetric 

QPE was transitioned to operations in October 2020. OU/NSSL’s MRMS system has emerged 

https://en.wikipedia.org/wiki/S-band
https://en.wikipedia.org/wiki/Pulse-Doppler_radar
https://en.wikipedia.org/wiki/Weather_radar
https://en.wikipedia.org/wiki/National_Weather_Service
https://en.wikipedia.org/wiki/National_Oceanic_and_Atmospheric_Administration
https://en.wikipedia.org/wiki/United_States_Department_of_Commerce
https://en.wikipedia.org/wiki/United_States_Department_of_Commerce
https://en.wikipedia.org/wiki/Federal_Aviation_Administration
https://en.wikipedia.org/wiki/United_States_Department_of_Transportation
https://en.wikipedia.org/wiki/United_States_Department_of_Transportation
https://en.wikipedia.org/wiki/United_States_Air_Force
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as the state-of-the-art in ground-based precipitation measurement in terms of spatial and 

temporal consistency, accuracy, and product resolution (Zhang et al., 2016).  

Radiometer networks 

AERONET - The AErosol RObotic NETwork (AERONET) program (Holben et al., 1998) has 

provided accurate remote sensing of aerosol optical and physical properties and a limited set 

of cloud properties for an extensive geographic distribution that includes all continents and 

many island sites, with some locations operating for almost 30 years now. AERONET-derived 

aerosol properties have been used for the validation of satellite retrievals of AOD (Remer et 

al., 2002; Sayer et al., 2012), the characterization of aerosol absorption and size distributions 

(Dubovik et al., 2002), for the validation of model estimates (Kinne et al., 2003) and to 

improved forecasts (Rubin et al., 2017) of aerosol properties. These investigations primarily 

depend on the highly accurate observations of extensive properties such as AOD from direct 

solar beam transmittance and as more data become available, they include the intensive 

aerosol products retrieved from inversion of the radiative transfer equation such as complex 

index of refraction and particle size distribution. In the context of this report, AERONET 

measurements can be used for the validation of column-integrated extinction and column-

average aerosol properties, such as the lidar ratio. 

SKYNET - https://www.skynet-isdc.org/ is a worldwide ground-based radiation observation 

network with many observation sites in Europe and Asia,  focused on research regarding the 

interaction of aerosols, clouds, and solar radiation (e.g., (Nakajima et al., 2007, 2020; 

Takamura & Nakajima, 2004)). In addition to the research goals regarding aerosol-cloud-

radiation interactions, the validation of satellite observations climate model simulations, and 

data assimilations are also within the scientific scope of the SKYNET activity. SKYNET uses 

a skyradiometer as a standard instrument to provide AOD, SSA, refractive index at several 

wavelengths from 315nm to 1020nm, and volume size distribution and Ångström exponent of 

aerosols by inversion estimation using skyrad.pack (e.g., (Kudo et al., 2021; Nakajima et al., 

1996) and a method using direct solar radiation (Estellés et al., 2012). Calibration using the 

improved Langley method (Campanelli et al., 2004, 2007; Nakajima et al., 2020), has been 

routinely performed, along with Inter-calibration of the sun-sky radiometers with a master 

instrument calibrated using the Langley method at a high mountain performed occasionally. 

3.3.1.2. Mobile systems  

A mobile system can be transported from one location to another by means of a vehicle 

(terrestrial, aerial, or ship). Some of these platforms are designed to be operated in motion in 

a dedicated mode, others are standalone systems that are put in a transport system (Ship, 

UAV, etc.). These systems can be relocated and thus fill gaps for validation. 
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Table 3.8. Example of mobile systems along with instrumentation, operator, reference, and platform 

System Instrumentation Operator Reference Platform 

Multi-instruments (including radar & lidar) 

LACROS  
Cloud radar, MWL*, 
BSRN station, MWR** 

TROPOS (Radenz et al., 2021) Mobile station 

BALI system  
Scanning Basta (W-Band) 
radar, lidar 532/808nm 

LATMOS (Delanoë et al., 2016) Mobile instruments 

Multi-Wavelength Radars 

Poldirad/Basta 
Polarization C-Band 
radar, Basta (W-Band) 
radar  

DLR 
(Delanoë et al., 2016; 
Hagen et al., 2021) 

Mobile instrument 

SAPHERALER 
W- and X-Band radars 
(ballon) 

CNES  Balloon 

Radars  

BASTAs W-Band radar LATMOS (Delanoë et al., 2016) Mobile instruments 

X-Band Trailer X-Band radar NOA  Trailer 

Horus S-Band phased-array   Truck 

PX-1000, RaXPol X-band radar   Truck 

PAIR C-Band phased-array   Truck 

Sea-Going 
Polarimetric (SEA-
POL) 

C-Band radar   Ship 

Lidars 

OCEANET 
MWL, sky camera, 
MWR, sun photometers 

TROPOS (Engelmann et al., 2016) Ship 

PollyNET PollyXT MWL  TROPOS polly.tropos.de Mobile Instrument 

MAMS MWL, photometers ACTRIS-FR  Mobile instrument 

Aerosol platform MWL, sun photometer NOA  Mobile Instrument 

EVE lidar Polarization lidar system NOA (Paschou et al., 2022) Mobile instrument 

EMORAL MWL 
Univ. 
Warsaw 

 Van 

POLIS MWL Univ. Munich 

(Freudenthaler et al., 
2018; Gross, 
Freudenthaler, Wirth, et 
al., 2015) 

Mobile Instrument 

*Multi-wavelength lidar, **Microwave radiometer 

In addition to these mobile systems operated by specific institutions, the ARM user facility 

includes two deployable systems referred to as ARM Mobile Facilities (AMFs). The mobile 

observatories include a similar set of instruments as the multi-year sites introduced in section 

3.3.1.1. The AMFs are deployed on a proposal-driven basis. Calls for proposals are typically 

published around the end of the calendar year in most years on the ARM field campaign 

webpage. The next planned deployments are in Tasmania, Australia, and Baltimore, U.S.. 

3.3.2. Airborne observations 

3.3.2.1. Available airborne platforms and previously deployed instruments  

A number of different high and low-flying aircraft are available to be equipped with adjustable 

in-situ and remote sensing payload for aerosol, cloud, and precipitation studies. 

https://www.arm.gov/capabilities/observatories/amf
https://www.arm.gov/guidance/campaign-guidelines/annual-facility-call
https://www.arm.gov/guidance/campaign-guidelines/annual-facility-call
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Table 3.9. General information on airborne platforms and measurements 

Aircraft / Operator Altitude 
range [m] 

Range or 
Endurance 

[h] 

Remote Sensing (Payload 
Accommodations) 

In-situ Instruments flown 

FAAM 10,000 5 
Aerosol LIDAR, MARSS radiometer, 
ARIES infrared hyperspectral, 
SWS/SHIMS visible hyperspectral 

various in-situ probes for 
chemistry, aerosol and cloud 
measurements; hygrometer; 
dropsondes 

HALO 15000 10 
WALES HSRL and WV DIAL, Cloud 
radar, multi-spectral imager, solar 
and thermal radiation, MWR 

various in-situ probes for 
aerosol and cloud 
measurements, dropsondes 

DLR Falcon 9000 4-5 various wind lidars 

various in-situ probes for 
aerosol and cloud 
measurements, hygrometer, 
dropsondes 

LOAC Voltaire    Light Optical Particle Counter 

Strateole   BeCOOL lidar 
backscatter tethered sonde, 
etc. 

ATR42 1500  
RASTA and BASTA radars, LNG 
lidar, ALIAS lidar, Radiometers 

various in-situ probes for cloud 
measurements 

STRATOBUS   BASTA  

Polar 5 4200 2300 km 
MIRAC radar / radiometer, AMALI 
lidar 

various in-situ probes for cloud 
measurements 

Norwegian Aircraft    Nevzorov probe (LWC, TWC) 

NASA LaRC B-200 8,534 6.2 
HSR Lidar, water vapor+HSR lidar, 
Polarimeters, Spectro-radiometers 

various in-situ probes for 
aerosol and cloud 
measurements, dropsondes 

NASA Gulfstream III 13,716 7.5 
Backscatter Lidar, HSR Lidar, water 
vapor DIAL+HSRLPolarimeters, 
Spectroradiometers 

dropsondes, trace-gas probe 
(PICARRO) 

NASA Gulfstream V 15,500 13 
Backscatter Lidar, HSR Lidar, water 
vapor DIAL+HSR lidar, Polarimeter, 
Spectroradiometer 

 

NASA ER-2 21,336 12 

Cloud and precipitation radars (9.6, 
13.5, 35, 94 GHz), Backscatter 
Lidar, HSR Lidar, WV DIAL+HSRL, 
polarimeter, radiometers 

 

NASA WB-57 18,288 6.5 
Cloud and precipitation radars 
(13.5, 35, 94 GHz) 

 

NASA DC-8 
(expected to be 
decommissioned in 
mid-2024) 

12,800 12 

Cloud and precipitation radars 
(13.5, 35, 94 GHz) 
 
 

 

NASA P-3 9,100 10 
Cloud and precipitation radars 
(13.5, 35, 94 GHz); HSRL 

 

NASA 777-200ER 
(expected to come 
online in late 2025) 

  tbd tbd 

Canadian Convair   
94 GHz cloud radar, (355nm) 
backscatter Lidar 

 

ATMOSLAB 12,000 3.5  MULTIPLY HSRL (355,532,1064) N/A 

USRL (UAVs) 6,000 0.83 N/A 

OPCs, aethalometer, 
backscatter sondes, gas 
concentration measurements, 
temperature, humidity, aerosol 
sample collection 

various UAVs   WALI Lidar Various instruments 
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In addition to the several aircraft mentioned earlier, airborne measurements can be obtained 

with smaller systems, such as balloons and UAVs. These systems do not have the flexibility 

and the endurance of larger aircraft, nor the ability to carry multiple instruments as part of their 

payload. However, they are cheaper to deploy and can provide valuable insights on 

atmospheric properties (see e.g. (Kezoudi et al., 2021; Renard et al., 2016; Smith et al., 

2019)). 

3.3.2.2. Airborne in-situ systems  

Different aerosol and cloud in-situ instrument packages are deployed on the different airborne 

platforms to answer research questions for the specific scientific missions.The instrument 

package, a short description and the corresponding references are listed in the following. 

Table 3.10. Airborne in-situ packages and corresponding references. 

Instrumentation package Description Reference 

FAAM core aerosol and cloud 
instruments 

PCASP, CDP, CIP15, CIP100, 
2DS, SID2, nephelometer, PSAP, 
meteorological variables, LWC, 
TWC, dropsondes 

(Abel et al., 2014, 2017; 
Darbyshire et al., 2019; Rosenberg 
et al., 2012; Ryder et al., 2015, 
2018; Tsekeri et al., 2018; Young 
et al., 2016) 

HALO in-situ packages PCASP, CDP, CIP, CIP, 2DS, SID, 
PIP, CAS-DEPOL, nephelometer, 
PSAP, CPC, Grimm OPC, TD, 
meteorological variables, LWC, 
TWC, dropsondes 

(Krämer et al., 2020; Voigt et al., 
2017) 

Falcon cloud and aerosol 
packages 

PCASP, CDP, CIP, CIP, 2DS, SID, 
PIP, CAS, nephelometer, PSAP, 
UHSAS, meteorological variables, 
LWC, TWC, dropsondes 

e.g. (Petzold et al., 2011; Voigt et 
al., 2010; Weinzierl et al., 2017) 

USRL dust/cloud instrument set POPS, UCASS, COBALD, 
impactors  

(Kezoudi et al., 2021) 

Langley Aerosol Research Group 
Experiment (LARGE) 

CN counter, Nephelometer, Optical 
particle counter 

Microsoft Word - LARGE 
SEAC4RS Experiment 
Description.docx (nasa.gov) 

PCASP = Passive Cavity Aerosol spectrometer Probe, CDP = Cloud Droplet Probe, CIP = Cloud Imaging Probe 

[CIP15 = 15 µm size resolution, CIP100 = 100 µm size resolution], SID = Small Ice Detector mark 2, PSAP = 

Particle soot absorption photometer, POPS = Portable Optical Particle Spectrometer, UCASS = Universal Cloud 

and Aerosol Sounding System, COBALD = Compact Optical Backscatter Aerosol Detector 

 

3.3.2.3. Airborne remote sensing systems  

Depending on the mission the airborne platforms are equipped with different instrumentation; 

among those active and passive instruments for aerosol, cloud, and radiation measurements. 

The instruments most frequently deployed on airborne platforms together with short 

descriptions and references for further specification are listed in the following.  

https://airbornescience.nasa.gov/instrument/all?field_itype_tid=179
https://airbornescience.nasa.gov/instrument/all?field_itype_tid=1463
https://airbornescience.nasa.gov/instrument/all?field_itype_tid=185
https://airbornescience.nasa.gov/instrument/all?field_itype_tid=185
https://airbornescience.nasa.gov/sites/default/files/documents/LARGE_SEAC4RS.pdf
https://airbornescience.nasa.gov/sites/default/files/documents/LARGE_SEAC4RS.pdf
https://airbornescience.nasa.gov/sites/default/files/documents/LARGE_SEAC4RS.pdf
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Table 3.11. Airborne remote sensing instruments, short description, and the corresponding references. 

Instrument / payload Description Reference 

FAAM aerosol lidar Airborne backscatter lidar at 355 nm (Kealy et al., 2017; Marenco 
et al., 2011, 2014, 2016; 
O’Sullivan et al., 2020)  

WALES lidar Combined airborne depolarization sensitive (532 and 
1064 nm) HSRL (532 nm) and WV differential 
absorption lidar 

(Esselborn et al., 2008; 
Wirth et al., 2009) 

FALCON wind lidars Direct detection wind lidar system at 355 nm and 
Coherent wind lidar system at 2 µm 

(Reitebuch et al., 2009; 
Witschas et al., 2017)  

BeCOOL lidar Balloon-borne micro lidar (Ravetta et al., 2020) 

LNG lidar Airborne depolarization sensitive HSRL (355 nm) (Bruneau et al., 2015) 

ALIAS lidar Airborne backscatter lidar at 355 nm (Chazette et al., 2020) 

Amali lidar Polarization-sensitive (532 nm) backscatter lidar 
(355/532 nm or 532/1064 nm) 

(Stachlewska et al., 2010) 

NASA HSRL-2 High Spectral Resolution Lidar, HSRL-capable 
(ext+back) at 355/532nm, backscatter at 1064nm, 
depol at 355/532/1064nm 

(Burton et al., 2018; Ferrare 
et al., 2023; Hair et al., 2008; 
Rogers et al., 2009)  

NASA Cloud Physics 
Lidar 

Backscatter at 355/532/1064nm (McGill et al., 2002) 

NASA HALO lidar Combined airborne depolarization sensitive (532 and 
1064 nm) HSRL (532 nm) and WV differential 
absorption lidar 

(Carroll et al., 2022) 

WALI lidar Water vapor and aerosol Raman lidar at 355 nm (Chazette et al., 2014) 

NASA ER-2 High-
Altitude Cloud and 
Precipitation Radars 

HIWRAP (Ku/Ka), CRS (W), and EXRAD (X) Doppler 
Radars 

(Heymsfield et al., 2023) 

HALO cloud radar Ka-band radar with Doppler capability (Ewald et al., 2019) 

RASTA Airborne multi-antenna Doppler cloud radar at 94GHz (Protat et al., 2004) 

BASTA  (Delanoë et al., 2016) 

MIRAC radar / 
radiometer 

Airborne continuous wave radar at 94 GHz in 
combination with 89 GHz passive channel 

(Mech et al., 2019) 

Cloud and precipitation 
radars (P-3) 

  

Convair cloud radar   

specMACS Hyperspectral imager (Ewald et al., 2016) 

SMART Airborne hyperspectral observations (Ehrlich et al., 2012; 
Wendisch et al., 2001) 

HAMP Microwave package (microwave radiometers at 
different frequencies) 

(Mech et al., 2014) 

ATR42 Radiometers   
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3.3.3. Spaceborne remote sensing 

Multiple spaceborne remote sensing systems have been deployed in the past 30 years that 

are capable of profiling Earth’s atmosphere for validation purposes. Table 3.11 lists current, 

past, and future instruments. Though some of these instruments are no longer active, inter-

validation activities are expected to continue as researchers seek to characterize the accuracy 

of the observation records they left behind. There is overlap in the operational lifetime of 

numerous instruments, leading to numerous intercomparison assessments (e.g., (Feofilov et 

al., 2022; Lee et al., 2019; Taha et al., 2021)). 

Most of these spacecraft occupy sun-synchronous polar orbits, with varying inclinations and 

fixed equatorial crossing times. CloudSat and CALIPSO originally joined the A-Train satellite 

constellation in 2006 along with MODIS Aqua and others, allowing ground sampling within ~7 

minutes of each other. In 2018, CloudSat and CALIPSO descended from the A-Train, causing 

their equatorial crossing times to gradually occur later in the day. Collocations with the 

remaining A-Train satellites became rare, as the orbits precess with respect to one another. 

CATS and SAGEIII on the International Space Station follow a precessing orbit at a lower 

inclination, with varying equatorial crossing times which allows sampling of the full diurnal 

cycle and coincident observations with other spacecraft in polar orbits. 

Among the spaceborne lidars operational in the 2000s, most have been elastic backscatter 

lidars focusing on atmospheric observations (LITE, CALIOP, CATS) and surface observations 

(ATLAS, GLAS). Though the lidars for the ICESat missions are optimized for surface 

measurements, these instruments also provide atmospheric measurements suitable for 

validation. Special handling is required for ATLAS atmospheric observations due to a “folding” 

effect caused by the instrument's high repetition rate (Palm et al., 2021). The age of 

spaceborne HSRLs began in the mid-2010’s. The HSRL capability was first demonstrated on 

ALADIN as the primary measurement technique (Schillinger et al., 2003). In 2022, the ACDL 

HSRL was launched on China’s Atmospheric Environment Monitoring Satellite (Ke et al., 

2022). The ATLID lidar on the EarthCARE mission will also use HSRL technology (do Carmo 

et al., 2021). 

All the lidars in Table 3.10 provide measurements of the total backscatter return (attenuated 

backscatter in the case of EB lidars), except ALADIN which only receives the co-polar return 

of the circularly-polarized light that is emitted. Because the cross-polar component is not 

measured, the backscatter return will be less than the total backscatter for strongly 

depolarizing targets such as mineral dust and volcanic ash (Gkikas et al., 2023). 

Cloud-aerosol discrimination and aerosol typing retrievals are provided in data products for 

ATLID, CALIOP, and CATS using slightly different information. For aerosol typing, CALIOP 

and CATS both rely on altitude, land-surface type, and measurements of attenuated 

backscatter and depolarization, though at different wavelengths (Kim et al., 2018; Nowottnick 

et al., 2022; Tackett et al., 2023). CATS also incorporates MERRA-2 reanalysis estimates of 

sulfate and carbon loading in its typing scheme. Being an HSRL, the ATLID lidar will have the 

benefit of using measured lidar ratios in addition to depolarization for aerosol typing (Gross, 

Freudenthaler, Wirth, et al., 2015), though at a shorter wavelength than CALIOP or CATS 

(Wandinger, Floutsi, et al., 2023b). 
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Spaceborne atmospheric precipitation measurements began in 1997 with the Precipitation 

Radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM) platform. The 35-

degree inclination of TRMM spacecraft and the Ku band employed are ideal for observing 

tropical precipitation. Later, in 2006, the W-band CPR on board CloudSat launched in tandem 

with CALIPSO at the same sun-synchronous orbit. CloudSat and CALIPSO orbited together, 

measuring the same locations within ~15 seconds of one another. The CloudSat CPR entered 

daylight-only mode for science collection in 2011 due to issues with the spacecraft battery 

(Witkowski et al., 2018). In 2015, the Dual-frequency Precipitation Radar (DPR) was launched 

onboard the Global Precipitation Measurement (GPM) platform with a 65-degree inclination 

as a successor of the TRMM-PR. It features two radars operating at Ku- and Ka-bands. 

Relative to the TRMM precipitation radar, the DPR is more sensitive to light rain rates and 

snowfall. Simultaneous measurements by the overlapping of Ka/Ku-bands of the DPR can 

provide information on particle drop size distributions over moderate precipitation intensities. 

The GPM Core Observatory also features the multi-channel GPM Microwave Imager (GMI) 

which is a conically-scanning multi-channel microwave radiometer with thirteen channels 

ranging in frequency from 10 GHz to 183 GHz. The GMI uses a set of frequencies that have 

been optimized over the past two decades to retrieve heavy, moderate and light precipitation 

using the polarization difference at each channel as an indicator of the optical thickness and 

water content and precipitation systems. GMI is used as a calibrator of a constellation of 

spaceborne imagers and sounders to unify precipitation estimates. 

Solar occultation measurements from the SAGE series and ACE-MAESTRO also provide 

profiles of aerosol extinction that can be used for intercomparisons with lidar observations in 

the stratosphere (e.g.,(Kar et al., 2019)). Cloud/aerosol discrimination becomes challenging 

near the tropopause for solar occultation measurements (Kovilakam et al., 2023), therefore 

the most accurate aerosol extinction comparisons are expected within the stratosphere where 

aerosol is more homogeneously distributed compared to the troposphere. 

Spaceborne spectroradiometer measurements from MISR and MODIS provide column AOD 

and cloud occurrence retrievals based on observed radiances. Being imagers with large 

swaths, collocations between the scenes observed by these instruments and those of profiling 

missions can be plentiful. This was particularly true when CALIPSO/CloudSat joined the A-

Train with MODIS Aqua, allowing near-nadir collocations separated by ~1 minute until the 

profiling missions left the A-Train in 2018. Because MISR and MODIS rely on scattered 

sunlight at visible wavelengths, they provide daytime-only observations. MISR has the 

additional capability to retrieve layer heights by taking advantage of parallax in the multi-angle 

fields of view of its cameras. 

Table 3.12. Current and past spaceborne profiling instruments. DW - Doppler wind, EB - elastic 
backscatter, HSR - high spectral resolution 

Instrument Description Variables Altitude 
coverage  

Latitude 
coverage 

Platform Years active 

ACDL Lidar, HSR 
532 nm 

Backscatter, extinction  82° S/N AEMS 2022- 

ATLAS 
Lidar, EB 
532 nm 

Attenuated backscatter, layer 
height 

0 – 14 km 88° S/N ICESat-2 2018- 

ALADIN 
Lidar, DW 

355 nm 

Co-polarized backscatter, 
extinction, lidar ratio, cloud-

aerosol discrimination 
0 – 30 km 85° S/N AEOLUS 2018-2023 

ATLID 
Lidar, HSR 

355 nm 
Extinction, backscatter, 

particle depolarization, lidar 
0 – 40 km 83° S/N EarthCARE 2024- 
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Instrument Description Variables Altitude 
coverage  

Latitude 
coverage 

Platform Years active 

ratio, layer height, cloud-
aerosol discrimination, aerosol 

type 

CALIOP 
Lidar, EB 
532, 1064 

nm 

Attenuated backscatter, 
volume depolarization ratio, 
color ratio, extinction, cloud-

aerosol discrimination, aerosol 
type, cloud ice/water phase, 

layer height 

–2 – 40 km 82° S/N CALIPSO 2006-2023 

CATS 

Lidar EB 
355, 532, 
1064 nm, 

HSR 532 nm 

Attenuated backscatter, 
volume depolarization ratio, 

color ratio, layer height, 
extinction, cloud-aerosol 

discrimination, aerosol type 

–2 – 28 km 51° S/N ISS 2015-2017 

GLAS 
Lidar, EB 
532, 1064 

nm 

Attenuated backscatter, layer 
height, aerosol extinction 

–1.0 – 41 km 86° S/N ICESat 2003-2009 

CPR 
Radar, 

Doppler W-
band 

Radar backscatter, cloud 
heights, ice/water phase, 

optical depth 
–0.5 – 20 km 83° S/N EarthCARE 2024- 

CPR 
Radar, W-

band 

Radar backscatter, cloud 
heights, ice/water phase, 

optical depth 
0 – 25 km 82° S/N CloudSAT 2006-2023 

DPR 
Radar, Ku & 

Ka-band 

Radar backscatter, reflectivity 
profiles, cloud heights, cloud 
type, precipitation heights, 

precipitation type, precipitation 
profiles, PSD, 

surface precipitation 
 

0 – 19 km 65° S/N GPM 2014- 

PR 
Radar, Ku-

band 

Radar backscatter, reflectivity 
profiles, cloud heights, cloud 
type, precipitation heights, 

precipitation type, precipitation 
profiles, PSD, surface 

precipitation 

0 – 20 km 35° S/N TRMM 1997-2015 

ACE- 
MAESTRO 

Solar 
occultation 

spectrophoto
meter 

Stratospheric aerosol & PSC 
extinction, layer height 

0 – 100 km 85° S/N SCISAT 2003- 

SAGE-II 
Solar 

occultation 
Stratospheric aerosol & PSC 

extinction, layer height 
10 – 80 km 80° S/N ERBS 1984-2005 

SAGE-III/M3M 
Solar 

occultation 
Stratospheric aerosol & PSC 

extinction, layer height 
6 – 30 km 80° S/N Meteor-3M 2002-2006 

SAGE-III/ISS 
Solar, lunar 

occultation, 9 
wavelengths 

Stratospheric aerosol 
extinction, layer height 

10 –85 km 70° S/N ISS 2017- 

GOMOS 
Stellar 

occultation, 
500 nm 

Stratospheric aerosol 
extinction 

20 –100 km 82° S/N Envisat 2002-2012 

OMPS-LP 
Limb 

scattering, 6 
wavelengths 

Stratospheric extinction, layer 
height 

0 – 80 km 81° S/N JPSS/ S-NPP 2011- 

OSIRIS 
Limb 

scattering, 
750 nm 

Stratospheric aerosol 
extinction, cloud top altitude 

5 –100 km 82° S/N Odin 2001- 

SCIAMACHY 
Limb 

scattering 
Stratospheric aerosol 

extinction 
0 – 92 km 82° S/N Envisat 2002-2012 

SGLI 

Imaging 
spectroradio

meter, 17 
bands 

Cloud and aerosol occurrence, 
cloud height 

N/A 90° S/N GCOM-C 2017- 
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Instrument Description Variables Altitude 
coverage  

Latitude 
coverage 

Platform Years active 

MISR 

Multi-angle 
imaging 

spectroradio
meter 

Column AOD, cloud 
occurrence, layer height 

N/A 90° S/N Terra 1999- 

MODIS 

Imaging 
spectroradio

meter, 36 
bands 

Column AOD, cloud 
occurrence 

N/A 90° S/N Terra 1999- 

MODIS 

Imaging 
spectroradio

meter, 36 
bands 

Column AOD, cloud 
occurrence 

N/A 90° S/N Aqua 2002- 

GMI 
Radiometer - 

13 bands 
Brightness temperatures from 

10 GHz to 183 GHz 
N/A 65° S/N GPM 2014 - 

POLDER 

Radiometer, 
9 bands;, 

polarimeter, 
3 bands 

Column AOD, cloud 
occurrence, aerosol layer 

height 
N/A 90° S/N PARASOL 2004-2013 

HARP2 
Polarimeter, 

4 bands 
AOD, aerosol  layer height N/A 90° S/N PACE 2023 

SPEXone 
Multi-angle 
polarimeter, 
385-770 nm 

AOD, aerosol layer height N/A 90° S/N PACE 2023 

3MI 
Multi-angle 
polarimeter, 

410-2130 nm 

AOD, cloud occurrence, 
aerosol layer height 

N/A 90° S/N Metop-SG A planned 

  

3.4. Spatiotemporal representativeness/scene homogeneity and co-

location criteria for correlative measurements  

For the validation of satellite data, measurements are used and combined in different ways, 

and the validity of the comparisons depends on various factors. Particular attention should be 

paid to the spatiotemporal representativeness of both the satellite observation to be validated 

and the suborbital measurement to be used for validation. Depending on the method, a 

meaningful comparison or validation must take into account the following points, which, among 

others, also determine the criteria for co-location for the correlative measurements: 

● Length and time scale of the analyzed variable 

● Scene homogeneity  

● Statistical representativeness of the sampling 

Especially for the geophysical variables the co-location criteria depend on parameter, scene 

and even sensor (algorithm). In this subsection, the problem of collocating measurements is 

outlined, without claiming to be complete. A recommendation concerning e.g. minimum 

measurement duration around satellite overpass, maximum distance from satellite ground 

track, geographical location (e.g. ocean, mountainous), and scene homogeneity for specific 

collocated measurements goes beyond this Chapter and will be addressed in Chapter 5 of 

this document. 
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Length and time scale of the analyzed variable 

The length and time scale are strongly dependent on the observed variable. While in general 

aerosol properties have longer temporal and spatial scales, clouds and precipitation properties 

have relatively large spatial and temporal variability. Those aspects have to be carefully 

evaluated to define the needs and criteria for co-location and statistical analysis. Aspects to 

be additionally considered on different assumptions of homogenization include e.g. biases due 

to differences in sources for meteorological datasets, differences in retrieval techniques which 

include different approaches of the measurements (e.g., the assumption in the PSD and/or 

precipitation types to interpret radar reflectivity profiles, lidar integrated extinction with AOD 

from sun-photometer, the application of night-time derived lidar ratios on daytime retrievals), 

and the impact of the location (e.g. over land or over ocean). 

Validation of aerosol properties is intrinsically linked to the difference in time and location for 

both observations, often leading to uncertainty due to collocation or representation. To 

minimize the uncertainty related to collocation, the scales and time at which each property 

naturally varies must be assessed (e.g., (Sayer et al., 2020)). The spatiotemporal scales of 

the extensive and intensive properties are directly linked to the processes governing the 

emission, transport, removal, and transformation of the aerosol particles. 

● Globally, a time difference of 30 minutes typically induces from 0.011–0.035 variation 

in AOD and 0.03-0.07 variation in aerosol fine-mode-fraction, but there is a large 

disparity in different regions (Anderson et al., 2003; Sayer et al., 2020; Shinozuka & 

Redemann, 2011). Biomass burning regions tend to show the largest and fastest sub-

daily AOD variability.  

● For locations influenced by mixed aerosol types, the distance at which the standard 

deviation in the aerosol optical depth varies by 0.14 is roughly 50 km, while the similar 

variation in Angstrom exponent occurs at roughly 20 km (LeBlanc et al., 2022).   

● Generelly, for column AOD a spatial and temporal scale recommended  for validation 

is within 30 km and 30 min, respectively (Park et al., 2020). 

● Near clouds, the aerosol experiences much greater spatio-temporal variations, with up 

to 100% change in optical depth, roughly 55% in size occurring at scales of less than 

13 km (Eck et al., 2014; Yang et al., 2022).  

● However, AOD differences over low-level clouds is similar to that in the neighboring 

clear skies (< 0.01 in AOD) for the same height levels (Shinozuka et al., 2020). 

In a similar way, validation of cloud and precipitation properties are dependent on time and 

location of the observations. But, the temporal and spatial scales of cloud and precipitation 

properties are much more variable than for aerosol properties. This variability requires as 

much collocated, concomitant, and scaled observations as possible to mitigate unwanted 

biases and uncertainties in the comparison (e.g. (Kirstetter et al., 2012, 2015)). Imperfect 

matches of collocation, differences in time and space and scales of the observations lead to 

large uncertainties in the comparison and its representativeness. The spatial variability of 

rainfall at small scales and any resolution difference may cause differences in the statistical 

sampling properties of the extremely variable rainfall process (e.g., (Habib et al., 2004)). Such 

statistical noise when comparing two observations is especially significant for short 
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accumulation periods (1 hour or less; (Ciach & Krajewski, 1999)). The spatio-temporal scales 

are linked to the type of cloud and precipitation, the precipitation pattern as well as to the 

environmental / meteorological situation, e.g. turbulence and convection.  

In addition, approaches for one-to-one comparisons account for the resolution of the satellite 

products and the time averages, the vertical sampling/smoothing of the data and the handling 

of uncertainties. 

Scene homogeneity 

To combine satellite- and ground-based measurements, a key piece of information is the 

spatial representativeness of the surface sites and their area coverage. The same assumption 

should be taken into account for temporal representativeness as well. One approach is to list 

and evaluate the methods available to infer the representativeness of a measurement related 

to the satellite observation (both spatially and temporally). Another approach is to use an 

ensemble-based method in which a statistical algorithm employs a series of measurements 

over time, with errors and noise, and generates estimates of unknown variables that show 

more accurate and precise results than those single measurements alone. This approach 

relies on estimating a joint probability distribution over the observed variables at each time 

period the measurements and observations were carried on. In general, conducting these 

approaches one can get a generally good agreement on large scales, however, the regional 

context can present significant differences. Ground-based data may strongly profit from 

information achieved by the use of airborne and satellite data: correlations may be used to 

define radii and areas of influence for each local station to spread this sparse and valuable 

information spatially around each site, based on a sound statistical approach. In practical 

approaches, one would have to consider the time frame in which to conduct the observations 

carrying one: hourly, daily, monthly, and yearly means in a way the product errors are smeared 

out as the temporal window increases, one also should consider seasonal approaches and 

bearing in mind the seasonal hemisphere differences. 

These approaches aim to improve the spatial coverage of satellite data and better 

accuracy/precision from the ground-based measurements and to define collocation 

requirements. 

Statistical representativeness 

Highly variable properties often have the need for statistical comparisons. The same is true if 

the measurement location and the satellite do not have sufficient collocation. Approaches for 

statistical comparisons, however, have a strong need for performing representativeness 

analysis. These analyses have to include the collocation and time scale of the measurements, 

the sampling volume, uncertainties, sensitivities, and resolution. A critical point is also a time 

shift of the measurements to be compared, as atmospheric properties may be affected by 

diurnal cycles. Representativeness analysis can be performed using e.g. information from 

models to investigate the representativeness of the measurement location. Suggested metrics 

for the comparisons include an evaluation of the distribution as well as its mean, median, and 

standard deviation.  
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3.5. Quality of measurements 

The comparison of suborbital to satellite observations is only sensible in the context of 

observational uncertainties because the definition of successful validation is the agreement of 

two observations within their measurement uncertainties and spatiotemporal sampling 

context. The primary sources of uncertainties are random and systematic errors in 

fundamental measurements and in the retrieval algorithms, but the spatiotemporal variation of 

observables within the measurement volume discussed in section 3.4 provides an additional 

source of error that is often difficult to quantify. Some types of systematic and random errors 

can be characterized with careful calibration activities (known unknowns) and quality 

assurance/control, but some uncertainties in suborbital observations are impossible to 

constrain, e.g., uncertainties due to covariance of errors in retrievals or uncertainties due to 

uncharacterized spatiotemporal variability. In subsection 3.5.1, we describe the main sources 

of uncertainties in suborbital lidar, radar, and in-situ observations as they pertain to validation 

efforts. In subsection 3.5.2 we describe the quality assurance and control protocols that are 

ideally applied to these measurements.        

3.5.1. Measurement uncertainties 

3.5.1.1. Lidar 

In order to deliver a particle backscatter coefficient, the molecular contribution of the 

received backscattered signal has to be subtracted. The pure molecular backscatter 

coefficient can be determined from temperature and pressure profiles, e.g. from radiosonds 

or model analysis. With the so-called Rayleigh fit the lidar signal is fitted to the molecular signal 

in a particle-free height range. This enables us to check the molecular contribution to the 

signal. At 355 and 532 nm the molecular signal is strong enough to derive a particle 

backscatter coefficient with low uncertainties. However, at 1064 nm the molecular contribution 

to the signal is weak. Therefore, it is more challenging to derive a particle backscatter 

coefficient in the near-infrared (e.g.(Vaughan et al., 2019)). 

There are several techniques to derive the particle extinction coefficient. Elastic backscatter 

lidars need to assume a lidar ratio (extinction-to-backscatter ratio) which depends on aerosol 

type and often varies with altitude. Therefore, the uncertainties are higher compared to a direct 

measurement of the particle extinction coefficient (using the Raman method or HSRL). 

Observations from sun photometers or satellite spectroradiometers, polarimeters, etc. can be 

used to constrain the column-integrated extinction coefficient (AOD), where available. 

Advanced aerosol typing algorithms can help constrain aerosol types and related uncertainties 

in assumed lidar ratios for elastic backscatter retrievals (Kim et al., 2018; Omar et al., 2009; 

Tackett et al., 2023).  

Raman and HSR lidars provide a direct measurement of the extinction coefficient without 

additional assumptions. Due to the weaker signals in the Raman channel, and because the 

extinction profiles are determined from the derivative of the log of the signal (more noisy), 

longer vertical smoothing intervals are necessary compared to the measurements of the 

backscatter coefficient. Furthermore, the particle extinction coefficient is not calculated via a 

signal ratio (as backscatter and depolarization), but uses only one channel. Therefore, the 

overlap function has to be known to derive the particle extinction coefficient below the full 

overlap height (Comerón et al., 2023; Wandinger & Ansmann, 2002). Some lidar systems use 
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dedicated near range telescopes to measure the extinction coefficient closer to the receiving 

telescope  (e.g., (Engelmann et al., 2016)). This is not an issue from space, because the full 

overlap is reached well above the heights of interest.  

Raman lidar measurements are often limited to night-time observations and longer temporal 

averaging periods of the extinction coefficient because of the weak signal of the Raman 

scattering. However, first measurements with the pure rotational Raman technique provided 

daytime observations of the extinction coefficient (Arshinov et al., 2005; Thorsen et al., 2015; 

Turner et al., 2002)). 

The uncertainties in derived lidar ratios combine the uncertainties of the particle backscatter 

and particle extinction coefficient (Gross, Wiegner, et al., 2011). Several recent studies 

discussed the best settings in terms of vertical resolution of the backscatter (i.e., vertical 

smoothing) and extinction coefficient (i.e., the number of height bins for the linear regression) 

in order to calculate the lidar ratio. (Iarlori et al., 2015) proposes an effective resolution, where 

the number of height bins for vertical smoothing of the backscatter is approximately 78% of 

the number of height levels used to derive the extinction coefficient. Especially in thin aerosol 

layers the effective resolution of the lidar ratio gains importance.  

The main uncertainties of the particle depolarization ratio emerge from the polarization-

sensitive optical components in a lidar system. Proper knowledge of their behavior is essential 

to reduce systematic uncertainties. Main factors are a misalignment of the plane of polarization 

in the emitter with respect to the receiver, the diattenuation of the receiver optics, and the gain 

ratio between the two detection channels needed for the measurement of the depolarization 

ratio. (Belegante et al., 2018) proposed methods to assess the first two uncertainties. The gain 

ratio should be monitored by frequent Δ90° calibrations (Freudenthaler, 2016; Freudenthaler 

et al., 2009). A polarimetric lidar simulator enables a complete assessment of the polarization-

sensitive parts of a lidar system (Bravo-Aranda et al., 2016).  

3.5.1.2. Radar 

Radars are widely used for cloud and precipitation studies, but they are subject to specific 

uncertainties (i.e., attenuation depending on the radar frequency, ground clutter, beam 

blocking, variation of the reflectivity with height, conversion from reflectivity to precipitation 

rate, etc. See (Delrieu et al., 2009; Villarini & Krajewski, 2010) for a summary). These 

uncertainties are associated with parameter estimation, as well as with the observational 

system and measurement principles. Another source of uncertainties is physical processes 

that are not fully understood.  

Radar miscalibration is caused by changes in the radar constant over time. These changes 

can be related to the deterioration of different radar components and thermal effects. Different 

methods exist to calibrate radar or monitor its calibration over time (e.g. balloon-borne target, 

radar profiler, frequency shift reflector, transponder).  

Signal attenuation is a common problem with radar systems operating at wavelengths shorter 

than S-band or C-band (although this attenuation at these frequencies can occur in extreme 

cases). Attenuation affects radars operating at smaller wavelengths more significantly, 

however, it has to be taken into account for all evaluations.  
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A common component in radar applications is to distinguish between meteorological and non-

meteorological radar echoes. Ground clutter and partial beam blocking can occur when the 

radar beam intersects the ground (especially in mountain regions) as well as fixed objects 

obstructing the radar beam.  

Anomalous propagation of the radar beam in the atmosphere causes the beam to propagate 

at different altitudes than expected. It occurs in the presence of strong gradients of refractivity 

with height, e.g., in the presence of shallow moist layers or nocturnal inversions.   

Partial beam filling can lead to range degradation which is a problem due to the radar beam 

geometry. At greater ranges, the sampled volume increases, and, therefore, small but intense 

features of the rain system are averaged out, leading to a bias in the measured reflectivity. 

Radar variables sampled aloft with ground radars (e.g., reflectivity, differential phase) are not 

always representative of the surface precipitation. These variables vary with height because 

of various precipitation processes (e.g., melting, aggregation, collision-coalescence, 

evaporation). In addition to the increase in beam elevation with distance, beam widening 

degrades the vertical sampling of the vertical structure of precipitation. This 

representativeness issue is increased in complex terrain where ground radars must sample 

precipitating systems at higher elevation angles. Vertical variations of radar variables are one 

of the major sources of error in the estimation of precipitation by weather radar. Correcting 

these errors allows radar variables measured aloft to be projected onto the ground before they 

are converted into a precipitation rate (Delrieu et al., 2009).   

3.5.1.3. In-situ uncertainties 

Data from in-situ probes often come along with a value-added product that provides the best 

estimate of relevant geophysical parameters of interest that are not probe-specific. This 

enables the use of data by others who are not as familiar with the probes themselves. 

Quantities included in a value-added product can include the best estimate of particle size 

distributions over the complete range of particle sizes integrated from contributions of probes 

that were deemed to before best during the field campaign, as well as best estimates of total 

particle concentration, mass content, phase, extinction, bulk reflectivity factor and dominant 

ice crystal shape (or distributions of shape). 

It is important to quantify the uncertainties associated with the measurements of aerosol and 

cloud particle properties. Each probe has to follow its own calibration protocol and the 

observations are subject to estimation of the uncertainties for the specific instrument.  

Broadly speaking, uncertainties include statistical counting errors, errors due to variability in 

microphysical properties in similar environmental conditions, errors induced by the 

measurements themselves, and errors associated with the processing of the data. From 

Poisson statistics, counting errors are proportional to the square root of the number of particle 

counts in the size bins that the measured particles are sorted into. Provided that the averaging 

time and bin sizes are chosen appropriately and that probes with sufficiently large sample 

volumes are used, the statistical counting errors are typically smaller than the degree of 

variability in cloud and aerosol microphysical properties. Probes and averaging periods must 

be chosen appropriately due to a trade-off in a sufficiently large sample size and a small 

enough averaging period to measure the inhomogeneity in the cloud and aerosol fields. 
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Techniques that extract atmospheric samples through an inlet also need to carefully account 

for changes in the sample environmental conditions through the inlet (i.e., temperature, 

pressure, and especially relative humidity). Moreover, air is typically warmed and dried behind 

an inlet, leading to a loss of the water component of the particles. Knowledge of the 

humidification curves is required to pass from the properties of the dried particles to the 

ambient conditions, and this may increase the uncertainty of the observations (depending on 

the ambient humidity and aerosol type). Inlets may display a size-dependent efficiency, 

affecting the observed PSDs or mass concentrations before they reach the instruments. It is 

therefore important that the impacts and characteristics of inlets are reported alongside 

aerosol measurements. 

Some aerosol observations are inextricably linked to the measurement technique rather than 

a unique geophysical property (e.g., black vs. elemental carbon; condensation nuclei 

concentration greater than an instrument-defined Kelvin condensation diameter). It is 

therefore hard sometimes to draw comparisons across in-situ observations from different 

instrument manufacturers and models or sample treatments, even if the underlying 

measurement techniques are similar. For example, OPCs do not directly measure size-

resolved particle number, but cross-section-resolved particle number (Rosenberg et al., 2012). 

To relate the cross-section to particle size, an assumption on the refractive index is needed 

(which depends upon the composition). Moreover, a particle shape is required (usually 

assumed spherical): large uncertainties for sizing non-spherical particles may arise. Moreover, 

there is uncertainty in how the size of a non-spherical particle should be defined (e.g., 

(McFarquhar & Black, 2004; McFarquhar & Heymsfield, 1998; Wu & McFarquhar, 2018)) and 

the determination of the sample volume and its size dependence can vary between probes of 

the same type. 

Bulk samples may be altered between the time of collection and the time of analysis because 

volatile components may evaporate and chemically active components may react, thus 

affecting the outcome. The state of hydration of the aerosols will also be affected as the sample 

is exposed to varying temperature and humidity conditions between sampling and analysis. 

For optical array probes specifically, care must be taken in how the compressed data are 

converted into geophysically relevant quantities. Several steps in these algorithms are used, 

and include algorithms for correcting the sizing of out-of-focus particles and fogged or stuck 

bits, corrections for shattered particles and interarrival time analysis, and identification of 

corrupt images and noise removal. 

Determining the overload time (i.e. the time when many cloud particles arrive at the same 

time, preventing some of them from being recorded) can complicate the analysis, especially 

in updrafts when overloads tend to occur more frequently. There are ongoing efforts to try to 

provide some standardization and benchmarking of the processing algorithms. 

Precipitation gauge measurements can be affected by uncertainties (for example, wind 

undercatch, evaporation, snow) and lack areal representation, which becomes particularly 

problematic for intense rainfall with high spatial variability (e.g. (Zawadzki, 1975)). The spatial 

representativeness of each gauge measurement depends on the autocorrelation distance of 

precipitation (for example,(Delahaye et al., 2015)). 
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3.5.2. Quality assurance (QA) / quality control (QC) 

3.5.2.1. Lidar 

Aerosol lidar QA/QC. The quality of aerosol lidar observations depends on multiple factors. 

Firstly, a proper alignment of the optical components of the emitter and receiver part as well 

as the alignment with respect to each other is essential. Knowledge of the polarization-

sensitive parts in a lidar system determines the quality of polarization measurements. Regular 

quality control of the lidar is necessary and needs to be documented. There are several 

protocols usually developed by large lidar networks. Emerging from EARLINET, the ACTRIS 

Centre for Aerosol Remote Sensing (CARS) does provide standard quality assurance 

procedures (Freudenthaler et al., 2018). These procedures include the telecover test, the 

Rayleigh fit, the zero bin test, and the dark signal measurement.  

Telecover test. Shortcomings of the optical and optomechanical design or misalignments have 

their largest effect in the near range. A test for this range is based on the fact that the 

backscattered photons collected by different parts of the telescope of a lidar system must give 

the same range dependency of the signal, and if not, the range dependency of the whole 

signal is uncertain. 

Zero bin test. The slope of the signal in the near range changes significantly if the zero bin for 

the range-corrected signal varies. In case pre-trigger samples are recorded, the zero-bin can 

easily be detected due to the signal peak from diffuse straylight. In case no pre-trigger samples 

are recorded, the zero-bin can be detected by means of a near-range target with a known 

distance to the lidar. 

Rayleigh fit. The Rayleigh fit (i.e. the comparison of lidar signals in clean air ranges with the 

calculated signals from air density) is the only absolute calibration of lidar signals. To be able 

to calibrate lidar signals with Rayleigh (molecular) backscatter, the optoelectronic detection 

systems must have a high dynamic range.  

Dynamic range. For the photon counting signal dead time correction in the near range is 

necessary. Due to the large signal in the very near range, the counted photons might not 

reflect the real signal. In contrast, the analog signal suffers from distortion in the far range. 

Some lidar systems use combined analog/photon counting data acquisition, for those, signals 

have to be combined, with carefully determining the appropriate range and signal strength. 

Dark signal measurement. Analog signal detection can suffer from signal distortions. These 

signal distortions can be determined with so-called dark measurements if they are 

independent of the lidar signal. The measured dark signals without atmospheric backscatter 

can be subtracted as range-dependent offset from the normal lidar signals.  

Furthermore, the quality control of the polarization measurements is discussed by 

(Freudenthaler, 2016). Regular Δ90° calibrations (Freudenthaler, 2016; Freudenthaler et al., 

2009) are recommended to control the gain ratio between the cross and parallel detection 

channel to ensure a high quality of the measured depolarization ratio. 

3.5.2.2. Radar 

The quality of cloud and precipitation radar observations can be affected by a number of 

issues, for example, radar calibration, attenuation, and clutter contamination, to name a few. 

https://www.actris.eu/topical-centre/cars
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The list of potential QA/QC measures is radar-dependent, but radar calibration and calibration 

monitoring are universally important.  There are many papers describing different types of 

calibration methods. For example, (Ewald et al., 2019) gave a comprehensive overview of the 

calibration of an airborne cloud radar, and (Chandrasekar et al., 2015) gave a comprehensive 

overview of calibration approaches for ground-based radars that are recommended for radars 

used for the validation of NASA GPM observations. Here we summarize the main calibration 

approaches and methods for calibration monitoring. 

External target calibration. Calibration using external targets with known radar cross sections, 

such as a sphere or corner reflector, is considered to be the most comprehensive calibration 

that characterizes all parts of a radar, including transmitter, receiver and antenna. Additionally, 

by scanning across the target the radar antenna pattern can be characterized. The challenge 

of this calibration method comes from the need to minimize the background clutter signal and 

finding a suitable location for the calibration target. This can be achieved either by selecting a 

calibration target with an RCS that is significantly higher than clutter, or placing the target such 

that the clutter single is minimized. Various techniques for the deployment of calibration targets 

are discussed in the literature (e.g., (Toledo et al., 2020)).  

Engineering calibration entails the characterization of radar system subcomponents 

individually, i.e. by measuring transmit power and characterizing the radar receiver 

(Chandrasekar et al., 2015; Ewald et al., 2019). This can be performed using either external 

equipment, such as a signal generator for receiver calibration and power meter for transmitter 

calibration, or built-in components, e.g. building noise diodes. This calibration method is 

logistically easier to carry out and does not require the use of an external calibration target. 

However, it does not allow a characterization of the system as a whole.  

Calibration transfer between radars. If external calibration cannot be performed, alternative 

methods can be used to check the radar calibration. One method is the calibration transfer 

from one radar to another. This can be done either using other ground-based radar 

observations, which overlap with the measurements from the uncalibrated radar or using 

spaceborne radar observations. Both, calibration transfer from a calibrated ground-based 

radar and comparison of satellite-based radar and ground-based radars are possible. (Li et 

al., 2005; Protat et al., 2011; Tanelli et al., 2008; Toledo et al., 2020; Warren et al., 2018).  

Calibration monitoring using rain observations. 

Polarimetric self-consistency. For scanning dual-polarization radars, polarimetric self-

consistency (Gorgucci et al., 1992) can be utilized for calibration monitoring purposes 

(Myagkov et al., 2020). To carry out this method observations of reflectivity factor, differential 

reflectivity, and specific differential phase in rain are needed. This approach provides a 

relatively easy method for calibration monitoring, which can be used by scanning radars. 

Using disdrometer-based calibration monitoring of raindrop size distributions, expected 

polarimetric radar variable values can be computed. For the best results, disdrometers and 

radars should be located with the least possible distance between the radar and disdrometer 

sampling volumes, ideally within a few tens to a few hundred meters between the observation 

volumes. Because of the inherent uncertainty in this method, often the comparison is carried 

out in a statistical sense.   
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94 GHz reflectivity “saturation” in rain is another calibration monitoring method. It can be 

applied to W-band cloud radars only, exploiting the fact that at this frequency, the radar 

reflectivity factor of rain measured at a range of 250 m is approximately constant for a range 

of rain rates (Hogan et al., 2003), as a result of the combined effects of attenuation and non-

Rayleigh scattering.  

Radar-rain gauge combination uses the fine spatio-temporal resolution of radar and the local 

accuracy of gauges for improved QPE (for example, (Delrieu et al., 2014)) and can be applied 

operationally. Quality controls can be performed by assessing the local discrepancies between 

radar and gauge precipitation estimates. 

Additional QA/QC can be applied to radar observations. Numerous techniques have been 

developed over decades of practice, sometimes involving machine learning (e.g., 

(Lakshmanan, 2007)) and more recently relying on polarimetric technology to filter out non-

weather echoes via hydrometeor classification (e.g., (Park et al., 2009)). Radar Quality Indices 

can be computed operationally to qualitatively represent the radar QPE uncertainty associated 

with reflectivity changes with height and near the melting layer (e.g., (Zhang et al., 2011, 

2016)).  

3.5.2.3. In-situ quality assurance 

In-situ QA/QC. In section 3.2.4 we have indicated a range of in-situ observations useful for 

satellite calibration and validation, and each comes with its own QA/QC-specific methods. We 

will avoid here getting into the details of each instrument and we will approach the issue in 

general terms, as there are some common points to be considered: 

Sampling in clean air flow. Specific issues must be addressed for airborne measurements. 

The location of probes should be chosen to sample a clean air flow away from the boundary 

layer of the aircraft where regions of amplified or reduced particle concentrations exist.  

Probe design. Moreover, there is the possibility of large ice crystals shattering on probe tips, 

generating a field of small ice crystals that are measured when swept through the probe 

sample volume. Probe tips have been redesigned to sweep these artifacts away from probe 

sample volumes. Further, algorithms based on the distribution of particle interarrival times in 

a sample volume have been developed that allow for the removal of the majority of these 

artifacts. In mixed-phase clouds, care must be taken to identify times when icing occurs that 

can generate spurious data, e.g. bulk water probes can falsely detect cloud conditions if 

supercooled water has frozen on probe inlets. 

Account for changes in the sample conditions. These considerations lead many investigators 

to carefully condition the sample to a well-controlled, known set of environmental conditions 

by, for example, active drying, pressure-controlling, and thermally conditioning the inlet sample 

stream. These limitations can be overcome with open-path probes that sample the ambient 

air without making use of an inlet.  

Sufficiently large sample. To be able to retrieve statistically representative properties of the 

aerosol and cloud particles a sufficiently large sample needs to be observed. The amount of 

collection time required for a sample to be significant is dependent upon the sampling method 

and the atmospheric conditions. On the other hand, a long sampling time affects the data 

resolution (spatial and/or temporal). A good knowledge of the observation methods allows one 
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to find the optimal compromise between the resolution and statistical significance of the 

collected samples, allowing at the same time to reduce statistical uncertainties and to measure 

inhomogeneity in cloud fields. The relative statistical uncertainty of a sample is typically 

proportional to 1/√𝑁, where 𝑁 is the sample size (Poisson statistics). 𝑁 ~ 𝑑 ·  𝑡, where 𝑑 is 

the concentr time (McFarquhar et al., 2007). 

Redundancy. Often using a broad range of sampling probes is useful to build redundancy, e.g. 

for field experiments that would be hard to repeat in case of instrumental issues and artifacts. 

This also reduces uncertainties and instrument-specific interpretations of the observations: 

when multiple instruments report the same quantity, a reassurance on the results is brought, 

and when they do not we have a feel of the uncertainties that are directly related to the 

sampling techniques.  

3.6. Recommendation to determine criteria for validation exercises 

There are several ways to perform a validation exercise (e.g. (Loew et al., 2017) and 

references herein). Among these, there is the comparison between ‘coincident/collocated’ 

observations.  

The first step of this process is to generate a statistically significant number of data couples 

assumed to measure the same variable. Once obtained, this dataset can be used to calculate 

a metric estimating the differences between the reference and the to-be-validated 

observations. The final objective of a validation exercise is to identify sources of inconsistency, 

due to either instrumental or processing algorithm issues, and hopefully to identify sources of 

uncertainties and give indications for possible improvements; a common by-product is an 

observation-based estimation of accuracy to complement the ones derived by uncertainty 

budget. 

The produced metrics include several contributions that should be somehow accounted for to 

correctly interpret the results in terms of the diagnostic of the validated observations. In 

addition to the uncertainties associated with the reference measurement, there is a 

contribution due to their representativeness. Besides the fact that the concept of perfectly 

coincident/collocated observations is practically never satisfied because of the difference in 

spatial and temporal sampling among different measurement techniques. Because of the 

trade-off between representativeness and the need to build a statistically significant dataset 

in the shortest possible time, match-up criteria are generally adopted to generate the couples 

of  ‘coincident/collocated’ observations. The simplest way to implement the match-up criteria 

is by adopting, for a given geophysical parameter, two threshold values: one for spatial 

matching (maximum distance between geographical position associated to the 

measurements) the other for temporal matching (absolute maximum time lag between 

acquisition times). Observations are considered matching if the distance and the acquisition 

time lag are both below the set of adopted thresholds. Thresholds are surely easy to implement 

to generate couples of matching observations but introduce a discretization that is unphysical. 

Moreover, there is the issue of objectively defining the threshold values; when adopting this 

criterion it is difficult to evaluate the uncertainty due to representativeness of the reference 

measurements. It is not always clear the rationale behind the definition of adopted threshold 

values. An objective approach to set the threshold values in principle, could be to derive them 

from the requirements in temporal spatial sampling (e.g. 

https://space.oscar.wmo.int/observingrequirements). 

https://space.oscar.wmo.int/observingrequirements
https://space.oscar.wmo.int/observingrequirements
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Even adopting the threshold criteria there are improvements that can be implemented, e.g.in 

terms of spatial horizontal variability. Atmospheric variables may have different variability 

scales meridionally or zonally due to the circulation patterns. This may generate a sort of 

ellipses, rather than a circle, of spatial match-up area.  Similarly, a dependence of the 

horizontal variability scales is expected also to depend on atmospheric level.  

A different approach, from the adoption of thresholds, can be to evaluate quantitatively the 

representativeness of each comparison pair taking advantage of the rich literature available 

for the estimation of representation error, first defined by (Nappo et al., 1982), in the process 

of data assimilation in numerical model (e.g. (Janjić et al., 2018)).  With this approach, a 

weight, based on the estimation of the representativeness error, can be applied when 

producing comparison metrics with the advantages of:  

- removing the discontinuity due to the application of discriminating thresholds, 

- increasing the dimension of comparison dataset 

- accounting explicitly for the representativeness of the reference observation. 

From the point of view of practical implementation of both, use of simple/complex sets of 

thresholds or account for representativeness error, a database of available observations 

should be used. For the representativeness error estimation it is possible to take advantage 

of the methods adopted for the assimilation of observations in numerical models. 
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4. Chapter 4: Correlative metadata and data format  

Plain language summary:  

The aim of this chapter is to describe the information elements that enable large complex 

scientific datasets to be easily read, understood, distributed and attributable by both human 

and machine. This includes both the description of the data format and additional pieces of 

information that are associated with the dataset. 

4.1. Introduction 

In order to derive accurate and meaningful results from the correlative measurements, it is 

crucial to ensure that the metadata and data formats are properly defined and that data are 

reported accordingly to trusted data archives.  

EVDC - ESA atmospheric Validation Data Centre is the selected data archive for the 

correlative network and campaign data for EarthCARE validation teams, though many 

operational networks also have their own data archives. Campaign data are stored in restricted 

areas inside EVDC and not shared outside the Cal/Val teams. All data and the datasets rights 

are protected by the correlative data protocol at https://earthcare-protocol.evdc.nilu.no/.  

A set of standard metadata in a harmonized vocabulary, and files reported in standard data 

formats ensure that the information in each dataset is comparable to other datasets. It also 

avoids information loss in the process of submission and extraction of files, and ensures that 

the data represents the essence of scientific work at a station and of a Principal Investigator. 

Exchange of standard metadata between operational data centers helps collecting and 

displaying relevant information directly in and from the database, in a specified and uniform 

manner. This is especially relevant for networks that have their individual databases and from 

where EVDC harvest the correlative files used for the EarthCARE Cal/Val.  

This correlative metadata and data format chapter describes the requirement and best 

practices for structure and content of data sets that are used by the EarthCARE communities 

and are related to each other by some common attribute or variable.  The purpose of this 

chapter is to provide enough information about the EarthCARE Cal/Val data sets so that users 

can understand their origin, context, quality, and limitations. 

Metadata is essential for facilitating the discovery, access, reuse, and preservation of the data 

sets. Metadata should include information such as: the title, author, date, location, description, 

methodology, variables, units, codes, formats, standards, provenance, version, license, and 

citation of the data sets. Correlative metadata and formats are here based on existing 

metadata standards or schemas that are widely used in a specific domain or disciplines. For 

ESA-EarthCARE the supported data formats are: Hierarchical Data Format (HDF, 

www.hdfgroup.org) and Network Common Data Form (NetCDF,  

https://www.unidata.ucar.edu/software/netcdf/) as primary standards, following the Climate 

Forecast metadata conventions (CF, https://cfconventions.org/; (Hassell et al., 2017)) and/or 

the GEOMS metadata schemas.   

The GEOMS metadata standard is explained in detail in 

https://evdc.esa.int/documentation/geoms/  

https://earthcare-protocol.evdc.nilu.no/
https://www.hdfgroup.org/solutions/hdf5
https://www.unidata.ucar.edu/software/netcdf/
https://cfconventions.org/
https://evdc.esa.int/documentation/geoms/
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4.2. FAIR data principles 

The FAIR data principles (Wilkinson et al., 2016) are a set of guidelines to improve the 

findability, accessibility, interoperability, and reusability of digital assets, such as data sets, 

software, and metadata (https://www.go-fair.org/fair-principles/). FAIR data principles aim to 

make data more machine-actionable, meaning that they can be easily discovered, accessed, 

integrated, and reused by computational systems with minimal human intervention. FAIR data 

principles also support the open science movement, which advocates for the sharing and 

transparency of scientific data and processes. 

One of the key aspects of FAIR data principles is the use of metadata, which are structured 

information that describe, explain, locate, or otherwise make it easier to retrieve, use, or 

manage an information resource, as described above. The correlative metadata and data 

format should follow the FAIR data principles to ensure that the data sets are findable, 

accessible, interoperable, and reusable by both humans and machines. Correlative datasets 

should also adhere to the “as open as possible, as closed as necessary” motto of the Open 

Research Europe policy for the Horizon 2020 and Horizon Europe programmes, which means 

that the data sets should be shared as widely as possible while respecting ethical, legal, and 

security constraints. 

 

4.3. Data format 

The supported and recommended file format types in this best practices document are 

NetCDF and HDF, which both are self-descriptive and commonly used formats.  

The supported metadata standard for these file formats are the Generic Earth Observation 

Metadata Standard GEOMS. This standard is a further development of the metadata standard 

previously implemented for the Envisat Cal/Val activity, but the standard is now further 

generalized and harmonized to be implemented for EVDC, NASA, AVDC (Aura Validation 

Data Centre) and NDACC (Network for Detection of Atmospheric Composition Change). The 

GEOMS standard is described in the GEOMS document, added as Appendix 1.  

One challenge with the EarthCARE input Cal/Val data is the diversity of formats and 

conventions used by different instruments and data providers, as shown in Table 4.1.  

https://www.go-fair.org/fair-principles/


130 
 

Table 4.1. List of networks relevant for EarthCARE, together with their data formats, links to the native 
archives and their ESA EVDC Services readiness levels. 

Different modes of data linkage between ESA EVDC and the primary archives are: 

1) Direct submission to EVDC 

2) EVDC harvest from the networks native APIs 

3) On EVDC Roadmap, stage 1* : on roadmap, work not started 

4) On EVDC Roadmap, stage 2* : on roadmap, work ongoing 

Network Format Description EVDC readiness level 

ACTRIS 
CLOUDNET 

NetCDF Metadata items and vocabulary following the 
specifications in 
https://vocabulary.actris.nilu.no/skosmos/act
ris_vocab/en/  
https://cloudnet.fmi.fi/api/download/ 
 

Harvested to EVDC via 
CLOUDNET and EARLINET 
API’s. Stored in native format 
in EVDC, templates for 
conversion to GEOMS under 
development 

ACTRIS 
EARLINET 

NetCDF Metadata items and vocabulary following the 
specifications in 
https://vocabulary.actris.nilu.no/skosmos/act
ris_vocab/en/  
 
Add link to API 

Harvested to EVDC via 
CLOUDNET and EARLINET 
API’s. Stored in native format 
in EVDC, templates for 
conversion to GEOMS under 
development 

AD-NET NetCDF https://www-lidar.nies.go.jp/AD-Net/ On EVDC Roadmap, stage 1* 

AERONET ASCII https://aeronet.gsfc.nasa.gov/new_web/data
.html 

On EVDC Roadmap, stage 2* 

AERONET-
MAN 

ASCII https://aeronet.gsfc.nasa.gov/new_web/mari
time_aerosol_network.html 
 

On EVDC Roadmap, stage 2* 

ARM NetCDF 
(ASCII and 
HDF allowed 
for external 
data 
products) 

Each datastream can have its own metadata 
format, with the most recent file header 
provided in the data product description. 
(https://www.arm.gov/guidance/datause/for
matting-and-file-naming-protocols) 

On EVDC Roadmap, stage 2* 

e-Profile NetCDF https://archive.ceda.ac.uk/  On EVDC Roadmap, stage 2* 

GALION  TBD  

ICARRT 
(aircraft 
campaigns) 

ICARTT 
(ASCII) 

https://www.earthdata.nasa.gov/s3fs-
public/imported/ESDS-RFC-029v2.pdf,  
https://www.earthdata.nasa.gov/s3fs-
public/imported/ESDS-RFC-019-v1.1_0.pdf 

 

LALINET ASCII http://lalinet.org/index.php/Pilot2012/Measur
ementSpecification 

On EVDC Roadmap, stage 2* 

MPLNET NetCDF V3 products are NETCDF 4, CF compliant 
files, with specific data and metadata formats 
for the NRB, CLD, AER, and PBL products 
(https://mplnet.gsfc.nasa.gov/product-info/) 

On EVDC Roadmap, stage 3* 

NDACC ASCII Ames 
or GEOMS 
compliant 
HDF4 

https://ndacc.larc.nasa.gov/data/formats Direct submission to EVDC 
and/or mirrored between 
NDACC and EVDC. Stored in 
GEOMS format in EVDC.  

OPERA BUFR or 
HDF5 

https://www.eumetnet.eu/activities/observati
ons-programme/current-activities/opera/  

 

Pollynet NetCDF https://polly.tropos.de/  On EVDC Roadmap, stage 3* 

PGN GEOMS H5 https://www.pandonia-global-network.org/  Direct submission to EVDC. 
Stored in GEOMS format in 
EVDC.  

SkyNet NetCDF https://www.skynet-isdc.org   

https://vocabulary.actris.nilu.no/skosmos/actris_vocab/en/
https://vocabulary.actris.nilu.no/skosmos/actris_vocab/en/
https://vocabulary.actris.nilu.no/skosmos/actris_vocab/en/
https://vocabulary.actris.nilu.no/skosmos/actris_vocab/en/
https://aeronet.gsfc.nasa.gov/new_web/data.html
https://aeronet.gsfc.nasa.gov/new_web/data.html
https://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html
https://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html
https://www.arm.gov/guidance/datause/formatting-and-file-naming-protocols
https://www.arm.gov/guidance/datause/formatting-and-file-naming-protocols
https://archive.ceda.ac.uk/
https://www.earthdata.nasa.gov/s3fs-public/imported/ESDS-RFC-029v2.pdf
https://www.earthdata.nasa.gov/s3fs-public/imported/ESDS-RFC-029v2.pdf
https://www.earthdata.nasa.gov/s3fs-public/imported/ESDS-RFC-019-v1.1_0.pdf
https://www.earthdata.nasa.gov/s3fs-public/imported/ESDS-RFC-019-v1.1_0.pdf
http://lalinet.org/index.php/Pilot2012/MeasurementSpecification
http://lalinet.org/index.php/Pilot2012/MeasurementSpecification
https://mplnet.gsfc.nasa.gov/product-info/
https://ndacc.larc.nasa.gov/data/formats
https://www.eumetnet.eu/activities/observations-programme/current-activities/opera/
https://www.eumetnet.eu/activities/observations-programme/current-activities/opera/
https://polly.tropos.de/
https://www.pandonia-global-network.org/
https://www.skynet-isdc.org/
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5) On EVDC Roadmap, stage 3* : on roadmap, work close to finalized 

To facilitate the conversion of data from native formats to CF or GEOMS and internally 

between CF and GEOMS, a number of reporting templates and data conversion routines have 

been made available to data submitters involved in the Cal/Val activities. The file format 

harmonization is ideally done on input level and before the data is made available to the end 

users, but assistance for file conversion is also available from EVDC to the groups that do not 

have expertise or resources to do the file conversion on their side.  

Data formatting templates available at: https://evdc.esa.int/tools/data-formatting-templates/ 

Unformatted ASCII or CSV data, or data from research infrastructures such as ACTRIS-

EARLINET or ACTRIS-CLOUDNET supporting the CF standard, requires a GEOMS 

translation file for converting data to GEOMS before storing the data according to the metadata 

requirements. A GEOMS translation file is a file that specifies how to map the variables and 

attributes from native metadata format to GEOMS. This translation file can be written in any 

scripting language, and is normally only a text file. By using a GEOMS translation file, data 

providers can easily format their data according to the GEOMS standard, and make their data 

available and interoperable for ESA and the Cal/Val community. 

Different measurement principles (e.g radar and lidar) may have different requirements for 

how their output data are reported. For example, a measurement principle that relies on 

spectral analysis may need to report the wavelength, intensity, and resolution of the spectra, 

while a measurement principle that relies on image analysis may need to report the pixel size, 

contrast, and orientation of the images. Therefore, each measurement principle requires a 

specific data reporting template that captures the relevant information and metadata for the 

data. A data reporting template is a standardized document or format that specifies the 

structure, content, and style of the data report. A data reporting template can help ensure the 

consistency, completeness, and quality of the data report, as well as facilitate its discovery, 

access, reuse, and validation by other users or systems. A data reporting template can also 

be aligned with the FAIR data principles to make the data more findable, accessible, 

interoperable, and reusable. 

In addition, a number of tools have been set up by EVDC to support the data formatting and 

submissions to EVDC. The GEOMS online tool available at https://geoms-tool.nilu.no/ is a set 

of functionalities to support data submitters with these tasks. The tool is easy to use and self-

explanatory, and documentation and "how-to" documents are made available at 

https://evdc.esa.int/documentation/geoms/. The online GEOMS tool uses the metadata 

templates for each individual and specified measurement principle as input and provides final 

correlative files in NetCDF or HDF as output.  

A GEOMS NetCDF and HDF file format checker has been developed as a collaboration 

between NASA and ESA, and is made available to users that want to check their files before 

submitting these to EVDC. The tool is available at https://geoms-

tool.nilu.no/geoms_file_format_checker.  

4.4. DOIs, re-formatting and re-distributions, licencing 

A DOI (Digital Object Identifier) is a unique and permanent identifier for a digital object, such 

as a research paper, dataset, or software. The purpose of a DOI is to provide a stable, long-

https://evdc.esa.int/tools/data-formatting-templates/
https://geoms-tool.nilu.no/
https://evdc.esa.int/documentation/geoms/
https://geoms-tool.nilu.no/geoms_file_format_checker
https://geoms-tool.nilu.no/geoms_file_format_checker
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lasting link to the digital object, allowing users to easily locate and access it. DOIs are 

managed by trusted registration agencies, such as CrossRef, DataCite, or mEDRA, and they 

resolve to a landing page that provides metadata and access to the object being identified. 

Having a DOI (Digital Object Identifier) for your publication provides several benefits: 

● Permanent and stable access: A DOI provides a permanent and stable link to your 

publication, ensuring that it remains accessible over time and can be easily located by 

others. 

● Improved discoverability: DOIs make it easier for others to discover your publication 

through online search engines and databases, increasing its visibility and impact. 

● Reliable citing: DOIs help to ensure accurate and reliable citing of your publication by 

providing a unique identifier that can be easily included in a reference list. 

● Increased credibility: By using a DOI, you are demonstrating your commitment to high-

quality research and publishing practices, which can increase the credibility of your 

publication. 

● Better data management: DOIs can be used to track and manage data associated with 

your publication, making it easier to access, analyze, and share your research results. 

 Overall, having a DOI for your publication helps to ensure its long-term accessibility, visibility, 

and impact, making it easier for others to find, use, and build upon your work.  

Best practices for coining DOIs include:  

● Assign unique DOIs: Each DOI must be unique and permanent, and should not change 

over time. 

● Use a trusted DOI registration agency: Use a recognized and trusted DOI registration 

agency such as CrossRef, DataCite, or mEDRA. 

● Ensure resolvability: DOIs should resolve to a landing page that provides metadata 

and access to the full-text or object being identified. 

● Provide complete metadata: The landing page should provide complete and accurate 

metadata, including title, authors, publication date, and persistent URL. 

● Use a consistent format: i.e. a consistent format for coining DOIs, such as the 

"10.xxxx/yyyyyyyy" format recommended by the International DOI Foundation. 

● Update and maintain the DOI record: Regularly update and maintain the DOI record to 

ensure that it continues to resolve to the correct landing page. 

 Examples of DOIs (Digital Object Identifiers): 

● 10.1038/nature14539 

● 10.1016/j.cell.2013.11.049 

● 10.1371/journal.pone.0127752 

● 10.1186/s13643-020-01356-9 

Note that the format of DOIs typically consists of a prefix (e.g. "10."), followed by a unique 

identifier assigned by the registration agency (e.g. "nature14539," "journal.pone.0127752"). 

The prefix and identifier together form the complete DOI, which resolves to a landing page 

that provides metadata and access to the digital object being identified. 



133 
 

EVDC may issue a DOI on datasets or other data products related to ESA Cal/Val. Issuing of 

the DOI is done through the DataCite metadata service.  

EVDC offers user support related to the coining of the DOIs. This support involves giving the 

various frameworks access to the EVDC API for generating landing pages, issuing new 

DataCite repositories and giving access to the DataCite API for coining DOIs. In addition, 

EVDC  provides guidelines for the distribution of DOIs, recommendations on granularity and 

a list of recommended metadata to include when creating landing pages and coining DOIs.  

When a DOI is issued, there are two things to consider: First, you need to report metadata 

following the XML format (see what’s required below). Secondly, if you need a landing page 

for the DOI, you will also need to supply some information with regards to this in a text file. 

The data resource will then be available through the presentation web page, hereunder a 

private URL to your landing page. For EarthCARE this may be a presentation webpage on the 

EVDC severe, and as as a sub page of https://evdc.esa.int  

A set up jypyter notebooks is set up for self assignment of the DOIs in EVDC. It is 

recommended that the data submitters from the Cal/Val teams consider adding DOIs to their 

data, either via EVDC or any at “home” institutes location, if offered.  

 

Figure 4.1. Screendump of the first step of the jupyter notebook for self assignment of DOIs.  

 

4.4.1. XML metadata and landing pages 

Example of how to report metadata in xml: 

➢ Metadata elements 

➢ Name of the creator(s) of the dataset and affiliation 

➢ Title 

➢ Publication year 

➢ Subject (e.g. “Atmospheric Science”) 

➢  Contact person(s) 

➢ Date of collection 

➢ Date of creation 

➢ Size (only if its a dataset, supply size of dataset in megabytes) 

➢ Format (text/plain, netCDF, ASCII etc.) 
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➢ Language 

➢ Rights (Any rights information for this resource, licensing, copyright etc.) 

➢ Resource type (should be “Dataset” in most cases) 

➢ Description(s) (you can have one or more description types. Select among the 

following description types: Abstract, Methods, SeriesInformation, TableOfContents, 

TechnicalInfo, Other) 

➢ Funder name(s) 

➢ GeoLocation of measuring station(s) 

All data objects with a DOI (or a PID) must have a landing page associated with it. The landing 

page is not so strict in terms of content and shape, but should include the following elements 

on the page: 

➢ Title 

➢ Image (plot etc.) that describes the dataset, not mandatory but preferable. 

➢ Data policy 

➢ Description of data file (s), including contact person for the specific dataset/subset of 

the dataset (in case there is data from multiple stations). 

➢ Acknowledgments 

➢ Citation (How to cite the dataset) 

➢ Contact 

The landing page can also include a link to the previous (or latest) version. 

The metadata schema used for coining the DOIs follows the DataCite metadata schema. For 

more information visit: https://schema.datacite.org/. 

https://schema.datacite.org/
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Figure 4.2. Example ACTRIS DC landing page for a cloud-profiling product 

 

4.4.2. Granularity 

Granularity in DOIs is the level of detail or specificity that a DOI provides for identifying a digital 

object. For example, a DOI can identify a whole dataset, a subset of a dataset, or a single data 

file within a dataset. The level of granularity depends on how the data provider assigns and 

registers DOIs for their data products. 

Granularity in DOIs should be carefully considered and balanced by data providers and users, 

taking into account the nature, purpose, and scope of their data products. It may create 

confusion or inconsistency among data users if different levels of granularity are used for citing 

or accessing the same type of data products. As a general rule in EVDC, the recommendation 

is to have the granularity of one DOI for each dataset in the GEOMS database, on station or 

instrument level. 

In special cases other granularities can be considered. It is important to consider that when 

deciding on the granularity, the data user should be kept in mind. If a dataset is produced 

every day, a collection of datasets over time might be more sensible than a dedicated DOI for 

each dataset. 
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4.4.3. Version control 

Version control can also be directly referenced through the use of DOIs and PIDs. If datasets 

are reprocessed, such as when a new processing scheme has been implemented, or a new 

software version implemented, these are new data objects and should have a new descriptor 

(PID and DOI). Such new processing can be required due to changes or corrections (bug 

fixes) in the implementation of an algorithm or software rather than a new implementation. 

These new or updated data objects can then be linked to the original data object through 

references to the DOI and PID identifiers; the identifier schemas provide a specific mechanism 

for linking to new and previous identifiers. 

 

 

 
Previous version: 
https://hdl.handle.net/21.12132/1.e9b7d96d
c40b4fca 
 
Current version: 
https://hdl.handle.net/21.12132/1.b0a9b1cfb
0c748e7 
 
Next version: 
https://hdl.handle.net/21.12132/1.a24e1f3c8
fce4eef 

Figure 4.3. Example provenance on the landing page for a specific product version, with links to the 
PIDs (and landing pages) for previous and updated versions. 

 

4.5. Appendix A - NetCDF examples 

4.5.1. ARM cloud radar (KAZR) file 

netcdf corkazrcfrgeM1.a1.20190430.000001 { 

dimensions: 

        range = 600 ; 

        time = UNLIMITED ; // (1737 currently) 

        sweep = 1 ; 

        frequency = 1 ; 

        string_length_22 = 22 ; 

        r_calib = 1 ; 

variables: 

        int base_time ; 

                base_time:string = "2019-04-30 00:00:01 0:00" ; 

                base_time:long_name = "Base time in Epoch" ; 

                base_time:units = "seconds since 1970-1-1 0:00:00 0:00" ; 

                base_time:ancillary_variables = "time_offset" ; 

        double time_offset(time) ; 

                time_offset:long_name = "Time offset from base_time" ; 

                time_offset:units = "seconds since 2019-04-30 00:00:01 0:00" ; 

                time_offset:ancillary_variables = "base_time" ; 

        double time(time) ; 

                time:long_name = "Time in seconds since volume start" ; 

                time:units = "seconds since 2019-04-30 00:00:01 0:00" ; 

                time:standard_name = "time" ; 

                time:calendar = "gregorian" ; 

        short linear_depolarization_ratio(time, range) ; 

https://hdl.handle.net/21.12132/1.e9b7d96dc40b4fca
https://hdl.handle.net/21.12132/1.e9b7d96dc40b4fca
https://hdl.handle.net/21.12132/1.b0a9b1cfb0c748e7
https://hdl.handle.net/21.12132/1.b0a9b1cfb0c748e7
https://hdl.handle.net/21.12132/1.a24e1f3c8fce4eef
https://hdl.handle.net/21.12132/1.a24e1f3c8fce4eef
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                linear_depolarization_ratio:long_name = "Linear depolarization 

ratio, channel unspecified" ; 

                linear_depolarization_ratio:units = "dB" ; 

                linear_depolarization_ratio:coordinates = "elevation azimuth range" 

; 

                linear_depolarization_ratio:standard_name = 

"radar_linear_depolarization_ratio" ; 

                linear_depolarization_ratio:add_offset = 19.72893f ; 

                linear_depolarization_ratio:scale_factor = 0.001267589f ; 

                linear_depolarization_ratio:_FillValue = -32767s ; 

        short mean_doppler_velocity(time, range) ; 

                mean_doppler_velocity:long_name = "Radial mean Doppler velocity, 

positive for motion away from the instrument" ; 

                mean_doppler_velocity:units = "m/s" ; 

                mean_doppler_velocity:coordinates = "elevation azimuth range" ; 

                mean_doppler_velocity:standard_name = 

"radial_velocity_of_scatterers_away_from_instrument" ; 

                mean_doppler_velocity:add_offset = 0.01556277f ; 

                mean_doppler_velocity:scale_factor = 0.0002427116f ; 

                mean_doppler_velocity:_FillValue = -32767s ; 

        short mean_doppler_velocity_crosspolar_v(time, range) ; 

                mean_doppler_velocity_crosspolar_v:long_name = "Doppler velocity, 

crosspolar for vertical channel" ; 

                mean_doppler_velocity_crosspolar_v:units = "m/s" ; 

                mean_doppler_velocity_crosspolar_v:coordinates = "elevation azimuth 

range" ; 

                mean_doppler_velocity_crosspolar_v:standard_name = 

"radial_velocity_of_scatterers_away_from_instrument" ; 

                mean_doppler_velocity_crosspolar_v:add_offset = 0.f ; 

                mean_doppler_velocity_crosspolar_v:scale_factor = 0.f ; 

                mean_doppler_velocity_crosspolar_v:_FillValue = -32767s ; 

        short reflectivity(time, range) ; 

                reflectivity:long_name = "Equivalent reflectivity factor" ; 

                reflectivity:units = "dBZ" ; 

                reflectivity:coordinates = "elevation azimuth range" ; 

                reflectivity:standard_name = "equivalent_reflectivity_factor" ; 

                reflectivity:add_offset = -19.72893f ; 

                reflectivity:scale_factor = 0.001267589f ; 

                reflectivity:_FillValue = -32767s ; 

        short reflectivity_crosspolar_v(time, range) ; 

                reflectivity_crosspolar_v:long_name = "Equivalent reflectivity 

factor, crosspolar for vertical channel" ; 

                reflectivity_crosspolar_v:units = "dBZ" ; 

                reflectivity_crosspolar_v:coordinates = "elevation azimuth range" ; 

                reflectivity_crosspolar_v:standard_name = 

"equivalent_reflectivity_factor" ; 

                reflectivity_crosspolar_v:add_offset = 0.f ; 

                reflectivity_crosspolar_v:scale_factor = 0.f ; 

                reflectivity_crosspolar_v:_FillValue = -32767s ; 

        short signal_to_noise_ratio_copolar_h(time, range) ; 

                signal_to_noise_ratio_copolar_h:long_name = "Signal-to-noise ratio, 

horizontal channel" ; 

                signal_to_noise_ratio_copolar_h:units = "dB" ; 

                signal_to_noise_ratio_copolar_h:coordinates = "elevation azimuth 

range" ; 

                signal_to_noise_ratio_copolar_h:standard_name = 

"radar_signal_to_noise_ratio_copolar_h" ; 

                signal_to_noise_ratio_copolar_h:add_offset = 7.972565f ; 

                signal_to_noise_ratio_copolar_h:scale_factor = 0.001190834f ; 



138 
 

                signal_to_noise_ratio_copolar_h:_FillValue = -32767s ; 

        short signal_to_noise_ratio_crosspolar_v(time, range) ; 

               signal_to_noise_ratio_crosspolar_v:long_name = "Signal-to-noise 

ratio, Cross-polar for vertical channel" ; 

                signal_to_noise_ratio_crosspolar_v:units = "dB" ; 

                signal_to_noise_ratio_crosspolar_v:coordinates = "elevation azimuth 

range" ; 

                signal_to_noise_ratio_crosspolar_v:standard_name = 

"radar_signal_to_noise_ratio_crosspolar_v" ; 

                signal_to_noise_ratio_crosspolar_v:add_offset = 17.64213f ; 

                signal_to_noise_ratio_crosspolar_v:scale_factor = 0.0006878275f ; 

                signal_to_noise_ratio_crosspolar_v:_FillValue = -32767s ; 

        short spectral_width(time, range) ; 

                spectral_width:long_name = "Spectral width" ; 

                spectral_width:units = "m/s" ; 

                spectral_width:coordinates = "elevation azimuth range" ; 

                spectral_width:standard_name = "radar_doppler_spectrum_width" ; 

                spectral_width:add_offset = 1.770866f ; 

                spectral_width:scale_factor = 5.404583e-05f ; 

                spectral_width:_FillValue = -32767s ; 

        short spectral_width_crosspolar_v(time, range) ; 

                spectral_width_crosspolar_v:long_name = "Spectral Width, Crosspolar 

for Vertical Channel" ; 

                spectral_width_crosspolar_v:units = "m/s" ; 

                spectral_width_crosspolar_v:coordinates = "elevation azimuth range" 

; 

                spectral_width_crosspolar_v:standard_name = 

"radar_doppler_spectrum_width" ; 

                spectral_width_crosspolar_v:add_offset = 0.f ; 

                spectral_width_crosspolar_v:scale_factor = 0.f ; 

                spectral_width_crosspolar_v:_FillValue = -32767s ; 

        float frequency(frequency) ; 

                frequency:long_name = "Transmit center frequency" ; 

                frequency:units = "Hz" ; 

                frequency:meta_group = "instrument_parameters" ; 

        float range(range) ; 

                range:long_name = "Range to measurement volume" ; 

                range:units = "m" ; 

                range:meters_between_gates = 29.97925f ; 

                range:meters_to_center_of_first_gate = 100.6792f ; 

                range:spacing_is_constant = "True" ; 

                range:standard_name = "projection_range_coordinate" ; 

                range:axis = "radial_range_coordinate" ; 

        float azimuth(time) ; 

                azimuth:long_name = "Azimuth angle from true north" ; 

                azimuth:units = "degree" ; 

                azimuth:standard_name = "sensor_to_target_azimuth_angle" ; 

                azimuth:axis = "radial_azimuth_coordinate" ; 

                azimuth:_FillValue = -9999.f ; 

        float burst_width(time) ; 

                burst_width:long_name = "Transmitter burst width" ; 

                burst_width:units = "ns" ; 

                burst_width:meta_group = "instrument_parameters" ; 

                burst_width:_FillValue = -9999.f ; 

        float chirp_width(time) ; 

                chirp_width:long_name = "Transmitter chirp width" ; 

                chirp_width:units = "ns" ; 

                chirp_width:meta_group = "instrument_parameters" ; 

                chirp_width:_FillValue = -9999.f ; 
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        float elevation(time) ; 

                elevation:long_name = "Elevation angle from horizontal plane" ; 

                elevation:units = "degree" ; 

                elevation:standard_name = "sensor_to_target_elevation_angle" ; 

                elevation:axis = "radial_elevation_coordinate" ; 

                elevation:_FillValue = -9999.f ; 

        float fixed_angle(sweep) ; 

                fixed_angle:long_name = "Ray target fixed angle" ; 

                fixed_angle:units = "degree" ; 

                fixed_angle:_FillValue = -9999.f ; 

       int n_samples(time) ; 

                n_samples:long_name = "Number of Samples used to compute moments" ; 

                n_samples:units = "1" ; 

                n_samples:meta_group = "instrument_parameters" ; 

                n_samples:standard_name = 

"number_of_samples_used_to_compute_moments" ; 

                n_samples:_FillValue = -9999 ; 

        float noise_figure(time) ; 

                noise_figure:long_name = "Receiver noise figure estimated from noise 

source using y-factor method" ; 

                noise_figure:units = "dB" ; 

                noise_figure:missing_value = -9999.f ; 

                noise_figure:_FillValue = -9999.f ; 

        float nyquist_velocity(time) ; 

                nyquist_velocity:long_name = "Unambiguous doppler velocity" ; 

                nyquist_velocity:units = "m/s" ; 

                nyquist_velocity:meta_group = "instrument_parameters" ; 

                nyquist_velocity:_FillValue = -9999.f ; 

        float prt(time) ; 

                prt:long_name = "Pulse repetition time" ; 

                prt:units = "s" ; 

                prt:_FillValue = -9999.f ; 

        float pulse_width(time) ; 

                pulse_width:long_name = "Transmitter pulse width" ; 

                pulse_width:units = "s" ; 

                pulse_width:meta_group = "instrument_parameters" ; 

                pulse_width:_FillValue = -9999.f ; 

        float r_calib_radar_constant_copol(r_calib) ; 

                r_calib_radar_constant_copol:long_name = "Calibrated radar constant 

copolar" ; 

                r_calib_radar_constant_copol:units = "dB" ; 

                r_calib_radar_constant_copol:meta_group = "radar_calibration" ; 

                r_calib_radar_constant_copol:standard_name = 

"calibrated_radar_constant_h_channel" ; 

                r_calib_radar_constant_copol:_FillValue = -9999.f ; 

        float r_calib_radar_constant_crosspol(r_calib) ; 

                r_calib_radar_constant_crosspol:long_name = "Calibrated radar 

constant crosspolar" ; 

                r_calib_radar_constant_crosspol:units = "dB" ; 

                r_calib_radar_constant_crosspol:meta_group = "radar_calibration" ; 

                r_calib_radar_constant_crosspol:standard_name = 

"calibrated_radar_constant_h_channel" ; 

                r_calib_radar_constant_crosspol:_FillValue = -9999.f ; 

        float r_calib_two_way_radome_loss_h(r_calib) ; 

                r_calib_two_way_radome_loss_h:long_name = "Radar calibration two way 

radome loss horizontal channel" ; 

                r_calib_two_way_radome_loss_h:units = "dB" ; 

                r_calib_two_way_radome_loss_h:standard_name = 

"radar_calibration_two_way_radome_loss_h_channel" ; 
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                r_calib_two_way_radome_loss_h:_FillValue = -9999.f ; 

        float radar_beam_width_h ; 

                radar_beam_width_h:long_name = "Half power radar beam width 

horizontal channel" ; 

                radar_beam_width_h:units = "degree" ; 

                radar_beam_width_h:_FillValue = -9999.f ; 

        float radar_beam_width_v ; 

                radar_beam_width_v:long_name = "Half power radar beam width vertical 

channel" ; 

                radar_beam_width_v:units = "degree" ; 

                radar_beam_width_v:_FillValue = -9999.f ; 

        float radar_measured_sky_noise_h(time) ; 

                radar_measured_sky_noise_h:long_name = "Measured sky noise, 

horizontal channel" ; 

                radar_measured_sky_noise_h:units = "dBm" ; 

                radar_measured_sky_noise_h:_FillValue = -9999.f ; 

        float radar_measured_sky_noise_v(time) ; 

                radar_measured_sky_noise_v:long_name = "Measured sky noise, vertical 

channel" ; 

                radar_measured_sky_noise_v:units = "dBm" ; 

                radar_measured_sky_noise_v:_FillValue = -9999.f ; 

        float radar_measured_transmit_power(time) ; 

                radar_measured_transmit_power:long_name = "Radar measured transmit 

peak power" ; 

                radar_measured_transmit_power:units = "dBm" ; 

                radar_measured_transmit_power:meta_group = "instrument_parameters" ; 

                radar_measured_transmit_power:standard_name = "radar_transmit_power" 

; 

                radar_measured_transmit_power:_FillValue = -9999.f ; 

       float receiver_gain_copol(time) ; 

                receiver_gain_copol:long_name = "Receiver gain copol" ; 

                receiver_gain_copol:units = "1" ; 

                receiver_gain_copol:_FillValue = -9999.f ; 

        int sweep_end_ray_index(sweep) ; 

                sweep_end_ray_index:long_name = "Index of last ray in sweep" ; 

                sweep_end_ray_index:units = "1" ; 

                sweep_end_ray_index:_FillValue = -9999 ; 

        char sweep_mode(sweep, string_length_22) ; 

                sweep_mode:long_name = "Scan mode for sweep" ; 

                sweep_mode:units = "1" ; 

        int sweep_number(sweep) ; 

                sweep_number:long_name = "Sweep index number 0 based" ; 

                sweep_number:units = "1" ; 

                sweep_number:_FillValue = -9999 ; 

        int sweep_start_ray_index(sweep) ; 

                sweep_start_ray_index:long_name = "Index of first ray in sweep" ; 

                sweep_start_ray_index:units = "1" ; 

                sweep_start_ray_index:_FillValue = -9999 ; 

        float unambiguous_range(time) ; 

                unambiguous_range:long_name = "Unambiguous Range" ; 

                unambiguous_range:units = "m" ; 

                unambiguous_range:meta_group = "instrument_parameters" ; 

                unambiguous_range:standard_name = "unambiguous_range" ; 

                unambiguous_range:_FillValue = -9999.f ; 

        float latitude ; 

                latitude:long_name = "Latitude" ; 

                latitude:units = "degree_N" ; 

                latitude:standard_name = "latitude" ; 

                latitude:valid_min = -90.f ; 
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                latitude:valid_max = 90.f ; 

                latitude:_FillValue = -9999.f ; 

        float longitude ; 

                longitude:long_name = "Longitude" ; 

                longitude:units = "degree_E" ; 

                longitude:standard_name = "longitude" ; 

                longitude:valid_min = -180.f ; 

                longitude:valid_max = 180.f ; 

                longitude:_FillValue = -9999.f ; 

        float altitude ; 

                altitude:long_name = "Altitude" ; 

                altitude:units = "m" ; 

                altitude:standard_name = "altitude" ; 

                altitude:_FillValue = -9999.f ; 

        float altitude_agl ; 

                altitude_agl:long_name = "Altitude above ground level" ; 

                altitude_agl:units = "m" ; 

                altitude_agl:standard_name = "height" ; 

                altitude_agl:_FillValue = -9999.f ; 

        float lat ; 

                lat:long_name = "North latitude" ; 

                lat:units = "degree_N" ; 

                lat:standard_name = "latitude" ; 

                lat:valid_min = -90.f ; 

                lat:valid_max = 90.f ; 

                lat:_FillValue = -9999.f ; 

        float lon ; 

                lon:long_name = "East longitude" ; 

                lon:units = "degree_E" ; 

                lon:standard_name = "longitude" ; 

                lon:valid_min = -180.f ; 

                lon:valid_max = 180.f ; 

                lon:_FillValue = -9999.f ; 

       float alt ; 

                alt:long_name = "Altitude above mean sea level" ; 

                alt:units = "m" ; 

                alt:standard_name = "altitude" ; 

                alt:_FillValue = -9999.f ; 

 

// global attributes: 

                :command_line = "kazrcfr_ingest -s cor -f M1" ; 

                :Conventions = "ARM-1.2 CF/Radial-1.4 instrument_parameters 

radar_parameters radar_calibration" ; 

                :process_version = "ingest-kazrcfr-1.2-0.el6" ; 

                :dod_version = "kazrcfrge-a1-1.0" ; 

                :input_source = 

"/data/collection/cor/corkazrM1.00/KAZR_MOMENTS_20190430-000004.dat" ; 

                :site_id = "cor" ; 

                :platform_id = "kazrcfrge" ; 

                :facility_id = "M1" ; 

                :data_level = "a1" ; 

                :location_description = "Cloud, Aerosol, and Complex Terrain 

Interactions (CACTI), Cordoba, Argentina" ; 

                :datastream = "corkazrcfrgeM1.a1" ; 

                :antenna_altitude = "3 m" ; 

                :antenna_diameter = "2 m" ; 

                :comment = "" ; 

                :digital_rx_dec = "24" ; 

                :fft_len = 512 ; 
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                :filter_length = "106" ; 

                :institution = "Department of Energy Atmospheric Radiation 

Measurement Program" ; 

                :n_gates = 1024 ; 

                :num_spectral_averages = "15" ; 

                :pulse_compression_ratio = "13.3" ; 

                :range_gate_spacing_m = 29.97925f ; 

                :range_offset_ch1 = "  -1.4 m" ; 

                :range_offset_ch2 = "  70.7 m" ; 

                :software_version = "1.7.6 (Wed Mar 23 17:10:35 UTC 2016 leachman" ; 

                :title = "ARM KAZR Moments" ; 

                :doi = "10.5439/1478370" ; 

                :history = "created by user dsmgr on machine ruby at 2019-04-30 

16:30:42, using ingest-kazrcfr-1.2-0.el6" ; 

data: 

 

 base_time = 1556582401 ; 

 

 time_offset = 0.951612, 3.025211, 5.098814, 7.172429, 9.246025, 11.319628,  

    13.393227, 15.466826, 17.540443, 19.61402, 21.687623, 23.761223, 

… 

} 

*** 

 

4.5.2. GEOMS HDF/NetCDF file global format attributes 

! Global Attributes 

PI_NAME=Leblanc;Thierry 

PI_AFFILIATION=NASA Jet Propulsion Laboratory;NASA.JPL 

PI_ADDRESS=JPL Table Mountain Facility;Wrightwood, CA 92397-0367;UNITED STATES 

PI_EMAIL=thierry.leblanc@jpl.nasa.gov 

DO_NAME=Leblanc;Thierry 

DO_AFFILIATION=NASA Jet Propulsion Laboratory;NASA.JPL 

DO_ADDRESS=JPL Table Mountain Facility;Wrightwood, CA 92397-0367;UNITED STATES 

DO_EMAIL=thierry.leblanc@jpl.nasa.gov 

DS_NAME=Leblanc;Thierry 

DS_AFFILIATION=NASA Jet Propulsion Laboratory;NASA.JPL 

DS_ADDRESS=JPL Table Mountain Facility;Wrightwood, CA 92397-0367;UNITED STATES 

DS_EMAIL=thierry.leblanc@jpl.nasa.gov 

DATA_DESCRIPTION=Routine middle atmospheric temperature profile from JPL LIDAR at 

Mauna Loa Observatory, HI (MLSOL) 

DATA_DISCIPLINE=ATMOSPHERIC.CHEMISTRY;REMOTE.SENSING;GROUNDBASED 

DATA_GROUP=EXPERIMENTAL;PROFILE.STATIONARY 

DATA_LOCATION=MAUNA.LOA.HI 

DATA_SOURCE=LIDAR.AEROSOL_NASA.JPL002_GLASS.1.1 

DATA_VARIABLES=LATITUDE.INSTRUMENT;LONGITUDE.INSTRUMENT;ALTITUDE.INS

TRUMENT;DATETIME;DATETIME.START;DATETIME.STOP;INTEGRATION.TIME;WAVEL

ENGTH_EMISSION;WAVELENGTH_DETECTION;ANGLE.VIEW_ZENITH;ALTITUDE;AER

OSOL.RETRIEVAL.METHOD;AEROSOL.BACKSCATTER.RATIO_BACKSCATTER;AERO

SOL.BACKSCATTER.RATIO_BACKSCATTER_UNCERTAINTY.ORIGINATOR;AEROSOL.

BACKSCATTER.RATIO_BACKSCATTER_UNCERTAINTY.COMBINED.STANDARD;AERO
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SOL.BACKSCATTER.RATIO_BACKSCATTER_UNCERTAINTY.RANDOM.STANDARD;AE

ROSOL.BACKSCATTER.RATIO_BACKSCATTER_UNCERTAINTY.SYSTEMATIC.STAND

ARD;AEROSOL.BACKSCATTER.RATIO_BACKSCATTER_RESOLUTION.ALTITUDE.IMP

ULSE.RESPONSE.FWHM;RANGE_INDEPENDENT_NORMALIZATION;AEROSOL.BACKS

CATTER.COEFFICIENT_DERIVED;AEROSOL.BACKSCATTER.COEFFICIENT_DERIVED

_UNCERTAINTY.ORIGINATOR;AEROSOL.BACKSCATTER.COEFFICIENT_DERIVED_UN

CERTAINTY.COMBINED.STANDARD;AEROSOL.BACKSCATTER.COEFFICIENT_DERIV

ED_UNCERTAINTY.RANDOM.STANDARD;AEROSOL.BACKSCATTER.COEFFICIENT_D

ERIVED_UNCERTAINTY.SYSTEMATIC.STANDARD;AEROSOL.BACKSCATTER.COEFFI

CIENT_DERIVED_RESOLUTION.ALTITUDE.IMPULSE.RESPONSE.FWHM;NUMBER.DE

NSITY_INDEPENDENT;PRESSURE_INDEPENDENT;TEMPERATURE_INDEPENDENT;N

UMBER.DENSITY_INDEPENDENT_SOURCE;PRESSURE_INDEPENDENT_SOURCE;TE

MPERATURE_INDEPENDENT_SOURCE;SOURCE.PRODUCT 

DATA_START_DATE=20200124T053201Z 

DATA_STOP_DATE=20200124T075457Z 

DATA_FILE_VERSION=001 

DATA_MODIFICATIONS=Older data versions also available at NDACC in Ames format, 

filenames: mltp*.tll and mltp*.mdl 

DATA_CAVEATS=Profile quality potentially impacted by clouds, aerosol layers, and 

occasional instrument issues 

DATA_RULES_OF_USE= 

DATA_ACKNOWLEDGEMENT=Notify PI that data is being used and ask for proper form of 

acknowledgement 

DATA_QUALITY=Full QC/QA completed 

DATA_TEMPLATE=GEOMS-TE-LIDAR-AEROSOL-005 

DATA_PROCESSOR=GLASS v1.18_20200919 

FILE_NAME=groundbased_lidar.aerosol_nasa.jpl002_glass.1.1_mauna.loa.hi_20200124t05

3201z_20200124t075457z_001.hdf 

FILE_GENERATION_DATE=20200928T224850Z 

FILE_ACCESS=NDACC;AVDC 

FILE_PROJECT_ID=CAMS27 

FILE_ASSOCIATION= 

FILE_DOI= 

FILE_META_VERSION=04R051;CUSTOM 
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5. Chapter 5: Guidance for the validation of lidar and aerosol 

products  

Plain language summary 

The aim of this chapter is to provide guidelines on how to perform a validation study of the 

Level 1 lidars and Level 2 aerosol profiling products from satellite missions. For this validation, 

the reference measurements can come from suborbital airborne or ground-based lidars, 

photometers, and in-situ instrumentation. Moreover, key aspects and considerations that may 

apply when different types of instruments (remote sensing or in-situ, ground-based or 

airborne) are used as reference in the validation, are provided. The description of the Level 1 

and Level 2 lidar products from past, current and future satellite missions are provided in 

Chapter 2. The description of the different instruments/measurements that can be used for 

their validation, along with the instrument capabilities, corresponding QA/QC procedures, 

spatiotemporal criteria, and statistical considerations, is provided in Chapter 3.  

5.1. General Considerations 

When planning Calibration/Validation (Cal/Val) activities, an estimate of the noise in the 

satellite lidar measurements and an estimate of the desired calibration uncertainty to be 

achieved should be kept in mind. For the evaluation of satellite lidar measurements using 

suborbital measurements, we must attempt at finding procedures allowing us to reduce both 

systematic and random errors in the comparison of these products (Gimmestad et al., 2017).  

To reduce random uncertainties, satellite measurements typically require compositing or 

averaging measurements over larger spatial scales than suborbital measurements. The 

amount of spatial averaging also depends on the desired level of uncertainty in the satellite 

measurement. For instance, assessing the uncertainty of CALIOP calibration at 5 km altitude 

to 2% requires along-track compositing of data over thousands of kilometers. Airborne lidars, 

flying along the satellite ground track, can measure the same (or similar) aerosol/cloud scene 

with reduced systematic uncertainties associated with measuring potentially different scenes, 

and allow greater horizontal averaging scales to reduce the random uncertainties in the 

satellite measurements. For validation comparisons with ground-based lidars, one should 

consider that the composited satellite lidar profile can differ from that ground-based 

measurements due to differences in the geophysical scene and temporal offsets observed by 

the two instruments. These differences in a geophysical scene should be considered, in order 

to not introduce systematic errors in the comparison which can affect the resulting assessment 

of the satellite lidar products. 

The number of satellite and suborbital profiles that must be acquired and averaged to be used 

for cal/val activities depends on the homogeneity of the desired parameter(s) at the altitudes 

of interest and the extent to which inhomogeneities will introduce systematic errors. In this 

process, during validation studies, the suborbital measurements used should be carefully 

examined to consider the atmospheric variability during the satellite data acquisition (e.g. the 

temporal and spatial scales appropriate for use in evaluating the satellite measurements). As 

an indicative example, (Anderson et al., 2003) used ground-based, airborne, and satellite AOD 

(Aerosol Optical Depth) aerosol measurements and found large correlations for temporal 

scales below four hours and distances less than 70 km. However, other studies using airborne 
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remote sensing measurements have found that the variability in AOD with distance/time varies 

significantly depending on whether the aerosols are generated locally or transported from long 

distances (Chang et al., 2021; LeBlanc et al., 2022; Redemann et al., 2005; Rogers et al., 

2014; Shinozuka & Redemann, 2011). Moreover, collocated CALIPSO and ground-based lidar 

measurements within a radius of 100 km have been used (Pappalardo et al., 2010) to 

investigate the spatio-temporal representativeness of aerosol optical properties under different 

atmospheric conditions (higher representativity for long scale events) and at different altitudes 

(smaller representativeness at lower altitudes). 

Furthermore, several satellite lidar products that need evaluation are not directly measured 

through suborbital lidars. For instance, using lidar observations the aerosol classification is 

approximated through intensive parameters (e.g., extinction-to-backscatter ratio (lidar ratio); 

LR, particle depolarization ratio, color ratio) or their combination. Therefore, complementary 

to the Cal/Val activities based on remote sensors, airborne in situ techniques offer a valuable 

insight for the validation of aerosol products derived by lidar observations (e.g. (Sheridan et 

al., 2012)). In situ measurements are valuable for the validation of both aerosol and cloud 

properties (e.g. using measurements of single-scattering albedo, size distribution and particle 

shape, liquid water content). Hence, although in situ measurements have their own limitations, 

it is recognised that they offer complementary information for the atmospheric layers which is 

invaluable for satellite Cal/Val. 

The following subsections present the different approaches that can be followed for the 

validation of the L1 or L2 satellite lidar products when using different instruments to serve as 

reference (from different types of suborbital lidars to photometers and in-situ instrumentation), 

along with special considerations taking into account the capabilities and limitations of each 

instrument. Depending on the availability of the reference measurements, the optimum would 

be to use several of these approaches when performing a validation study (e.g. a lidar and a 

photometer at the same location/station), as each method has different strengths and 

weaknesses. 

5.2. Validation of Level 1 Lidar products  

Spaceborne lidar Level 1 (L1) products include the attenuated backscatter coefficient (here on 

attenuated backscatter) from elastic and HSRL systems (more details in Chapter 2). The direct 

validation of these lidar L1 products can be achieved using coordinated airborne lidar 

measurements, and possibly ground-based mobile lidar facilities deployed on the satellite 

ground-track. In other cases (e.g. using ground-based lidar facilities at a distance from the 

satellite track), the validation should be performed by assessing statistical properties of the 

products. Given the narrow footprint of the lidar systems (50 - 350 m) and the revisit time of 

polar orbits, the use of long term (multi-year) measurements and/or measurements from 

several locations is preferred to achieve meaningful statistics. Data from lidar networks and 

observatories with lidar systems are well suited for such tasks. 

5.2.1. Attenuated Backscatter 

Suborbital lidar measurements have been used to evaluate satellite L1 lidar calibration 

typically by using molecular (Rayleigh) scattering measured high in the atmosphere. Products 

and methodologies that have been used, along with aspects to be considered, are presented 

herein. 
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 Comparison of attenuated backscatter profiles calculated from aerosol 

backscatter profiles (see (Rogers et al., 2011) for HSRL airborne measurements  and 

(Mona et al., 2009) for ground-based measurements). 

(a) aspects/steps to be considered for the airborne comparison (e.g.(Rogers et al., 

2011)): 

○ choose an altitude range for which the atmospheric backscatter can be 

accurately estimated, the lidar signal has sufficient Signal-to-Noise-Ratio 

(SNR), the signal response of the detection system is linear, and use only full 

overlap regions. 

○ convert the unattenuated scattering ratio profile from the HSRL into attenuated 

backscatter. 

○ use the same molecular density profile as used in the processing of the satellite 

profiles. 

○ compute the HSRL attenuated backscatter profile at lower altitudes using the 

total attenuated backscatter at this altitude with the two-way transmittance from 

the reference altitude. 

○ transfer the computed attenuated backscatter to the satellite calibration 

reference altitude (e.g. ~30 km for CALIOP) by estimating the attenuation 

between this altitude and the suborbital calibration altitude (i.e. including 

molecular scattering and ozone absorption). 

Usually, HSRL measurements have the important advantage of internal calibration to 

high accuracy (~1-2%) without the need for additional independent information about 

the aerosol loading at the calibration altitude or an assumption that this region is 

aerosol-free (e.g.(Rogers et al., 2011)). But this calibration transfer does not attempt 

to include attenuation due to clouds or aerosols, hence the satellite feature mask 

should be used to screen out profiles that include such attenuation. In (Rogers et al., 

2011) a detailed description of the errors/biases induced in each step of the 

aforementioned methodology is provided. The biases could be reduced if the suborbital 

platform flies at a higher altitude, such as in the lower stratosphere, so as to reduce 

the potential for undetected aerosols and clouds. 

(b) aspects/steps to be considered for the ground-based comparison (e.g. (Mamouri 

et al., 2009; Mona et al., 2009; Pappalardo et al., 2010)): 

○ use the ground-based derived particle extinction coefficient profiles to calculate 

the 2-way particle transmittance up to the calibration altitude of the satellite 

product. 

○ compute the attenuated backscatter coefficient using the total backscatter 

coefficient, and the 2-way transmittances from particles, molecules and ozone.  

○ use the same molecular density profile as used in the processing of the satellite 

profiles (i.e. pressure and temperature fields).  
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○ for daytime measurements, an appropriate lidar ratio (LR) should be selected 

for the calculation of the particle extinction coefficient from ground-based 

backscatter lidars. Collocated sun photometer data and multi-wavelength lidar 

measurements can assist for a representative LR selection.  

○ in the above methodology, attenuation due to clouds or aerosols is not 

considered, hence the satellite feature mask should be used to screen out 

profiles with such attenuation. 

○ for the investigation of the multiple scattering effects in the spaceborne lidar 

signals, comparison between satellite and ground-based lidar signals should 

take into account the multiple scattering effect (Donovan, 2016; Reichardt & 

Reichardt, 2003; Wandinger et al., 2010).  

○ The selected spatio-temporal distance between the ground-based and satellite 

lidar measurement should consider the atmospheric variability. Past 

EARLINET-based studies have chosen 40 km - 100 km as the maximum 

horizontal distance for intercomparisons between ground-based lidars and the 

satellite lidar footprint, and time windows of ±10 min - ±2 hrs (Mamouri et al., 

2009; Mona et al., 2009; Pappalardo et al., 2010; Proestakis et al., 2019).  

● Comparison of calibrated attenuated backscatter profiles measured from airborne 

backscatter lidars (Hlavka et al., 2005; Pauly et al., 2019). Aspects to be considered: 

○ the attenuated backscatter profiles are calibrated by normalizing the signals 

acquired to a modelled molecular attenuated backscatter profile. The molecular 

profile ideally is the same as the one used for the retrieval of the satellite 

products.  

○ accurate selection of the scattering ratio that will be applied in the molecular 

region will lower the uncertainties induced from this step (e.g. (Pauly et al., 

2019; Vaughan et al., 2010)). 

● Comparison of molecular (Rayleigh) backscatter signals in aerosol free altitudes 

(McGill et al., 2007). Aspects to be considered: 

○ accurate calculation of the lidar calibration constant whereby the attenuated 

backscatter profile is matched to a Rayleigh backscatter profile at aerosol free 

altitude ranges. 

○ complementary comparison with the expected Rayleigh backscatter profile 

calculated using atmospheric parameters’ profiles (e.g., pressure and 

temperature). Take into account the source of the used atmospheric 

parameters’ profiles (e.g. radiosonde soundings or model outputs). 

● Comparison of elastic backscatter measurements at desired wavelength calibrated 

using aerosol scattering ratio at HSRL-available wavelength (e.g. LaRC HSRL 

airborne lidar) (e.g.(Vaughan et al., 2019)). Aspects to be considered: 
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○ identify regions of minimum aerosol scattering using the aerosol scattering ratio 

at the HSRL-available wavelength. 

○ choose an altitude range of minimum aerosol loading, where the aerosol 

scattering ratios at desired wavelength can be estimated using the HSRL-

measured scattering ratio and an assumed aerosol backscatter color ratio. 

○ normalize the elastic backscatter measurements at the desired wavelength  in 

the minimum loading region to a molecular model that incorporates 

contributions from the estimated aerosol scattering ratio. 

○ data should be cloud-cleared and averaged over the entire coincident flight 

path.  

○ corrections should be applied for additional molecular attenuation between the 

satellite and the airborne calibration altitude.  

Other qualitative approaches: 

● Qualitative comparison of stratospheric aerosol scattering ratio using airborne 

backscatter lidar observations (Winker et al., 1996). 

● Comparison of the minimum detectable backscatter associated with aerosol and 

cloud features (e.g. (McGill et al., 2007) on subvisible cirrus clouds).  

Although it seems that for some of the presented approaches more aspects should be 

considered, one should consider that this is also related to the level of detail treatments that 

were considered from the authors of the different publications. 

5.2.2. HSRL attenuated backscatter  

The focus of the community’s efforts until now has been on the attenuated backscatter 

calibration and validation for elastic backscatter lidars. For HSRLs and other more advanced 

lidars, fundamental calibration and validation will be more difficult, if, by that, we mean 

calibration of individual measurement channels. These more advanced systems optically 

separate total attenuated backscatter into channels that optically pass molecular and particle 

backscatter by different degrees (e.g., for an HSRL system, there can be a channel that is 

dominated by molecular backscatter with a small amount of particle backscatter “cross-talk” 

and another that is dominated by particle backscatter with some molecular backscatter cross-

talk). Assessing the calibration of the individual channels from such an instrument would 

ideally be done with an airborne HSRL with identical cross-talk characteristics; however, that 

is likely to be impractical for a variety of reasons (e.g., lack of airborne instruments employing 

the same technique with exactly the same cross-talk parameters, cross-talk changing on orbit 

as a function of laser-to-interferometer tuning, etc.) As a result, spaceborne HSRL calibration 

assessments will have to involve the reconstruction of space-like channel measurements from 

the airborne HSRL data set based on assumptions on the cross-talk parameters for both the 

airborne and spaceborne instruments. Those assumptions will add uncertainty to the 

calibration assessment. In the case of ATLID, an alternative is an assessment of the L1 data 

products, i.e., the attenuated Rayleigh backscatter and the attenuated Mie backscatter. Such 

profiles can be constructed from a suitably designed and calibrated airborne lidar employing 
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any HSRL technique. Unfortunately, it will be difficult to determine whether differences 

between the ATLID L1 profiles and the airborne lidar proxy profiles are due to errors in the 

airborne cross-talk parameters, ATLID cross-talk parameters, or other factors (e.g., gain ratios 

between the airborne channels or between the ATLID channels). That is, the root cause of 

differences will be difficult to quantify, making it difficult to correct L1 algorithms based on the 

validation assessment alone. Overall, the different approaches which can be followed for the 

validation of Level 1 HSRL attenuated backscatter profiles is summarized herein:  

(a) Attenuated backscatter signals from different channels (e.g. EarthCARE 

Rayleigh, Mie co-polar, Mie cross-polar) 

● Use of similar airborne HSRL to separately evaluate Rayleigh and Mie attenuated 

backscatter signals (using even the same cross-talk). 

● Reconstruction of space-like channel measurements from sub-orbital HSRL data set 

based on assumptions on the cross-talk parameters for both the sub-orbital and 

spaceborne instruments. 

(b) Attenuated backscatter data products (e.g. attenuated Rayleigh backscatter, 

attenuated Mie backscatter) 

● Comparison with the same products from airborne HSRL lidars (e.g. comparison of 

attenuated backscatter profiles calculated from aerosol backscatter profiles, following 

procedures similar to (Rogers et al., 2011), can be used for ATLID products).  

● Comparison with the same products derived from ground-based lidars with a lidar 

simulator tool developed to simulate the spaceborne lidar. 

For example, for EarthCARE ATLID L1 products, the CARDINAL Campaign Tool (CCT) lidar 

simulator has been developed which provides realistic simulations of the ATLID signals and 

the L1 products of the attenuated particle (Mie) backscatter, the attenuated molecular 

(Rayleigh) backscatter, and the attenuated cross-polar backscatter. In brief, the simulator 

make use of airborne or ground-based lidar or radar L2 products and meteorological fields, 

parameterizes the atmospheric scene using a lidar radiative transfer model and an instrument 

model based on the ATLID design, in order to simulate the lidar signals that would be recorded 

from ATLID for the provided atmospheric scene and, finally, derives the corresponding ATLID 

L1-like products. These products can be directly compared with the collocated measured 

ATLID L1 products. 

Special considerations for L1 validation: 

● Thermally driven changes in the alignment between the satellite transmitter and 

receiver (Hunt et al., 2009) could cause changes between the daytime and nighttime 

calibration. Due to this reason, frequent daytime and nighttime validation (including 

periodic under-flights) is needed to monitor the calibration performance over a range 

of latitudes and seasons (e.g.(Getzewich et al., 2018; Rogers et al., 2011)).  

● For the validation of the L1 lidar products, it is preferred to use suborbital (or other 

satellite) measurements of the same wavelength. That is because the wavelength 
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conversion of L1 products is not straightforward. If one needs to use lidar 

measurements at different wavelengths for the L1 validation, a conversion is needed 

using Level 2 (L2) products.  

 

5.3. Validation of Level 2 lidar aerosol products 

In general, L2 lidar aerosols products are optical and geophysical parameters that can be 

obtained through a retrieval technique. Spaceborne lidar L2 products may include the following 

parameters: aerosol optical depth (or thickness), extinction coefficient, backscatter coefficient, 

lidar ratio, particle linear depolarisation ratio, color ratio, Ångström exponent, aerosol layer 

height/depth, aerosol layer classification (typing) (see also ch. 2).  

There are two main sources of uncertainties affecting the retrieved products. The first involves 

challenges in accurate identification and characterization of aerosol layers in complex scenes 

(i.e. aerosol layers with embedded (unfiltered) broken clouds, geometrically thin or low 

concentration layers (undetected), high concentrations layers with multiple scattering effects 

or misclassified as clouds). The second comes from the fact that physical assumptions 

underpinning the retrievals may vary across regions, seasons, and regimes (e.g. lidar ratio 

assumption, assumptions in aerosol models used). The analysis of these sources should be 

part of validation activities.  

Suborbital lidar and sun photometer measurements have been used extensively to evaluate 

satellite L2 lidar products, particularly aerosol products. Additionally, in-situ measurements 

have been partially used for the evaluation of few products. Herein we briefly review the used 

measurements, along with aspects to be considered, for the different L2 aerosol products. 

5.3.1. Aerosol Optical Depth (AOD) 

(a) Use of ground-based photometer measurements  

Column AOD (or Aerosol Optical Thickness - AOT) can be directly measured through surface 

photometry. Ground-based photometers directly observe the attenuation of solar/lunar 

radiation (in the spectral range of 340–1640 nm), and provide accurate measurements of AOD 

(without interference from land surface reflections) with uncertainty ∼ 0.01 – 0.02 (Eck et al., 

1999). Furthermore, since AOD varies nearly linearly with wavelength in the log-log space 

(e.g.,  (Schuster et al., 2006)),  the  reference measurements  can  be  easily  interpolated to 

the satellite’s wavelengths throughout the shortwave spectrum. These reference 

measurements are the ‘gold standard’ for AOD, and can successfully be used for validation of 

satellite column AOD products (e.g., (Sogacheva et al., 2022)). Measurements from the 

AERONET photometer network (which consists of 1114 sites globally as of Feb 1, 2024; 

https://aeronet.gsfc.nasa.gov/) have been extensively used for the validation of satellite AOD 

products from passive and active sensors (e.g. (Omar et al., 2013; Schuster et al., 2012) on 

CALIPSO-Aeronet AOD comparisons). There is also an excellent discussion of the uncertainty 

associated with satellite-AERONET comparisons in (Sayer et al., 2020). For satellite aerosol 

validation, the AERONET version 3 L2 AOD quality-assured dataset should be used (available 

within a month after post-field calibration). Furthermore, the Maritime Aerosol Network (MAN) 

component of AERONET (ship-borne AOD measurements from Microtops II sun photometers; 

(Smirnov et al., 2009)), provides an opportunity for the validation of satellite AOD products 

over the oceans. The MAN sunphotometers acquire direct sun measurements (within the 

https://aeronet.gsfc.nasa.gov/
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spectral range of 340–1020 nm), and provide columnar optical depth (OD) and water vapour 

content (Morys et al., 2001), with estimated OD uncertainty less or equal to ±0.02, (i.e. slightly 

higher than the uncertainty of the AERONET field instruments; (Smirnov et al., 2006)). 

Additional aspects to be considered when using ground-based photometer measurements for 

the validation of satellite lidar-based AOD products: the space-based lidar laser beam rarely 

passes directly over the vast majority of photometer sites and the overpass repeat cycles are 

more sparse in time than for passive sensors (e.g., 16-days repeat cycle for CALIPSO). Due 

to these reasons, during the validation a certain offset distance between the lidar beam and 

the ground-based sites can be considered, and a longer time period is needed for the 

collection of the statistically significant/equivalent collocated dataset (in relation to the passive 

satellite products). Indicatively, users shouldn’t expect statistically robust comparisons to 

AERONET sites in the first years after the launch of a satellite lidar. More specifically, 

regarding offset distances, good analyses allow “closest approach” distances that are 

equivalent to the longest averaging distance used in the satellite lidar curtains for the 

comparisons (Schuster et al., 2012). As an example, CALIPSO provided 5, 20, and 80 km 

averaging distances for the AOD data products (depending upon the averaging required to 

detect the aerosol concentration). For aerosol layers retrieved at 80-km averages, the analysis 

already assumes an 80-km autocorrelation distance and therefore 80-km closest approaches 

are also valid. Inticativelly, (Schuster et al., 2012) obtained 677 synchronized clear-sky 

overpasses at the AERONET sites in a 3-year period, with 80% of those having 80-km 

averaging in at least one aerosol layer.  

Time synchronization is another factor to be considered. Indicatively, AERONET provides 

AOD measurements every 3 or 15 minutes ((Giles et al., 2019), for the Model 5 or older Model 

4 Cimels). This means that any satellite overpass can pair with a concurrent AERONET 

measurement within ∼15 minutes, as long as there are no clouds or an instrument malfunction. 

If data does become available 1-2 hours later (as some authors allow), it is likely that clouds 

were present during the overpass and that the clear conditions that AERONET found later (or 

earlier) were not present during the overpass. Since broken clouds add noise to clear-sky 

comparisons, comparisons with an hour or two between satellite overpass and AERONET 

data acquisition should not be included in AOD comparisons. Given the AERONET data 

acquisition frequency described above, it is reasonable to allow up to ∼30 minutes for 

comparisons to Cimel Model 4 instruments and ∼5 minutes for Model 5, which allows some 

flexibility for improperly programmed instruments. 

(b) Use of airborne HSRL measurements 

Airborne HSRL measurements have several aspects that greatly facilitate their use for the 

validation of satellite lidar aerosol products. Regarding the validation of AOD: 

● The flights can occur over a wide geographical range and sample a wide variety of 

aerosol types and AOD conditions.  

● They can provide a direct, calibrated, and validated measurement of AOD (e.g. 

(Rogers et al., 2009)) reported AOD biases from integrated airborne HSRL 

measurements on the order of 0.005 (and less than 6.5%) when compared with 

photometer-collocated measurements).  
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● The airborne HSRL can perform satellite underflights, minimizing spatial and temporal 

mismatches (e.g. (Rogers et al., 2014) show that HSRL AOD measurements going 

outbound and inbound along CALIPSO tracks were well correlated for temporal 

differences of less than 90 minutes). 

● The measurements have the advantage that the region of incomplete overlap between 

laser and telescope lies in the upper troposphere or lower stratosphere (depending on 

the altitude of flight), which have much lower aerosol amounts than in the lower 

troposphere wherein lies the overlap regions of ground-based lidars ((Rogers et al., 

2014)). 

● The evaluation of layer and column AOD can be done during both daytime and 

nighttime, in contrast to measurements and/or retrievals of AOD from ground-based 

(e.g. AERONET) and airborne (e.g. polarimeters) passive sensors that require 

sunlight.  

● Measurements of layer AOD are also possible in cases where passive instruments 

would be limited because of clouds (e.g. above or below clouds).  

● In cases of elastic lidars (e.g. CALIOP, CATS), the measurements enable the 

separation of the impact of the satellite’s detection sensitivity and the method inferring 

the aerosol LR on the layer and column AOD products (e.g. (Rogers et al., 2014)). 

Extensive airborne HSRL measurements have been used to evaluate CALIOP layer and 

column optical depths (and aerosol LRs) in the North America and Caribbean Sea regions 

(Rogers et al., 2014). Furthermore, airborne HSRL AOD measurements have been used to 

evaluate CALIOP above-cloud AOD retrievals derived using the standard CALIOP algorithm 

as well as a technique that uses liquid water clouds of known reflectivity (Kacenelenbogen et 

al., 2014). (Liu et al., 2015) also used airborne HSRL measurements as part of an extensive 

investigation to evaluate smoke and mineral dust layers AOD (and LR values) derived using 

return signals above opaque water clouds. Airborne HSRL measurements of AOD have also 

been used to evaluate retrievals of AOD derived from CALIOP measurements using the 

Synergized Optical Depth of Aerosols (SODA) algorithm that uses ocean surface returns 

measured by CALIOP and CloudSat’s Cloud Profiling Radar (Josset et al., 2011; Painemal et 

al., 2019) as well as from CALIOP alone (Venkata & Reagan, 2016). Additionally, advanced 

lidars such as ATLID may be expected to provide layer AOD below thin cirrus, in such cases 

coincident airborne HSRL measurements can be used to evaluate these measurements. 

Additional aspect to be considered: for a satellite backscatter lidar (e.g. CALIOP), the AOD 

could be biased high/low because of an overestimated/underestimated assigned LR for that 

layer, and biased low in the column AOD due to its failure to detect tenuous aerosols. In order 

to separate the impact of each of these uncertainties on the layer- and column-AOD products, 

simultaneous measurements relating to aerosol type, LR, and aerosol backscatter are desired. 

These measurements would also be required to validate the measurements from more 

advanced lidars, such as ATLID, that provide direct measurements of the LR and AOD.  
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5.3.2. Aerosol backscatter and extinction profiles  

Validation of the lidar L2 aerosol backscatter and extinction products rely on the 

intercomparison with suborbital lidar measurements from airborne (e.g. (Omar et al., 2009; 

Winker et al., 2013)) and ground-based systems (e.g. (Pappalardo et al., 2010; Proestakis et 

al., 2019)). The approaches used, along with the corresponding aspects to be considered are 

presented herein. 

(a) Use of airborne HSRL measurements 

Airborne HSRL measurements of aerosol backscatter and extinction profiles provide excellent 

means for the evaluation of the relevant satellite products, and also the evaluation of the 

performance of alternative satellite algorithms used to derive these products. Aspects to be 

considered (in addition to the advantages mentioned already in AOD section): 

● The HSRL measurements do not rely on assumptions and/or external information 

regarding aerosol type or LR, hence they can be used to directly assess the 

backscatter and extinction products. 

● Use of the same molecular density profile as used in the processing of the satellite 

profiles. 

● An extensive dataset of satellite under-flights is valuable for the comparison of the L2 

aerosol extinction and backscatter profile products. 

● The comparison between the nearly-coincident measurements of the suborbital and 

satellite platforms can be compared in a probability density distribution space. 

● For the interpretation of the differences between the satellite and airborne products, 

one should consider different effects (e.g. the effect of the selected LR parameter in 

case of elastic spaceborne lidars, the SNR effect on undetected aerosol layers, the 

effect of target misclassifications).  

For example, (Omar et al., 2009) used airborne HSRL extinction measurements collected 

during field missions (HSRL-1 data; (Hair et al., 2008)), to evaluate the CALIOP retrievals of 

aerosol extinction. To this end, they compared probability density distributions (PDFs) of the 

aerosol extinction products for nearly-coincident measurements from the two platforms. They 

found generally good agreement for the CALIOP products (aerosol extinction biases between 

0.0029 to 0.015 km-1 or 24-60%), noting that uncertainties in the CALIOP aerosol extinction 

profiles can be quite significant (30-200%) in large part due to uncertainties in the LRs used 

in the retrievals. (Kacenelenbogen et al., 2011) used airborne HSRL extinction (and LR) 

measurements to evaluate CALIOP aerosol extinction profiles (and AODs). They found an 

overall low bias in CALIOP V2 profiles, due to a combination of low SNR leading to missed 

detection of aerosols as well as some misclassification of aerosols that led to an 

underestimation of the LR, and an improvement in V3 CALIOP profiles (after the addition of 

low-level aerosol levels). Additionally, airborne HSRL measurements acquired over North 

America and the Caribbean Sea were used to evaluate CALIOP nighttime retrievals of aerosol 

extinction profiles (Winker et al., 2013). Other studies have used airborne HSRL aerosol 
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extinction profiles to assess new techniques for retrieving aerosol extinction profiles (e.g. 

(Burton et al., 2010; McPherson et al., 2010; Painemal et al., 2019)). 

(b) Use of ground-based extinction and backscatter profiles derived from Raman or 

HSRL lidars 

Ground-based measurements of aerosol extinction and backscatter profiles from Raman or 

HSRL lidars are capable of evaluating the corresponding space-based profiles (e.g. 

(Pappalardo et al., 2010)). Aspects to be considered for the satellite comparison: 

● Use of the same molecular density profile as used in the processing of the satellite 

profiles. 

● In order to minimize the uncertainties related to spatio-temporal collocation, one must 

assess the scales and time at which each property naturally varies. The spatio-

temporal scales at which the aerosol properties vary are directly linked to the 

processes governing the emission, transport, removal, and transformation of the 

aerosol particles. Different aerosol layers are observed at different spatiotemporal 

homogeneities, with biomass burning layers showing the largest and fastest variability. 

● The selected distance between the ground-based and satellite lidar measurements 

should consider the spatial atmospheric variability. Past EARLINET-based studies 

have chosen 40 km - 100 km as the maximum horizontal distance for intercomparisons 

between their ground-based lidars and satellite lidar footprint (Mamouri et al., 2009; 

Mona et al., 2009; Papagiannopoulos et al., 2016; Pappalardo et al., 2010; Proestakis 

et al., 2019). EARLINET suggests ≤ 100 km as an optimum horizontal distance, also 

considering that typical averaging of ±30 min for ground-based lidar will smooth out 

some of the atmospheric variability in the scene. 

● The choice of the selected time interval from the ground-based measurements is 

crucial, and to some extent is related to the selected distance between ground-based 

and satellite lidar measurement. Past EARLINET-based studies have chosen time 

windows within ±30 min - ±2 hrs as a correlative period (Mamouri et al., 2009; Mona 

et al., 2009; Papagiannopoulos et al., 2016; Pappalardo et al., 2010; Proestakis et al., 

2019).  

● The atmospheric measurements above the ground-based site (e.g. during the time 

correlative to the satellite), can provide additional information on the scene 

(un)homogeneity, towards the application of a more strict time interval (i.e. temporal 

criteria tailored for each case).   

● Only cloud-free atmospheric data should be used (e.g. taking into consideration any 

typing information provided or derived from the satellite and/or ground-based dataset).  

● For the investigation of multiple scattering effects in the spaceborne lidar products, 

comparison between satellite and ground-based products should take into account the 

multiple scattering effects on both lidar signals. (e.g. (Donovan, 2016; Reichardt & 

Reichardt, 2003; Wandinger et al., 2010)).  
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(c) Use of ground based elastic backscatter profiles (e.g. where a LR selection is 

required) (e.g. (Paschou et al., 2023; Proestakis et al., 2019)).  

In cases of absence of independent ground-based extinction and backscatter profiles (as for 

example 1064 nm measurements) and for Aeolus missions (due to the daytime tracks), elastic 

backscatter profiles are the next best option for the utilization of the ground-based lidar 

stations towards the validation of the aerosol extinction and backscatter products. For these 

cases, on top of the aforementioned aspects, the following should be considered for the 

validation of the satellite products: 

● When the elastic backscatter profiles are calculated using assumed LR, an error is 

introduced in the retrieval. One should be aware of the introduced error and take it into 

consideration for the interpretation of the results of the comparison. For example, for 

the EARLINET/ACTRIS elastic backscatter profiles the mean relative uncertainty in the 

calculation of the aerosol backscatter coefficient is expected to be less than 20 % 

(Mattis et al., 2016). 

● In cases of persistent aerosol layers (e.g. a mineral dust layer detected during 

nighttime and later-on daytime satellite overpass) one can use the 

mean/representative layer LR value measured during nighttime (e.g. using Raman 

channels) to assign a more appropriate LR on the daytime retrieval. This is expected 

to reduce the errors due to the selected LR value. 

● The evaluation should be performed only in the altitudes of the full overlap of the 

ground-based system. In case a comparison is made in the altitudes below the full 

overlap, one should clearly mention the ground-based system limitation to capture all 

the aerosol load in the overlap region.  

Special consideration for validation of Aeolus L2 backscatter: 

ALADIN lidar onboard the Aeolus mission operated using circularly polarized emission at 355 

nm. However, the transceiver concept of ALADIN allowed the detection of only the co-polar 

component of the backscattered signal. The missing cross-polar component in the detection 

led to signal loss in cases of depolarizing particles (e.g. mineral dust, volcanic ash, cirrus 

clouds) and subsequently to the underestimation of the backscatter products and the 

overestimation of the lidar ratio products. Due to this, in order to account for the undetected 

signal in validation scenes with depolarizing particles, a harmonization of the reference 

suborbital backscatter to the Aeolus-like backscatter products is necessary, which is done 

using suborbital particle linear depolarization ratio measurements (Abril-Gago et al., 2022; 

Paschou et al., 2022). (Abril-Gago et al., 2022; Baars et al., 2021; Gkikas et al., 2023) 

validated Aeolus aerosol backscatter products using the aforementioned correction 

methodology in atmospheric scenes with anthropogenic, mineral dust, mineral dust mixtures, 

and smoke layers. The conversion formulas cannot be applied when the particles present a 

preferential orientation (e.g. mineral dust; (Daskalopoulou et al., 2023; Ulanowski et al., 2007) 

and cirrus clouds (Myagkov et al., 2016; Noel & Sassen, 2005; Thomas et al., 1990) and/or 

when the multiple scattering effect is not negligible (e.g. inside clouds; (Donovan et al., 2015; 

Jimenez et al., 2020; Schmidt et al., 2013); and inside thick aerosol layers; (Wandinger et al., 

2010)). For such cases, the particle circular depolarization ratio is required which can be 

obtained from a circular polarization lidar system. An example of a circular polarization lidar 
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system is eVe, ESA's reference lidar for the Cal/Val of Aeolus aerosol products (Paschou et 

al., 2022). More specifically, eVe is a combined linear/circular Raman polarization lidar which 

was specifically developed to address the aforementioned limitations. It incorporates the 

necessary hardware elements to reproduce the operation of ALADIN and provide ground-

based reference measurements for the validation of Aeolus aerosol products (Paschou et al., 

2023). With eVe the evaluation of the conversions accuracy and the quantification of the 

multiple scattering and orientation effects on Aeolus backscatter products was investigated.  

5.3.3. Aerosol lidar ratio 

(a) Satellite elastic lidar ratio products 

Satellite elastic backscatter lidars must assume (or derive) LR values in order to retrieve their 

aerosol backscatter and extinction profiles. Untilnow, the validation of these LR assignments 

(value itself and type) were performed using airborne HSRL and ground-based Raman 

measurements. More specifically, airborne HSRL LR measurements have been used to 

assess LRs used in, or derived from, satellite lidar aerosol retrievals. As an example, (Rogers 

et al., 2014) used extensive daytime and nighttime airborne HSRL measurements and found 

that the LRs used by CALIOP for marine and mineral dust aerosol types were most 

comparable with the airborne measurements for these types (71-82% of these aerosol layers 

were within 30% of the HSRL LR measurements, while only about a third of the CALIPSO 

cases for other aerosol types were within 30% of the HSRL LRs measurements). Ground 

based Raman measurements provided by EARLINET stations were used for comparing  LR 

values  for each aerosol type with the corresponding CALIPSO assumed values. 

(Papagiannopoulos et al., 2016) used LR observations collected over the EARLINET stations, 

representing different atmospheric conditions, and found that the mean clean continental LR 

used in CALIPSO scheme is about 10 sr lower than the value observed in background 

European values. For mineral dust particles, the comparison with EARLINET values allowed 

for an adjustment in the CALIPSO assumed values toward the EARLINET observed mean 

value of 51 ± 10 sr. Additionally, both ground-based Raman and airborne HSRL LR 

measurements showed a range of LRs for each of the CALIPSO aerosol types (e.g. (Mona et 

al., 2006)), indicating that the use of a single LR to represent each of the aerosol types can 

lead to significant uncertainties in the retrieved aerosol products, with a possibility to estimate 

the expected uncertainty induced from the LR assumption of CALIPSO. Furthermore, airborne 

HSRL measurements have been used to evaluate LRs determined by alternative elastic 

backscatter lidar retrieval techniques which use column AOD or scattering from the ocean 

surface/clouds to derive a mean LR. As an example, (Painemal et al., 2019) found mean bias 

differences between CALIOP column LRs derived using a SODA AOD column constraint to 

be within 5 sr (18%) of airborne HSRL mean LRs, with RMSE differences within 9 sr (32%).  

It should be considered that the satellite elastic backscatter LR assumed values are 

constrained by the limitation of its lidar signatures and their sensitivity to the differences 

between the several types. For the case of CALIPSO, the wide variation of LR values observed 

from suborbital measurements for particular CALIPSO aerosol types has been attributed in 

aerosol mixtures beyond the satellite’s classification capabilities which are driven mainly by 

the depolarization. 
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(b) Satellite HSRL lidar ratio products 

Satellite HSRL lidars (e.g. Aeolus, EarthCARE) can directly measure the LR profiles. In 

particular, Aeolus was the first lidar which directly measured LR from space, but due to the 

missing of a polarization component in the satellite design, only the co-polar LR could be 

measured (not the total). A description of the methodologies used to evaluate the Aeolus LR 

products are provided herein, after a short discussion on the spatiotemporal correlation 

required for the evaluation of the LR products. 

For non-depolarized aerosol layers: the undetected polarization issue of Aeolus could be 

neglected. An example of these type of cases is the validation performed in (Baars et al., 

2021). In this study, ground-based lidar measurements were used for the validation of Aeolus 

LR products in long-range transported smoke layers, and found that the Aeolus LR agreed 

well within the ground-based reference uncertainties in well pronounced lofted smoke layers. 

This was possible due to the fact that the smoke cases considered did not depolarize the light. 

In the presence of depolarizing particles (e.g. mineral dust, stratospheric smoke): as 

already discussed in section 5.2.1 (for Aeolus backscatter coefficient), due to the missing 

polarization component of Aeolus (Flament et al., 2021), a conversion should be made to the 

Aeolus-like LR for using the particle depolarization ratio profiles from the suborbital lidar and 

assuming randomly oriented particles and negligible multiple scattering (Baars et al., 2021; 

Flament et al., 2021; Paschou et al., 2022). This conversion is based on the assumption that 

the same aerosol type can be observed from the satellite and the suborbital platform (i.e. the 

same aerosol depolarization properties for both measurements).  

Consistency check with known aerosol type: If the aerosol type in an atmospheric region 

is known and correlation (as described above) can be assumed, the LR of the known aerosol 

types can be used to validate the satellite LR profiles by means of a consistency check. 

(Flament et al., 2021) and (Ehlers et al., 2022) validated the Aeolus LR of a dense mineral 

dust layer above the Eastern Atlantic Ocean by converting the Aeolus co-polar LR component 

(e.g., (Abril-Gago et al., 2022; Paschou et al., 2022)) and comparing it’s consistency with LR 

literature values (e.g.,(Floutsi et al., 2023)). Note: As LR is an intensive quantity and thus 

depends only on the aerosol type, it can be used to validate satellite products in case the 

aerosol type is accurately known (i.e. including also its respective mixing state). As the mixing 

state can change, it is preferred to do such a validation approach only on pure aerosol types 

(e.g. Saharan dust). For the cases of pure aerosol types, the LR variability is lower compared 

to the variability of the aerosol mixtures since it mainly originates from the aerosols’ chemical 

composition (e.g. different mineral dust components). 

In fact, validation of the LR is also partly a validation of the aerosol type properties, thus one 

should refer also to the respective section in this chapter. 

For the upcoming EarthCARE mission (where the depolarization component is not missing), 

similar suborbital LR measurements and approaches can be utilized to evaluate the satellite 

LR measurements. 

(c) Use of in-situ observations for LR assessments 

In-situ measurements can be used for the validation of satellite LR products. To compute the 

LR, we need the measured refractive index, particle size distribution (PSD) and particle shape, 
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all of which can (in principle) be inferred with the right set of in-situ instrumentation. The 

derivation of particle microphysical properties from in-situ measurements can be quite 

complex (e.g. combination of several instruments is needed to have the full set of information) 

but we report here on a few applications. (Jager & Hofmann, 1991) used balloon-borne particle 

counter data to define a seasonally averaged stratospheric volcanic sulfuric acid aerosol size 

distribution, and from this LR, mass, and area ratios are derived for an appropriate range of 

refractive indices. (Marenco et al., 2016) computed the LR of smoke in the Amazon basin by 

applying a constraint on the lidar signals, and compare the result to airborne in-situ 

observations of the PSD, through Mie scattering computations, obtaining an agreement able 

to validate the LR retrieved. The computation has been repeated for a suitable range of 

refractive indices, showing that the combination of the remote sensing and in-situ techniques 

could in principle help to put a constraint on the refractive index of smoke.  

It should be mentioned here that for the scattering calculations of irregular particle shapes 

(e.g. mineral dust particles) the calculation of LR is not trivial, especially for large size 

parameters (e.g. (Gasteiger, Wiegner, et al., 2011)). What has been commonly used up to 

now is the spheroidal shape (e.g.(Dubovik et al., 2006)), which has limitations in reproducing 

the backscattering properties of e.g. mineral dust (Gasteiger, Wiegner, et al., 2011). Thus, 

further work is needed for developing scattering codes and databases that reproduce the 

backscattering properties of irregular-shaped particles (e.g. (Gasteiger, Wiegner, et al., 2011; 

Huang et al., 2023; Saito et al., 2021)). 

Moreover, for the LR assessment from in-situ observations one should also take into account 

the particle’s hygroscopicity, which changes the LR of the particles in humid ambient 

conditions (e.g. (Tsekeri et al., 2017)). In these cases the in-situ derived LR may be different, 

since it is usually derived for dried particles. 

General spatiotemporal consideration of LR products: In contrast to the backscatter and 

extinction coefficient, the LR and depolarization ratio are intensive properties (i.e. dependent 

only on aerosol type and not on aerosol load), thus as long as the same particle type is 

observed, spatiotemporal correlation (co-location) is not as sensitive as for the extensive 

quantities (i.e. extinction and backscatter, which depend on aerosol load). This makes the 

measured LR easier to validate, once correlation between the suborbital and satellite 

measurements are assured. There are several options to investigate this correlation (Baars et 

al., 2021):  

a) Use of trajectory analysis: calculate backward trajectories to compare the suborbital 

observation with the satellite observation by taking into account the air motion. In this 

method, no changes are considered in the air parcels (i.e., no changes in the aerosol 

properties), which is mainly valid for lofted (or long-range transported) aerosol layers. 

For aerosol measurements in the planetary boundary layers (PBL), this assumption is 

not valid. 

b) Check the temporal (in)homogeneity in the suborbital observation and horizontal 

(un)homogeneity in the satellite profiles: A second method to analyze the correlation 

between the two measurements, is to check for temporal homogeneity (in the ground-

based measurements) and horizontal homogeneity (in the airborne and satellite 

measurements). As an example, if the satellite LR in the targeted aerosol layer is 

horizontally homogeneous over some tens to hundreds of kilometers and does not 
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change significantly for the ground-based lidar through time, then it can be fairly 

assumed that the same air mass (i.e., the same containing aerosol property) is 

observed and hence the LR values can be directly validated. Passive satellite imagery 

can be used to validate this assumption also. 

For the validation of LR measurements in the PBL, where homogeneity cannot be 

assumed, so far only statistical methods can be considered (e.g., long-term 

observations at certain places). 

5.3.4. Particle depolarization ratio 

Particle depolarization ratio is an important satellite L2 product, used widely for the satellite’s 

aerosol typing. As an intensive property, for the validation of this product the spatiotemporal 

correlation (co-location) is not as sensitive as for the extensive quantities (as long as the same 

particle type is measured). While the volume depolarization ratio (defined as the calibrated 

ratio of the measured cross- to the co-polar lidar signals containing the contribution from 

molecules and particles; (Freudenthaler, 2016) is directly measured, the particle 

depolarization ratio needs to be retrieved from the measured volume depolarization ratio, the 

molecular depolarization ratio (calculated for each lidar system; e.g. (Siomos et al., 2023)) and 

the retrieved particle and molecular backscatter products (Beyerle, 1994; Biele et al., 2000)). 

An indirect validation of the particle depolarization ratio includes the validation of the products 

used for its retrieval (e.g. (Burton et al., 2013)). 

CALIPSO measured the volume (linear) depolarization ratio at 532 nm (polarization calibration 

procedure  described by (Powell et al., 2009)) and provided the particle (linear) depolarization 

ratio as a L2 product. Airborne and ground-based measurements were used for its validation. 

Ground-based validation using particle depolarization ratio co-located products, led to the 

suggestion of an improved calculation scheme for the particle depolarization ratio product 

(Tesche et al., 2013). Airborne validations found that the attenuation of the backscatter by 

atmospheric features above the measurement height affects the particle depolarization ratio 

product (Burton et al., 2013). For the validation of CATS 1064 nm volume (linear) 

depolarization products, airborne lidar measurements (from the Cloud Physics Lidar) were 

used to better characterize the gain ratios of the relevant channels (CalWater-2 and CCAVE-

15 campaigns). 

Suborbital considerations:  

(a) For the successful validation of satellite particle depolarization ratio products, 

calibrated suborbital lidar systems are required (e.g. polarization calibration 

methodologies developed for ACTRIS lidars: (Belegante et al., 2018; Bravo-Aranda et 

al., 2016; Freudenthaler, 2016)).   

(b) For certain aerosol types, there is a wavelength dependence of the particle 

depolarization ratio. Mineral dust exhibits a wavelength-dependent depolarization ratio 

(Burton et al., 2015; Haarig et al., 2017, 2022; Hofer et al., 2020; Hu et al., 2020). Non-

spherical smoke particles in the upper troposphere / lower stratosphere exhibit a 

distinct and pronounced spectral dependence of the depolarization ratio as well 

(Burton et al., 2015; Haarig et al., 2018; Hu et al., 2019). On the other hand, the 

spectral dependence is negligible for almost spherical particles such as pollution, 

marine aerosol and smoke under humid conditions. In cases of evaluation of this 
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product with measurements from another wavelength, this wavelength dependence 

should be considered. 

5.3.5. Geometrical properties (Aerosol layer height and depth) 

Satellite profiling sensors can detect atmospheric regions where the aerosol load is either 

significant or relatively homogeneous. In general, the altitude registration of the laser profiles 

is quite accurate with small height bin assignment errors, hence the most crucial validation 

concerns the characterization of the layer detection sensitivity. Each mission adopts a different 

algorithm that fits its goals and operational needs. In general, due to the moving platform, SNR 

enhancement through data averaging is a common practice for the retrieval of these products. 

The methods used by different missions are summarized in Appendix 1 (Table 1). As an 

example, the first CALIPSO layer identification algorithm used an adaptive threshold technique 

on single profiles and multiple profiles to identify tenuous layers (Vaughan et al., 2009), while 

another algorithm used a two-dimensional and multi-channel feature detection method 

(Vaillant de Guélis et al., 2021). 

Generally, the suborbital lidar aerosol (and cloud) identification techniques detect the layers 

through one-dimensional (1D) or two-dimensional (2D) approaches. The algorithms to retrieve 

elevated layers use similar techniques as those for the detection of the PBL. A comprehensive 

review on the different techniques to retrieve PBL height is given by (Kotthaus et al., 2023). A 

short description of the methodologies used from suborbital measurements for layer 

identification is presented herein. 

● 2D approaches (processes) are widely used in space profilers and have applicability 

in suborbital profile measurements. They take advantage of the information provided 

by a continuous series of lidar profiles by searching for cloud and aerosol features in 

the 2D image. Typically edge detection, sliding window, and image reconstruction 

techniques are often employed to retrieve a feature mask (Vaillant de Guélis et al., 

2021; van Zadelhoff et al., 2023; Vivone et al., 2021). 

●  Detection algorithms applied to single shot or averaged profiles (1D approaches). 

Ground-based systems historically detect layers using single or averaged profiles. 

Four main approaches are generally employed:  

○ the slope-based method, which detects a negative maximum in the derivative 

with respect to the range of the lidar signal (e.g., (Flamant et al., 1997)). 

○ the threshold-based method, which searches for regions rising significantly 

above the theoretical clear-air value (e.g., (Campbell et al., 2008)). 

○ a combination of the slope-based and threshold-based methods (e.g., (Lewis 

et al., 2013)). 

○ the wavelet covariance analysis (WCT), which detects a maximum in the 

correlation function of the lidar signal and a wavelet, usually the Haar wavelet 

(e.g., (Baars et al., 2008; Comerón et al., 2013; Siomos et al., 2018)).  
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Geometrical considerations:  

The WCT is a commonly used methodology for layering detection and has been applied on 

range corrected signals (Baars et al., 2008), and on lidar products (Michailidis et al., 2023; 

Siomos et al., 2018). Below some aspects to be considered when applying this methodology 

are summarized, concerning the wavelength/product/deliation selection (Voudouri et al., 

2023): (a) wavelength selection: Infrared wavelengths magnify the differences in the vertical 

distribution of the aerosols, resulting in layers that are easily identified and can provide more 

accurate layer detections; (b) product selection: particulate backscatter product is less noisy 

than the particulate extinction product, hence the application of WCT on this product give more 

accurate detections; (c) wavelet dilation selection: optimum wavelet dilation values for layering 

detection are reported between 200 - 600 m, while with > 600 m only thick layers can be 

detected. In general, the selection of a bigger wavelet dilation value results in a lower number 

of detected layers (especially for the infrared channel).  

For the validation of the aerosol layer height and depth products, the suborbital location and 

the terrain topography around the satellite overpass should not be neglected. Vertical 

inconsistencies between suborbital and satellite retrievals over areas with a complex terrain 

appear (and should be considered) due to the orography that induced disturbances in the 

aerosol layer heights/depth. 

The evaluation of aerosol geometrical properties could give different results in layers with 

different concentrations and depths, and in daytime/nighttime conditions. Typically, the 

satellite retrievals will struggle to detect relatively thin layers and layers with low 

concentrations. Also, the satellite measurements will have less sensitivity during daytime 

(higher noise), which may result in more undetected layers. 

Suborbital lidar measurements are used to evaluate the satellite layer products. This has been 

done in the past either through a direct comparison of the identified aerosol layers, or through 

the evaluation of derived products within the detected layers (e.g. AOD). Overall, there is not 

an absolute reference for layer heights against which a selected layer height technique could 

be verified. For the CALIPSO mission, one significant concern was the validation of the correct 

determination of the aerosol layer base (a more difficult product than layer top for a 

spaceborne lidar). The validation of this parameter was provided using collocated airborne 

HSRL measurements during campaigns (e.g. the ORACLES campaign; (Redemann et al., 

2021). Furthermore, several studies which address the satellite’s capability on the aerosol 

layer detection, concentrated on characterizing layer detection sensitivity and on the 

quantification of the undetected-layers effect in the columnar AOD (and subsequent radiative 

forcing calculations). This was investigated through data intercomparison with MODIS, 

AERONET, airborne HSRL, ground-based lidar-derived AOD products, and lidar-derived AOD 

products above opaque clouds. Examples of these studies: 

1. (Kim et al., 2017) statistically quantified the (AOD) effect of the CALIPSO undetected 

aerosol layers through AOD intercomparison with MODIS products. This methodology 

can be applied once the extinction products of a mission are validated, hence one can 

consider the absence of biases from the detected aerosol layers. Similar approach 

could also be used with AERONET product intercomparison. 
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2. (Toth et al., 2018) statistical quantified the (AOD) effect of the CALIPSO undetected 

aerosol layers though intercomparison between CALIPSO profiles with fill-only values 

and MODIS collocated profiles, in a multiyear approach (4-year collocated dataset). 

3. (Rogers et al., 2014) compared CALIPSO AOD with airborne HSRL-derived AOD and 

quantified the undetected aerosol layers during daytime and nighttime. 

4. (Thorsen et al., 2017) compared CALIPSO AOD with ground-based (ARM) lidar-

derived AOD. 

5. (Liu et al., 2015) compared the CALIPSO L2 AOD with the retrieved AOD from the 

Opaque Water Cloud technique applied on CALIPSO L1 data where aerosol layers are 

located above opaque water clouds 

One critical aspect in geometrical properties validation is the collocation. Bottom, top and 

depth of the layers is high variable (the mostly variable property) hence intercomparison with 

sub-orbital measurements should be carefully done and should be based on a large number 

of values of statistical relevance (see also Chapter 3). 

5.3.6. Aerosol typing/classification  

Intensive optical properties are concentration-independent parameters which reveal 

information about the aerosol type. They can be utilized for aerosol-typing purposes (and thus 

for the harmonization of satellite records of aerosol properties performed at different 

wavelengths). The most common intensive optical parameters used for aerosol-typing 

purposes are the LR, the particle depolarization ratio, and the Ångström exponent. These 

parameters are common L2 products and their validation has been already discussed in the 

sections above.  

Different satellites utilize different sets of products for aerosol classification, and usually the 

classes are different for different missions. Indicatively, CALIPSO classification scheme 

categorize the aerosol layers in eleven types (troposphere: clean marine, dust, polluted 

continental/smoke, clean continental, polluted dust, elevated smoke and dusty marine; 

stratosphere: polar stratospheric aerosol, ash, smoke, sulfate, and “unclassified”). The 

parameters used for this classification are the lidar-derived feature-integrated volume 

depolarization ratio, attenuated backscatter, feature height, geographical location, underlying 

surface type, temperature and season (Kim et al., 2018; Omar et al., 2009; Tackett et al., 

2023). CATS classification scheme categorize the aerosol layers in similar types (e.g. desert 

dust, dust mixture, smoke, polluted continental, clean/background, marine, marine mixture, 

and upper troposphere–lower stratosphere aerosol; (Nowottnick et al., 2022)). Both CALIPSO 

and CATS (as elastic backscatter lidars) were not able to utilize LR measurements for their 

classification (as they didn’t perform direct extinction measurements thus the LR was an a 

priori). Several validation studies have been performed with ground-based lidar systems (e.g., 

(Kanitz et al., 2014)), as well as with airborne HSRL LR measurements (Burton et al., 2013). 

The most common problem was the aerosol misclassification, mainly due to the surface-

dependent decision tree of the classification scheme. This issue was mainly resolved with the 

new version updates (Tackett et al., 2023), which led to more accurate feature identification 

and more reliable extinction retrievals.  
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Aeolus HSRL aerosol/cloud products are the particle backscatter, particle extinction, and lidar 

ratio (Ansmann et al., 2007; Flamant et al., 2008; Straume et al., 2020). Aeolus doesn’t have 

a classification product. The main limitation for this, came from the undetected cross-polar 

component of the emitted circular-polarized light, and the inadequate separation of the aerosol 

types with only the three available products. This imposes great challenges to aerosol 

classification based on Aeolus products only (typing may be performed in the case of spherical 

scatterers or via a synergistic approach with ground-based lidars, supported by back trajectory 

analysis and other additional information). 

Comprehensive collections of suborbital lidar-derived intensive optical properties can be 

utilized in the development and validation of aerosol typing schemes on both suborbital and 

satellite lidars. ACTRIS/EARLINET database ((Pappalardo et al., 2014), data.earlinet.org) 

includes backscatter, extinction, lidar ratio and particle depolarization ratio profiles over more 

than 40 stations (at present 33 stations available) over Europe and beyond, since 2000 up to 

now with most of them committed to provide measurements on long term for the next 20 years 

within ACTRIS (Laj et al., 2024).  This database has been used for developing aerosol typing 

algorithms (Nicolae et al., 2018; Papagiannopoulos et al., 2018), and for comparing and 

assessing the complementariness of different typing algorithms (Voudouri et al., 2019). 

Currently it is under implementation the centralized fully quality controlled provision of the 

aerosol typing product for the ACTRIS/EARLINET stations.  

Looking also outside Europe, DeLiAn ground-based data collection is available (Floutsi et al., 

2023) including globally distributed, long-term, ground-based, multiwavelength Raman and 

polarization lidar measurements (mainly from the PollyNET network; (Baars et al., 2016; 

Engelmann et al., 2016)) of the particle (linear) depolarization ratio, the lidar ratio and the 

Ångström exponent, available at 355 and 532 nm. The dataset includes 13 aerosol type 

categorizies (i.e. pure aerosol types and specific aerosol mixtures). DeLiAn collection has 

been used for the development and validation of aerosol typing schemes of the EarthCARE's 

Hybrid End-To-End Classification (HETEAC) model (Wandinger, Floutsi, et al., 2023b), which 

serves as a common baseline for the development, evaluation and implementation of 

EarthCARE algorithms. More information about HETEAC algorithm can be found in Appendix 

2. 

Aspects to be considered for the validation of spaceborne aerosol typing: 

● A first step towards the classification validation is the validation of the L2 products that 

were used in the classification scheme (described in the sections above). This will 

provide valuable information on misclassification reasons (e.g. if it is due to the L2 

products or the algorithm itself). 

● The utilization of suborbital multiwavelength observations can provide additional 

information on the aerosol types in the scene, and validate the capability of the 

classification scheme to correctly separate mixtures.  

● Intercomparison with a different aerosol typing scheme that uses the same (or 

different) L2 input parameters can be applied. However, this becomes difficult due to 

the different nomenclatures and classifications used in the different aerosol typing 

schemes (Voudouri et al., 2019). For validation purposes, a commonly agreed 

nomenclature/classification would be highly beneficial.  
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● Since aerosol typing is usually applied to atmospheric features, a consistency check 

between the feature identification algorithms (see Section 5.2.5) shall be performed. 

● Additionally, consistency must be ensured for the atmospheric layer geometrical 

boundaries (or column etc.) in consideration.   

● L2 products used for aerosol typing can be wavelength-dependent and, therefore, 

wavelength conversion might be necessary to allow meaningful comparisons. Spectral 

conversion can be achieved via the aerosol-type-dependent backscatter- and 

extinction-related Ångström exponents. These conversions can be derived from 

suborbital lidar measurements, optical models, or data collections (e.g. (Amiridis et al., 

2013)) 

Often, aerosol categories are linked to specific microphysical properties, such as the effective 

radius, the refractive index etc. Such assumptions can be validated by airborne in situ 

measurements of the targeted quantities (e.g., size distribution measurements or samples for 

chemical composition analysis). The comparison with in-situ data should always be done with 

caution, taking into account the different methodologies used (e.g. drying of particles (e.g. 

(Tsekeri et al., 2017)), undersampling of large sizes (e.g. (Ryder et al., 2018) etc). A less direct 

way to validate such assumptions is to use an inversion algorithm (Müller et al., 1999) to 

retrieve the microphysical parameters from the lidar-derived optical parameters. 

Next to the microphysical properties, radiative properties, such as the single-scattering-

albedo, can be assigned to aerosol classes. This allows for radiation closure assessments at 

the surface and/or at the top of the atmosphere. Successful closure is a means of verification 

of correct retrievals/assumptions (plausibility check).  

 

5.4. Summary and Discussion 

The validation activities associated with satellite lidar measurements of aerosols have shown 

that suborbital lidar measurements are critical for properly evaluating the performance of their 

products. Additionally, the additional wavelengths available from sub-orbital lidar 

measurements can aid in the development of a dataset that can be used to relate similar 

suborbital lidar measurements at other wavelengths to the satellite lidar wavelength, thereby 

helping to facilitate the use of additional suborbital measurements for Cal/Val. The 

measurements at additional wavelengths, along with measurements of additional aerosol 

optical properties such as lidar ratio, depolarization ratio, Angstrom exponent etc. provide 

valuable information for assessing assumptions and constraints associated with aerosol 

retrieval algorithms (e.g. CALIOP LR assumption). Additionally, extensive sub-orbital lidar 

measurements have provided the opportunity to acquire data in diverse locations and a wider 

variety of aerosol types and optical properties. As new aerosol retrieval algorithms are 

developed, additional lidar Cal/Val activities have provided the datasets needed to assess 

these retrievals under more diverse conditions and locations. 

Airborne lidar measurements provide the means to acquire relevant datasets directly along 

the satellite track minimizing uncertainties associated with temporal and spatial differences. 

Airborne measurements permit the acquisition of the required number of satellite profiles to 

https://docs.google.com/document/d/1xcHkQZ3BZ02F_4ZyvUPPvpaTTkVq0YFiUrDgIb8ziE8/edit#heading=h.johfkmluwz2g
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achieve the desired uncertainty while minimizing both systematic and random errors. 

Additionally, airborne lidar Cal/Val activities have shown the benefits of using airborne lidar 

systems (with greater measurement capabilities) than the targeted satellite lidar systems. 

Better SNR and smaller uncertainties in such airborne measurements reduce the number of 

profiles that must be acquired and averaged together to reduce random uncertainties and 

achieve the desired level of calibration accuracy. Going one step further, airborne under-flight 

lidar measurements acquired over a long time period provide the means to monitor the L1 

calibration, account for temporal changes in this calibration, and evaluate procedures used to 

transfer the nighttime calibration to daytime (lessons learned from CALIPSO mission with >16 

years under-flights).  

Similar airborne lidar measurements will be required for the ATLID and AOS lidar systems. 

Such measurements will likely be acquired during dedicated Cal/Val field missions and during 

other science campaigns. While such under-flights could theoretically be conducted during 

science missions, operational or other constraints may make it difficult, if not impossible, to 

conduct such flights. For example, the satellite lidar calibration will likely require 

measurements to check both nighttime and daytime calibration; however, most airborne 

science missions are conducted during the day due to operational constraints. Conducting 

additional night flights may require resources that are beyond the science mission’s staffing 

or funding levels. Additionally, the science mission may require flights to a particular location 

or need particular observational conditions that preclude sufficient coincidence with the 

satellite lidar measurements. Science missions necessarily place priority on acquiring 

suborbital data to meet specific science objectives; satellite Cal/Val, if considered, is typically 

a lower priority. Consequently, satellite lidar validation typically involves dedicated flight hours 

and/or dedicated missions that are tailored to acquire the specific data required for Cal/Val. 

Such missions that deploy airborne lidar(s) may be more efficiently conducted with small 

aircraft and so can increase Cal/Val opportunities.     

Cal/Val from ground-based mobile lidar systems and ground-based lidar networks provide a 

less expensive option, with the latter providing usually longer timeseries. The main aspect that 

needs to be considered when using ground-based network measurements is that the space-

based lidar laser beam rarely passes directly over the vast majority of the network sites (e.g., 

16-days repeat cycle for CALIPSO). Moreover, a certain spatio-temporal distance between 

the ground-based and satellite lidar measurements should be considered for the atmospheric 

variability for the Cal/Val of aerosol products. In order to minimize the uncertainties related to 

spatio-temporal collocation, one must assess the scales and time at which each property 

naturally varies. The spatio-temporal scales at which the aerosol properties vary are directly 

linked to the processes governing the emission, transport, removal, and transformation of the 

aerosol particles. EARLINET suggests ≤ 100 km as an optimum horizontal distance for 

intercomparison between ground-based lidars and the satellite lidar footprint and time 

windows of ±30 min. Moreover, for the investigation of multiple scattering effects in the 

spaceborne lidar products, comparison between satellite and ground-based products should 

take into account the multiple scattering effects on both lidar signals. Lastly, the evaluation 

should be performed only in the altitudes of the full overlap of the ground-based system. In 

case a comparison is made in the altitudes below the full overlap, one should clearly mention 

the ground-based system limitation to capture all the aerosol load in the overlap region. 
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5.5. Appendix 1: Active satellite layer detection algorithms 

Table 1. The active satellite layer detection algorithms 

 

5.6. Appendix 2: EarthCARE Aerosol Classification model: HETEAC & 

HETEAC-Flex 

Successful aerosol classification from EarthCARE’s (Illingworth et al., 2015; Wehr et al., 2023) 

UV-Atmospheric lidar (ATLID) is of key importance for achieving one of the EarthCARE 

mission’s goals, which is radiative closure for each 10×10 km pixel within 10 Wm^-2. To this 

end, the Hybrid End-To-End Aerosol Classification (HETEAC) model was developed 

(Wandinger, Floutsi, et al., 2023b). HETEAC’s hybrid approach ensures consistency between 

the theoretical description of aerosol microphysics and the experimentally derived optical 

properties (Floutsi et al., 2023), while the end-to-end approach allows a complete and uniform 

representation of the aerosol types in terms of microphysical, optical and radiative properties. 

In addition, HETEAC serves as the common baseline for the development, evaluation, and 

implementation of EarthCARE algorithms. 

HETEAC considers four aerosol components: two fine modes consist of either weakly or 

strongly absorbing spherical particles and two coarse modes consist of either spherical or non-

spherical particles. The four aerosol components adequately reflect the most frequently 

observed aerosol types in the troposphere: pollution-related aerosol, fresh smoke, marine 

particles and mineral dust, respectively. 

For each of these components, a mono-modal particle size distribution and a wavelength-

dependent complex refractive index is assigned to obtain their microphysical description, 

based on ESA’s Climate Change Initiative (CCI) project Aerosol CCI (Holzer-Popp et al., 

2013). The mode radii and refractive indexes are obtained from AERONET and are considered 

typical for the aerosol components. To describe the scattering of the non-spherical particles, 

two models were examined. One is the spheroid model introduced by (Dubovik et al., 2006) 

and the other one is proposed by (Gasteiger, Wiegner, et al., 2011). While both models are 

widely used in several applications (e.g., (Dubovik et al., 2006) in Aerosol cci and (Gasteiger, 

Wiegner, et al., 2011) in OPAC), the model and spheroid distribution chosen for HETEAC was 

Satellite Lidar Type Layer detection method Reference 

CALIPSO CALIOP Elastic Adaptive threshold-based method and 
multi-profile averaging 

(Vaughan et al., 
2009) 

CALIPSO CALIOP Elastic Multispectral iterative threshold-based 
method and image reconstruction 
techniques 

(Vaillant de Guélis 
et al., 2021) 

ICESat-2 ATLAS Elastic Data aggregation function with an auto-
adaptive threshold algorithm 

(Herzfeld et al., 
2021) 

EarthCARE ATLID HSRL Edge detection and smoothing techniques (van Zadelhoff et 
al., 2023) 

Aeolus ALADIN HSRL Edge detection and smoothing techniques 
adopted from ATLID 

(van Zadelhoff et 
al., 2023) 

ISS CATS Elastic Adaptive threshold-based method and 
multi-profile averaging 

(Vaughan et al., 
2009; Yorks et al., 
2015) 

ISS CATS Elastic Convolutional Neural Networks and 
denoising techniques  

(Yorks et al., 2021) 
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the one of (Gasteiger, Wiegner, et al., 2011), mainly due to the degree of reproducibility of the 

observations. 

To account for aerosol mixtures of two or more modes, a multimodal representation is 

achieved by mixing rules. Each mode has specific scattering properties per unit particle 

volume, which are then used, in combination with the relative volume contribution of each 

mode, to derive the optical properties of the aerosol mixture. This procedure results in lookup 

tables (LUT) of the optical and radiative properties for the different mixing ratios between the 

aerosol modes at eight wavelengths (Wandinger, Floutsi, et al., 2023a). 

Once in orbit, EarthCARE’s products will undergo extensive validation from the several cal/val 

teams. In view of aerosol typing and radiative closure, a novel methodology for the 

characterization of atmospheric aerosol based on lidar-derived intensive optical properties 

was developed (Floutsi et al., 2024). The aerosol typing scheme is applicable to both ground- 

and satellite lidars, which is ideal for cal/val activities. 

HETEAC-Flex, applies the optimal estimation method (OEM) to a combination of lidar-derived 

intensive aerosol properties (i.e., concentration-independent), to determine the statistically 

most-likely contribution of aerosol component to the observed aerosol mixture, weighted 

against a priori knowledge of the system. The aerosol components considered to contribute 

to an aerosol mixture are four, namely fine, spherical, absorbing (FSA); fine, spherical, non-

absorbing (FSNA); coarse, spherical (CS); and coarse, non-spherical (CNS). These four 

components have been selected from lidar-based experimental data set at 355, 532 and 1064 

nm. Their optical and microphysical properties serve as a priori for the retrieval scheme and 

are in accordance with the ones used in the original HETEAC model, to ensure meaningful 

comparisons. In contrast to HETEAC, which is limited to observations at 355 nm only, the 

novel typing scheme is flexible in terms of input parameters and can be extended to other 

wavelengths to exploit the full potential of ground-based multiwavelength-Raman-polarization 

lidars and thus reduce the ambiguity in aerosol typing. It is thus an algorithm, able to be applied 

to EarthCARE but also to other lidar systems providing other or more optical products. 

The initial guess of the aerosol components contribution that is needed to kick-off the retrieval 

scheme is the outcome of a decision tree. Using this initial guess, the lidar ratio (355 and 532 

nm), particle linear depolarization ratio (355 and 532 nm), extinction-related Ångström 

exponent and backscatter-related color ratio (at the 532/1064 nm wavelength pair) are 

calculated (forward model). The final product is the contribution of the four aforementioned 

aerosol components to an aerosol mixture in terms of relative volume. Once this product meets 

certain quality assurance flags, it can be used to provide additional products: (a) aerosol 

component separated backscatter and extinction profiles, (b) aerosol optical depth per aerosol 

component, (c) volume concentration per component, (d) number concentration per 

component, (e) effective radius of the observed mixture and (f) refractive index of the mixture. 
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6. Chapter 6: Guidance for the validation of radar, cloud and 

precipitation products 

Plain language summary 

The aim of this chapter is to provide guidelines on how to perform validation of cloud 

precipitation products, with a major focus on vertical profiles of cloud and precipitation 

properties, by using ground and airborne-based remote sensors. The description of the 

instruments that can be used for such validation and corresponding QA/QC procedures are 

described in Chapter 3, the comprehensive list of geophysical products is given in Chapter 2.  

This chapter is divided into two parts, the first part focuses on recommendations for validation 

of level 1 cloud and precipitation radar products. The second part focuses on 

recommendations for the validation of level 2, i.e. geophysical, cloud and precipitation 

products. As discussed in previous chapters, some of the level 2 products are derived from 

synergistic observations by different instrument types and other ancillary data (while level 1 

products are instrument specific). Recommendations on the use of synergistic observations 

and some of the products are derived using observations from multiple spaceborne remote 

sensors. 

6.1. Validation of L1 cloud and precipitation radar products 

L1 cloud and precipitation radar products typically include received echo power, transmitted 

signal power, noise power, range and other variables needed for estimation and geolocation 

of radar reflectivity values, which are delivered as one of level 2 products. Additionally, 

depending on each specific mission processing architecture, the following quantities may be 

included in derived L1 products (often labeled as 1B or 1C) : measured normalized radar cross 

section of the surface (NRCS, often referred to by the symbol σ0, measured in dB), measured 

effective reflectivity factor (often referred to by the symbol Z, or Zm, measured in dBZ), and 

some form of echo mask (to classify each pixel according to two or more classes based on its 

signal to noise or signal to clutter ratio). It is important to note that these quantities are typically 

not corrected for attenuation (hence the ‘measured’ qualifier): attenuation correction, when 

implemented, is typically a L2 processing step. 

Furthermore, additional products are generated at L1 depending on the nature of the payload 

itself: for example, a Doppler radar (such as EarthCARE’s CPR) will also include mean 

Doppler velocity and Doppler spectral width (it will be the first cloud spaceborne radar with 

Doppler capability). For the purpose of this document, we will use EarthCARE's list of L1 

products, including radar reflectivity and Doppler velocity noting that these products will 

include different levels of corrections between L1B and L1C processed products. Another 

example is the collocated and spatially resampled multi-radar reflectivity factor fields to be 

generated by the INCUS mission (where three identical Ka-band radars aim to observe the 

same storm within a couple of minutes from each other in order to observe their dynamics at 

those temporal scales). 

6.1.1. Level 1 Products derived from backscattered power  

One of the key requirements for cloud and precipitation radar missions is the radar reflectivity 

sensitivity which translates to the minimum detectable precipitation rate or total cloud content. 
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The TRMM Precipitation Radar (PR), which operated at Ku band (13.8 GHz) between 1997 

and 2015, had a sensitivity of approximately 17 dBZ for a 5 km horizontal resolution and 250 

m range resolution, and was able to detect rain rates down to approximately 0.7 mm/h. The 

TRMM PR successor GPM’s Dual-frequency Precipitation Radar (DPR), operating at Ku- 

(13.6 GHz) and Ka- (35.5 GHz) bands (Hou et al., 2014), as well as the ultra-compact 

RainCube Ka-band radar (Peral et al., 2019) and its successors Dynamic Atmospheric Radars 

(DAR) on board the INCUS mission (van den Heever et al., 2022) and the ones on board the 

Tomorrow.io technology demonstrations (Roy et al., 2023) all had, have, or are slated to have 

comparable sensitivities generally in the +10 to +20 dBZ range (corresponding to rain rates 

roughly between 0.1 and 1 mm/hr) for resolutions between 3 and 8 km horizontally and 120 to 

500 m in range. 

For spaceborne cloud radars the sensitivity values are much smaller in order to detect a 

sufficient fraction of non-precipitating clouds, as well as precipitation lighter than 0.1 mm/hr. 

The Cloudsat Cloud Profiling Radar (CPR), which operated at W-band (94.05 GHz) between 

2006 and 2023, had a sensitivity of about -30 dBZ for a ~1.5 km along-track integration during 

prime mission (Tanelli et al., 2008), and the expected sensitivity of EarthCARE Cloud Profiling 

Radar (EC-CPR, also at W-band) is -35 dBZ (for a nominal along-track integration of 10 km). 

Both these cloud radars were developed with a 500 m range resolution to maximize detection. 

The Atmosphere Observing System (AOS) mission concept, under formulation as of early 

2024, includes both cloud and precipitation radar concepts more capable than all of these 

predecessors in some respects, but comparable or even with reduced capability for some 

other aspects. 

Calibration of the L1 radar products is an important step in ensuring good quality of radar 

observations. The Calibration and Validation experience developed for the first two 

spaceborne precipitation and cloud radars (TRMM/PR and CloudSat/CPR) demonstrated that 

the most reliable means to achieve the required data calibration are careful analysis of the 

backscatter from natural targets themselves : sea surface primarily, (see for example (Li et al., 

2005; Protat et al., 2009; Tanelli et al., 2005)), but also land and ice surfaces as well as 

Rayleigh scatterers in the atmosphere) and use of specific active or passive radar calibrator 

units on the ground (e.g., (Masaki et al., 2020)). While in principle ground based or airborne 

weather and cloud profiling radars provide a wealth of information to compare and validate, it 

was found that spaceborne radars are typically better calibrated than the ground-based or 

airborne-radars and can in fact act as ‘universal reference’ calibrators for the multitudes of 

ground and airborne radars (e.g., (Anagnostou et al., 2001; Kollias et al., 2019; Louf et al., 

2019)).   

One of the first steps of the validation activities is the verification of compliance to the 

sensitivity requirements. Direct validation of spaceborne radar products can be achieved using 

coordinated airborne measurements using well instrumented research aircrafts, and possibly 

mobile facilities deployed on the CPR/PR ground-track. While this type of verification can lead 

to in-depth understanding of any possible sources of discrepancy (such as, for example, 

occurrence of multiple scattering as shown in (Battaglia et al., 2010)), it is limited in terms of 

statistical significance by the complexity of obtaining measurements that are precisely 

collocated in space and time. Similarly, collocation to analogous products from similar 

spaceborne systems (e.g., (Sy et al., 2022; Turk et al., 2021)) has been exploited successfully 

for specific purposes. 
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On the other hand, the bulk of validation (and tracking of any long-term trends) should be 

performed by assessing statistical properties of the observables on datasets as large as 

possible (e.g.,(Petersen et al., 2020)). For this purpose, some relaxation on collocation (spatial 

and temporal) requirements, and use of long term (multi-year) measurements are preferred in 

order to achieve meaningful statistics (Protat et al., 2009). For example, data from US 

Department of Energy Atmospheric Radiation Measurement (ARM) observatories and cloud 

profiling stations of pan-European Aerosol, Clouds, and Trace Gases Research Infrastructure 

(ACTRIS) are well suited for such tasks for a mission such as EarthCARE (Eisinger et al., 

2024). 

It should be noted that spaceborne radars utilize relatively long point target responses (be 

they implemented with shorter monochromatic pulses, or longer frequency modulated pulses 

with pulse compression) that result in contamination of near-surface observations by ground 

echo, typically referred to as “surface clutter”. The surface clutter limits the ability of the 

spaceborne radars to observe boundary layer clouds and surface precipitation (Christensen 

et al., 2013; Lamer et al., 2020; Li & Moisseev, 2019; Maahn et al., 2014; Schulte et al., 2023), 

which have an impact on the interpretation of such geophysical products as precipitation rate, 

cloud fraction (Lamer et al., 2020; Maahn et al., 2014), etc. This surface clutter contamination, 

therefore, should be characterized as a part of the calibration/validation activities. 

The vertical extent of surface clutter contamination depends on individual system 

characteristics and the specific nature of the surface being observed. For example, in a 

scanning radar such as TRMM/PR surface clutter extends only a few hundred m for the center 

beams (i.e., those closest to nadir) but up to more than 2 km for the most off-nadir profiles. 

CloudSat’s CPR was affected by clutter generally below 1.3 km because of the nature of the 

transmitted pulse and receiver filter (which were optimized for high cloud detection), 

subsequently reduced in Level 1B processing to about 700 m over ocean and flat land by 

adopting a Surface Clutter Rejection algorithm (Tanelli et al., 2008). EarthCARE CPR will 

leverage (Eisinger et al., 2024) on the CloudSat experience and is expected to have a reduced 

surface clutter extent in most profiles thanks to more frequent range sampling and adoption of 

an improved receiver filter. 

In general, validation of the estimated maximum clutter height (that is, the highest sample that 

is contaminated by ground clutter above the threshold of sensitivity that is otherwise 

determined by the system noise) has been successfully performed by means of direct, 

collocated comparisons such as those described above to validate sensitivity (see e.g., (Sy et 

al., 2022)).  

One other important aspect of spaceborne cloud and precipitation radar calibration and 

validation of reflectivity products pertains to the use of attenuating frequencies (that is, at Ku 

band and above) and the downward looking geometry. Useful interpretation of data acquired 

by radar systems that differ (with respect to the spaceborne radar object of the calibration and 

validation effort) either by frequency or viewing geometry is definitely possible, and in fact 

recommended. However, the sometimes subtle and sometimes drastic differences that may 

be engendered in the observed data by such differences must be carefully accounted for. For 

example, data from ground-based weather radars at C-band or below are typically associated 

with radically different spatial resolutions (coarser in vertical and finer horizontally, with respect 

to spaceborne) and path attenuation effects, while data from ground-based W-band radars 

are affected by significant path attenuation in the direction opposite to the spaceborne 
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equivalent. Useful research has been conducted exploiting these differences, but for the 

specific purpose of Level 1 calibration and validation, strict quality control and screening 

procedures are necessary to ensure that no unintended biases are folded in the assessment. 

6.1.2. Level 1 Products related to Doppler capability 

Level 1 products derived from any Doppler radar capability can also be divided in two stages 

of Level 1 processing as described for example in (Eisinger et al., 2024)  and (Kollias et al., 

2023) for the EarthCARE mission. The most fundamental Level 1 product of any Doppler cloud 

and precipitation radar is the mean, reflectivity weighted, Doppler velocity of the hydrometeors 

in the sampled volume. In general, the quantity provided by the Level 0 data corresponds to 

the first normalized moment of the Doppler spectrum as observed and sampled, and it is 

affected by a number of factors that need to be corrected, or at least mitigated, before it can 

be interpreted as an unbiased estimate of the desired mean Doppler velocity of the 

hydrometeors: aliasing, Doppler broadening or biasing introduced by the platform motion 

combined with the characteristics of pointing and along-track distribution of the hydrometeors 

within the volume (often referred to as Non-Uniform Beam Filling, NUBF bias), and spectral 

whitening by thermal noise or distortion by other forms of noise in the radar system are the 

primary ones (see e.g., (Kollias et al., 2023; Sy et al., 2014; Tanelli et al., 2002) and references 

cited therein). A complete description of all these factors is provided in the cited references, 

but here it is important to note that for spaceborne radars there can be a significant difference 

between the values reported in the early stages of Level 1 processing vs those reported in the 

products at the end of Level 1 processing. 

Calibration and Validation activities should be tailored to validate, separately, if possible, the 

effectiveness of the various corrective algorithms. For example, the CPR Doppler velocity 

observations depend on antenna pointing accuracy, which can be assessed using Doppler 

measurements in ice clouds and the Earth’s sur (Battaglia & Kollias, 2015; Kobayashi et al., 

2003; Tanelli et al., 2005). The climatology of ice cloud properties including the relations 

between the reflectivity and Doppler velocity at locations spanning from tropical to high-

latitudes is needed for the Doppler velocity validation. Is the ensemble of these corrective 

actions sufficient to cancel out the pointing induced bias?  Other examples include: is the 

Doppler unfolding performing as needed under the cloud or precipitation regimes of interest 

to a specific mission? Are the associated Quality Control flags raised accordingly? Is the 

overall performance of the NUBF-correction satisfactory? 

Similar considerations apply to the estimation of the Doppler spectral width (i.e., the second 

moment of the spectrum) which is generally even more challenging from a Low Earth Orbiting 

platform (see (Sy & Tanelli, 2023)), unless the radar architecture includes features such as 

the Displaced Phase Center Antenna (DPCA) approach (Durden et al., 2007, 2023; Nakamura 

& Furukawa, 2023). 

Once these factors are corrected, or at least mitigated, the accuracy and precision of the 

Doppler products can be addressed. At this stage, and only at this stage, along-track 

integration as well as along-range averaging can be applied and examined in the context of 

verifying compliance with the mission requirements, and accounting for the expected 

performance resulting from the specific mission design parameters. For example, for 

EarthCARE CPR, the Pulse Repetition Frequency (PRF) depends on latitude, lower PRF 

observations are carried out over tropics and higher PRF measurements over high-latitude 
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regions, the validation of whether the Doppler velocity requirement is met should be performed 

at different geographical regions accounting for such difference. 

Validation of these products involves use of similar approaches as those listed for the 

backscatter power products, with the obvious distinction that the radar assets involved (be 

they airborne or ground based) must have Doppler capabilities, with performances that are at 

least comparable to (but preferably better than) the spaceborne radar being validated. 

In general, Doppler products are to be validated in the context of two distinct objectives : 

observation of convective motions (i.e., where the objective is to estimate the vertical air 

velocity, and typically associated with small-scale variability, large velocities, and significant 

hydrometeor loading) and observation of cloud and precipitation microphysics (i.e., where the 

primary goal is to estimate the hydrometeor terminal velocity and the vertical air velocity is 

assumed to be small, typically associated with the presence of low-density frozen 

hydrometeors, drizzle or stratiform precipitation). These two objectives may require completely 

independent validation efforts, but in some cases can be combined (for example by exploiting 

the natural occurrence of cirrus anvils in proximity of convection). 

6.2. Validation of Level 2 cloud and precipitation products 

There are several sources of uncertainties affecting the retrieved products. Analysis of these 

sources should be part of the validation activities. The first involves challenges in accurate 

identification and characterization of cloud layers in complex scenes, i.e. containing multiple 

cloud layers. The second uncertainty arises from the fact that physical assumptions 

underpinning the retrievals may vary across regions, seasons, and regimes.  

As described in Chapter 2 the cloud and precipitation products can be roughly subdivided into 

the following main categories: 

● Macrophysics, which includes cloud top height and phase, vertical profiles of cloud 

fraction and particle type 

● Liquid cloud properties, which include water path and content, effective radius, 

extinctions and optical thickness, vertical velocity in cloud regions (which is a 

combination of air and sedimentation velocities) 

● Ice cloud and snowfall, where in addition to the products listed for liquid clouds, surface 

snowfall rate, profiles of snow rate, and snow particle median diameter are derived 

● Rain, this category includes rain water path and rate, median drop diameter, and 

sedimentation velocity 

6.2.1. Macrophysical cloud products 

Macrophysical cloud products, i.e. cloud top height, phase, and vertical profiles of cloud 

fraction and particle type, are typically derived using a multi-sensor approach, where radar 

and lidar observations are combined. For this reason, a well instrumented ground-based cloud 

profiling station employs a combination of cloud Doppler radar, lidar (or low-power automatic 

lidar, known as ceilometer), and microwave radiometer to gather data (Illingworth et al., 2007). 

Similarly, spaceborne systems, such as CloudSat and Calipso, and EarthCARE's CPR and 

ATLID (Eisinger et al., 2024), utilize a complementary suite of radar and lidar instruments. 
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Airborne lidar and radar instruments flying on high-altitude aircraft also serve as key validation 

tools, especially for cloud top height and vertical profiles of cloud fraction (Stephens et al., 

2008; Yorks et al., 2011). 

It is, however, expected that the radar/lidar synergy will not fully resolve cloud macrophysical 

properties in some cases, namely: 

1. physical depth of liquid clouds (from space), because lidar signal is attenuated by liquid 

cloud droplets. For the ground-based observations this is less of a problem, where lidar 

observations are used for detection of cloud base and radar observations for cloud top 

2. liquid water layers embedded in ice (are challenging for both ground-based and space-

borne systems) 

3. liquid (& liquid-topped mixed-phase) clouds below optically thick ice clouds (for space-

borne observations) 

4. liquid-topped mixed-phase clouds above optically thick ice clouds or above another 

liquid layer (for ground-based systems) 

5. warm liquid clouds within cold rain (for spaceborne systems), due to attenuation of the 

lidar signal 

As can be seen, because of the differences in observation geometry, ground-based 

observations are complementary to satellite cloud profiling measurements and can be used to 

assess validity of cloud macrophysical products in the above-listed complex scenes. It should 

be noted, however, that multilayer clouds are a challenge for radar/lidar observations, 

regardless of the platform. In optically thick systems, like deep convective clouds, also cloud 

radar signals can be significantly attenuated.  

For the validation of spaceborn cloud macrophysical products it is recommended therefore to 

use radar/lidar synergetic observations. Addition of a microwave radiometer would further help 

to identify the presence of liquid water clouds. Multi-frequency radar observations are useful 

for characterizing deeper clouds, where W-band radar signals are attenuated (Tridon et al., 

2020). Analysis of cloud radar Doppler spectra are useful for multi-layer mixed-phase cloud 

cases (Schimmel et al., 2022; Shupe et al., 2004, 2008).  

6.2.1.1. Collocation considerations 

Vertically pointing ground-based cloud radars in combination with microwave radiometers and 

lidars are a part of a standard setup for cloud and precipitation studies (Clothiaux et al., 2000; 

Illingworth et al., 2007). The observations from these instruments can be used to derive a time-

series of vertical profiles of cloud properties. The satellite-based profilers on the other hand 

provide vertical observations along the ground track. The active instruments observe in narrow 

transects that sample only a small percentage of the area over which the cloud is present. 

This difference in sampling (van de Poll et al., 2006) needs to be considered when the two are 

compared. Additionally, because the ground track will rarely pass directly above a ground-site 

no direct comparison is possible. Because of that, use of long term (multi-year) measurements 

of e.g. cloud top/base height and the reflectivity distributions (Liu et al., 2010; Protat et al., 

2009) are preferred in order to achieve meaningful statistical comparison of ground-based and 

spaceborn cloud observations. The statistical comparison requires use of relatively long 
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datasets, as it is shown that short, few weeks long datasets may not be representative of an 

observation region (Liu et al., 2010).  

Direct validation of the CloudSat and CALIOP cloud products, such as cloud top height and 

vertical profiles of cloud fraction has been performed by comparing the spaceborne data 

products to collocated airborne lidar and radar profiles. The CALIPSO-CloudSat Validation 

Experiment (CCVEX) took place in July and August 2006, intended to validate the newly 

launched CALIPSO and CloudSat satellites. An elastic backscatter lidar operating at multiple 

wavelengths and a W-band radar flew on the NASA ER-2 out of Warner-Robbins, Georgia to 

permit validation over convective clouds and cirrus anvils in the southeast United States. The 

airplane flew roughly 30-minute segments below the predicted ground tracks of the satellites, 

centered on the point of coincidence near predicted clouds. The data collected was used to 

validate CALIOP cloud top heights and detection frequencies (Yorks et al., 2011), as well as 

CloudSat reflectivity and vertical profiles of cloud fraction (Stephens et al., 2008).  

 

6.2.1.2. Scanning radar observations 

Because of relatively narrow swaths of spaceborne cloud and precipitation radars, it is difficult 

to obtain coinciding ground-based radar observations especially from vertically pointing cloud 

radars. Using scanning cloud or precipitation radars allows for a more direct comparison 

between ground-based and spaceborne radar observations, as demonstrated by (Hudak et 

al., 2008). 

This approach requires collecting radar volume data, which involves plan position indicator 

(PPI) scans taken at various elevation angles (see Fig. 6.1 for an example).  Number of angles 

depends on the antenna beamwidth and distance to the ground track. To minimize the time 

required for completing a volume scan, sector PPI scans, focusing on a limited azimuth angle 

in the direction of the ground track, can be utilized. Ideally, such observations should be 

scheduled using up-to-date orbit prediction information, such that the scans performed at the 

time of an overpass. See Fig. 6.2 for an example of CloudSat CPR precipitation observations 

collected on 10 March 2009 and corresponding derived vertical reflectivity factor profiles from 

University of Helsinki Kumpula radar observations. In the presented case, the Kumpula radar 

was performing sector PPI scans that started 1 min before the overpass and ended about 1 

min after. The nearest distance to the ground track is 30.7 km. From the volume scan the 

radar cross section was computed using Vaisala IRIS software.  

An alternative to a volume scan consisting of PPIs is a set of RHI scans (Fielding et al., 2013; 

Kollias et al., 2014). This approach is better suited for resolving vertical cloud system 

characteristics, which tend to change significantly both horizontally and vertically. Important to 

note, that for distances less than 5 kilometers, the required maximum elevation angle for a 

PPI volume would surpass 60 degrees, making the volume scan excessively time-consuming. 

Under these circumstances, conducting an overhead Range Height Indicator (RHI) scan, 

horizon-to-horizon RHI, aligned parallel to the ground track, could be a better alternative 

(Kollias et al., 2014). 

The scanning radar observations can be used to access such products as cloud top height 

and phase, vertical profiles of cloud fraction and particle type. We should note, however, that 

there is a difference in spatial resolution. Weather radars have better horizontal resolutions 
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and lower vertical resolution. The exact resolution values depend on distance. If the weather 

radar observations are used for validation of target classification products, it should be pointed 

out that definitions of particle types derived from ground-based radar observations and satellite 

remote sensors may differ. In the weather radar community hydrometeor classification based 

on dual-polarization radar observations is more commonly used. This classification provides 

such classes as rain, snow, melting snow, hail, graupel (Chandrasekar et al., 2013; Ryzhkov, 

Schuur, et al., 2005; Straka et al., 2000).  

 

Figure 6.1. Radar beam height as a function of range. The left panel is for the beam width of 0.5 deg 
(more typical for cloud radars) and the right panel is for the beam width of 1 deg (typical value for 
weather radars). The elevation angle changes between 0.5 and 40 deg with a step of 1 deg. 

 

Figure 5.2. Vertical profiles as observed by the CloudSat CPR at 1110 UTC on 10 March 2009 and 
corresponding reconstructed vertical profiles from University of Helsinki C-band weather radar 
observations. The cross section was computed using IRIS software. The distance to the nearest point 
on CloudSat overpass is 30.7 km. 

The Python ARM Radar Toolkit (Py-ART) (Helmus & Collis, 2016), currently supports 

estimations of cross sections from radar volumes along one or more azimuth angles using the 
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pyart.util.xsect function. The Py-ART does not seem to be able to compute a cross section 

along an arbitrary vector, which is needed for computing vertical profiles along an overpass. 

6.2.2. Liquid cloud properties 

6.2.2.1. Liquid clouds 

Liquid cloud layers can cause significant radar and lidar signal attenuation. The difference in 

observation geometries between satellite and ground-based remote sensors results in 

different attenuation profiles. On one hand, this difference poses a challenge for comparison 

of statistics of liquid cloud properties derived from satellite and ground-based observations. 

On the other hand, it allows for evaluation of how radiatively important liquid clouds not 

detected by a space-borne lidar are. 

Layered clouds, warm liquid clouds embedded within cold rain or liquid cloud layers embedded 

within ice precipitation also pose challenges. To assess what is missed by satellite 

observations, synergistic ground-based cloud radar and lidar observations, or profiles of liquid 

water content observed by aircraft can be used. Additionally, microwave observations of LWP 

can be used to identify occurrences of liquid water clouds even in cases where water layers 

are not detected by lidars.  

For non-precipitating liquid clouds, LWC can be retrieved using (Frisch et al., 2002) method. 

If Ka and W- band radar observations are available, LWC can be retrieved using differential 

attenuation (Hogan et al., 2005). The advantage of the dual-wavelength method is that it does 

not suffer from the presence of drizzle (Hogan et al., 2005). Presence of drizzle biases cloud 

radar reflectivity observations to larger drops that do not contribute significantly to cloud LWC. 

There are several methods that can be applied for detection of drizzle. The most promising 

ones use reflectivity factor and spectra observations (Zhu et al., 2022) or skewness of Doppler 

radar spectra (Acquistapace et al., 2019). 

6.2.2.2. Mixed- phase clouds 

Identification of supercooled liquid layers embedded in ice clouds by a lidar is limited to a first 

layer encountered in the particular viewing geometry. Therefore, new approaches like machine 

learning based methods for identification of embedded supercooled liquid cloud layers 

(Schimmel et al., 2022) show a great promise for characterization of such liquid layers. This 

method is relatively new and requires testing and validation. As a first step, the methodology 

should be applied, trained, tested and validated at profiling stations located in different 

geographic locations.  For the validation of the method, supporting information such as aircraft 

observations and collocated soundings are beneficial.  

6.2.3. Ice cloud and snowfall products 

6.2.3.1. Validation of Physical assumptions  

The ice particle size distribution is fundamentally important for describing properties of ice 

clouds and snowfall. It allows linking single particle properties to ice water content and snowfall 

rate and remote sensing variables. The observations of PSD in ice clouds are typically 

performed using aircraft probes (Field et al., 2005). The PSD of snowfall can be sampled using 

surface instrumentation, such as using different kinds of particle imagers and disdrometers 

(e.g. MASC (Garrett et al., 2012), VISSS (Maahn et al., 2024), PIP (Pettersen et al., 2020), 
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2DVD (Schönhuber et al., 2007), OSCRE (Kennedy et al., 2022), and OTT Parsivel (Löffler-

Mang & Joss, 2000)). Each sensor has its own limitations and advantages, see Table 6.1.  

Table 6.1. Comparison of capabilities of ground-based precipitation instruments, MASC, 2DVD, PIP, 
VISSS and OSCRE, for measuring falling snow properties. This table attempts to summarize and 
contrast measurement capabilities 

 

 

 

Figure 6.3. The normalized PSD for snowfall collected during winter 2014-2020 in Hyytiälä, Finland. 
The top left panel shows PSD as function equivalent melted diameter, the other panels show PSD as a 
function of particle maximum dimension. The PSD are normalized by using N0

* and mass weighted 
mean diameters (top panels), proxy for a mass weighted mean maximum diameter (D23, the ratio of 3 
and 2 moments of PSD) and D34 (the ratio of fourth to third moments). 
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The shape of observed PSD is often described using a gamma functional form or modified 

gamma (Delanoë et al., 2014; Testud et al., 2001). This approach allows us to describe PSD 

using three or four parameters, for gamma and modified gamma shapes respectively. To 

deduce if PSD converges to an average PSD representative of a cloud type, geographic 

location, etc., the normalized PSD representation is used (Delanoë et al., 2014; Testud et al., 

2001), where observed PSD is presented as 𝑁(𝐷) = 𝑁0
∗𝐹(𝐷/𝐷𝑚), where is N0

* is the scaling 

parameter and Dm is the mass weighted mean diameter. We should point out that depending 

on measurement instrumentation and application, where PSD is used, the definition of particle 

dimension may differ. The following definitions of particle dimension are often used: maximum 

dimension, area (disc) equivalent diameter, volume equivalent diameter, melted equivalent 

particle diameter. The use of melted equivalent diameter allows for seamless description of 

particle properties in precipitation systems, where raindrops and snowflakes follow the same 

diameter definition.  

The normalized PSD representation using mass weighted mean diameter for normalization or 

expressing PSD as a function of melted equivalent particle diameter requires knowledge of 

representative mass-dimensional relation or direct observations of particle masses. Because 

the exponent of mass-size relation is usually close to 2 (Mason et al., 2018; Szyrmer & 

Zawadzki, 2014), the ratio of third and second moments of PSD can often be used as a proxy 

for Dm.  

To document variability of PSD bulk precipitation (snowfall rate and accumulation) and particle 

imaging measurements (PSD and particle fall velocity) at the surface in locations where 

snowfall occurs should be carried out. To document PSD in ice clouds, aircraft measurements 

of PSD and IWC are needed. 

Lidar ratio (LR). The information of the lidar ratio is an important parameter for the inversion 

of lidar signals in instruments that do not have Raman channel and space-borne lidars, such 

as CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), that 

depend on a parameterisation that may vary with location. Thus, for satellite retrievals, the 

selected lidar ratio value can introduce errors into the retrieved extinction and optical depth 

values of the cirrus layers, as is illustrated by (Young et al., 2018). Consequently, information 

provided by well-calibrated ground-based measurements is quite crucial to verifying and 

eventually improving the satellite retrievals. The analysis of  ground based lidars (Voudouri et 

al., 2020) of the cirrus cloud properties in the different geographical and climatic counterparts 

show higher lidar ratio values moving toward the poles, with calculated values of 27±12, 26±6, 

and 33±7 sr for Gwal Pahari, Elandsfontein and Kuopio, respectively, also confirmed by other 

studies. New a priori information of the lidar ratio value for the cirrus layers, included in version 

4.10 (V4) of the CALIOP data products, led to improvements of the extinction and optical depth 

estimates of the cirrus cloud layers. Airborne lidar systems provide another source for 

validating lidar ratio assumptions. (Hlavka et al., 2012) used airborne lidar data taken during 

the CCVEX field campaign (Section 6.2.1), primarily observations of cirrus anvils in the 

southeast United States, to validate CALIOP lidar ratios and extinction retrievals. When 

targeting transparent randomly oriented ice (ROI) cloud cases for underflight opportunities, 

constrained techniques for estimating lidar ratio and extinction from both the airborne and 

spaceborne lidars provides a robust validation dataset. 

Multiple scattering (MS). The influence of multiple scattering on CALIPSO light‑extinction 

profiling in mineral dust is reported by (Wandinger et al., 2010). By taking the multiple‑
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scattering effect into account, discrepancies found between ground‑based measurements of 

lidar ratios in pure Saharan dust cases can be explained. An effective lidar ratio of 40 sr applied 

in the CALIPSO retrievals accounts for the increased atmospheric transmission caused by 

multiple scattering and gives reasonable backscatter coefficients that compare well with 

ground‑based observations. However, if the same value of 40 sr is applied to convert 

backscatter into extinction coefficients, a systematic under-estimation of extinction and optical 

depth by 25%–35% is introduced. This artifact can easily be overcome by applying two 

different look‑up values for the lidar ratio of mineral dust in the CALIPSO retrieval algorithm, 

i.e., an effective value of 40 sr for the backscatter retrieval and a typical single‑scattering value 

for pure mineral dust (i.e., 50 sr), for the backscatter‑to‑extinction conversion.  

6.2.3.2. Microwave scattering properties of ice particles  

To link microphysical properties of ice clouds and remote sensing observations an approach 

for computing scattering properties of ice particles is needed. For a long time, a so-called “soft-

spheroid” particle model was used for modeling scattering from ice particles. In this model, an 

ice particle was approximated by a spheroid consisting of a mixture of ice and air. This 

approach allows use of such computationally efficient methods as Mie scattering, and T-

matrix. It was found (Botta et al., 2010; Ori et al., 2014; Petty & Huang, 2010; Tyynelä et al., 

2011) that for particles roughly larger than wavelength the “soft-spheroid” model results in 

significant underestimation of the scattering cross sections. To address this problem more 

realistic looking particle models (e.g. physically based crystals and aggregates, and realistic 

looking fractal models), see Fig. 6.4, in combination with numerical scattering methods such 

as the Discrete Dipole Approximation are used (Kuo et al., 2016; Leinonen & Szyrmer, 2015; 

Tyynelä et al., 2011). 

 

Figure 6.4. Three particle models representing an ice particle with the same dimensions and mass. Left 
panel - aggregate. Middle panel - fractal particle. Right panel – “soft-spheroid”. The figure is adopted 
from (Tyynelä et al., 2011). 

 

There are a number of scattering databases that cover a variety of ice crystal habits, 

aggregates and rimed particles (see section 6.3). However, the Discrete Dipole Approximation 

(DDA) method—employed to calculate these properties—is computationally intensive. 

Consequently, the range of ice particle mass-size relations represented in these databases is 

constrained. This limitation raises concerns about the adequacy of existing datasets in 

capturing the full spectrum of ice particle variations required for accurate representations of 

global ice cloud properties. 

(Hogan et al., 2017) have proposed to use the Self-Similar Rayleigh–Gans Approximation 

(SSRGA) for rapid computation of the backscatter cross-section of ice aggregates. SSRGA 

allows for parametrizing particle structure and scattering properties by using just five 

parameters. The selection of these parameters, however, needs to be tested. 
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Validation of scattering properties can be performed by a variety of methods: using closure 

studies, a combination of in situ observations and collocated radar observations (Falconi et 

al., 2018; Tridon et al., 2019), using multi-frequency radar observations (Kneifel et al., 2015; 

Leinonen et al., 2012; Leinonen & Moisseev, 2015) and multi-frequency Doppler spectra 

observations (Kneifel et al., 2016).  

6.2.3.3. Surface snow intensity 

The validation of the surface snowfall intensity observations can be carried by matching 

satellite precipitation estimates to ground-based weather radar observations (e.g. see (Mróz 

et al., 2021; von Lerber et al., 2018)). This approach is similar to the validation of rain products 

discussed in the next section, but there are notable differences. There are still large 

uncertainties of radar-based estimates of snowfall rate (SR). Typically, a climatologically tuned 

equivalent reflectivity factor, Ze, - snowfall rate, SR relation is used, see Fig. 6.5. It should be 

noted that this relation depends on wavelength. To reduce the uncertainty of the radar-based 

estimate, gauge adjustment can be used (REF). 

 

Figure 6.5. Ze-SR relations computed using (von Lerber et al., 2017) observations of m(D) and PSD. 
The left panel presents a relation for radar wavelengths where Rayleigh scattering assumption can be 
used, i.e. S and C -bands. The central panel shows the relation for Ka- and the right one for W- bands. 
For the last two panels datasets of single scattering ice particle properties computed by applying DDA 
to realistic particle shapes was used. 

 

What is the main factor affecting the Ze-SR relation? It was shown (Rasmussen et al., 2003; 

von Lerber et al., 2017, 2018) that the exponent of the relation can be assumed to be constant. 

The value of it depends on wavelength. The main variation in the Ze-SR comes from the 

prefactor (Rasmussen et al., 2003; von Lerber et al., 2017, 2018). The prefactor of the Ze-SR 

is mainly function of the PSD intercept parameter, N0. The dependence on particle type and 

mass is secondary, at least at cm-wavelengths (von Lerber et al., 2017). As shown in Fig. 6.6 

the prefactor of Ze-SR relation, azs, changes over three orders of magnitude for Z and C-bands 

(Rayleight scattering bands). For higher frequencies this range decreases.  
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Figure 6.6 Dependence of the prefactor, azs, of the Ze-SR relations on N0 and wavelength. It 

should be noted that the range of azs variance decreases as radar frequency increases. 

 

Given the dependence of the Ze-SR relation on the PSD parameter N0, the uncertainty of the 

radar-based snowfall rate estimate can be significantly reduced if N0 is estimated from other 

observations, e.g. disdrometer observations (Schoger et al., 2021) or dual-polarization radar 

measurements (Bukovčić et al., 2020). The reduction in uncertainty is demonstrated in Fig. 

6.7. As can be seen the largest impact of N0 based tuning of Ze-SR is visible for larger 

wavelengths. At W-band, because the scattering cross sections of snowflakes are roughly 

proportional to their mass, the uncertainty in Ze-SR estimate mainly depends on m(D) and not 

on PSD. 

 

Figure 6.7. Illustration of the impact of N0 estimation on RMSE of SR estimate.  

 

(von Lerber et al., 2018) have proposed two approaches for reporting uncertainty of radar 

based snowfall estimates. If during the event a storm passed over well-quiped site where PSD 

and m(D) observation were recorded, then for this event an event specific Ze-SR can be 

computed. Furthermore, instantaneous azs, estimated every 5 min or so can be computed (von 

Lerber et al., 2018). The combination of the event specific Ze-SR relation and the observed 

range azs values gives an estimate of the computed snowfall rate. If such observations are not 

available then our best estimate of the uncertainty is the climatological uncertainty of the Ze-

SR relation, as for example shown in Fig. 6.5. 
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To summarize, for the validation of snowfall rate estimates the following is recommended. The 

ground-based setup should include: 

● Dual-polarization weather radar (or network of such radars) 

● Supported by a network of gauges, and  

● Ideally one or several sites equipped with disdrometers or snowflake video imagers 

The conversion from radar variable to snowfall rate products is carried out using 

climatologically tuned relations, or event specific relations. The observations of PSD can be 

used to assess, in some cases limit, the uncertainty of such estimates. 

6.2.3.4. Doppler radar products 

In ice clouds vertical air velocities can be assumed to be relatively small, in such cases Doppler 

velocity observations are related to the hydrometeor terminal velocity. The validation of 

Doppler products can be approached in a statistical sense, by comparing long-term statistics 

of observed relations between the reflectivity and Doppler velocity in ice clouds (Kalesse & 

Kollias, 2013). It should be noted that both radar reflectivity factor and mean Doppler velocity 

(Kneifel & Moisseev, 2020) depend on the radar wavelength, so care should be taken while 

comparing observations at different radar frequencies. 

6.2.4. Validation of rain products 

6.2.4.1. Surface rain intensity and microstructure 

The use of the dual-polarization radar observations for precipitation observations allows for 

more accurate estimates of rain intensity (e.g. (Ryzhkov et al., 2022; Ryzhkov, Schuur, et al., 

2005)) and mass weighted mean diameter, as well as radar data quality control (e.g. 

(Chandrasekar et al., 2013)). The data quality control includes radar power calibration (see 

Chapter 3), target classification and data filtering. In addition to radar power calibration, 

calibration of different reflectivity is needed for precipitation retrievals and target classification. 

The differential reflectivity calibration can be carried out using “bird-bath” observations, 

extrapolation of measured Z- Zdr relation in rain, and by tracking receiver calibration using Sun 

observation. 

To derive and validate conversions from radar observations to precipitation intensity, gauge 

observations can be used. The other important use of gauges is the adjustment of any 

potential biases in radar precipitation estimates, and deriving merged radar and gauge-based 

precipitation estimates by using such techniques as kriging, etc. In addition to gauges, 

disdrometer observations of drop size distributions can be used. The advantage of using 

disdrometers is that they provide more detailed information on rain microstructure. These 

observations are used to derive relations for estimating rain intensity that are tuned to a 

specific geographic region, or rain type (convective or stratiform). However, if compared to 

gauges, there are typically fewer disdrometers available, so the validation of the retrieved 

weather radar precipitation products is mainly carried out by gauges (Zhang et al., 2011). 

The ground-based setup for the validation of satellite-derived rain products includes: 

● Dual-polarization weather radar (or network of such radars) 
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● Supported by a network of gauges, and  

● Ideally one or several sites equipped with disdrometers 

The recorded data includes: 

● PPI observations of dual-polarization radar variables recorded at the time of the satellite 

overpass. For research radars the scan schedule can be selected to match the overpass 

● Gauge observations of 10 min averaged precipitation intensity and hourly accumulations. 

These observations are used for verification of ground-based radar precipitation estimates 

and potential adjustment of these estimates 

The conversion from radar variable to rain products is carried out using climatologically tuned 

relations, derived for example by using disdrometer observations. 

6.2.4.2. Melting layer attenuation 

For mm-wave profiling radar observations, the melting layer of precipitation poses a significant 

challenge. Because of non-negligible attenuation, the melting layer affects retrieval of surface 

rain intensity from satellite-based radar observations and of ice cloud properties from ground-

based observations. There are two main approaches for estimating the radar signal 

attenuation in the melting layer. The first one is based on modeling propagation of radio waves 

through the melting layer. The second one is based using observations to estimate melting 

layer attenuation. 

There are several melting layer models, that somewhat differ in how changes in microphysical 

properties due to melting are parametrized and in how EM scattering from melting snowflakes 

is computed (e.g., (D’Amico et al., 1998; Fabry & Szyrmer, 1999; Liao et al., 2009; Matrosov, 

2008; Olson et al., 2001; Planche et al., 2014; Russchenberg & Ligthart, 1996; Skaropoulos 

& Russchenberg, 2003; von Lerber et al., 2015; Zhang et al., 1994)). Because melting layer 

properties depend on microphysical properties of snow aloft (Li et al., 2020), and as discussed 

in Section 6.2.3 our knowledge of ice cloud properties is still limited, there is still an uncertainty 

in how melting layer attenuation depends on ice microphysics. Additionally, the majority if not 

all models assume continuity of mass flux and size distributions (one snowflake results in one 

raindrop) across the melting layer. Observations of melting layer properties, however, indicate 

that these assumptions may not be valid in all the cases (Heymsfield et al., 2015; Mróz et al., 

2020). Therefore, there is a need to document:  

● dependence of melting layer attenuation on snow properties aloft 

● and how continuity of mass flux and size distributions across melting layer affects the 

attenuation 

This can be done by using observations. (Li & Moisseev, 2019) have shown that multi-

frequency radar Doppler spectra observations can be used to estimate attenuation in the 

melting layer. Given the proliferation of measurement sites equipped with multi-frequency 

radars capable of recording Doppler spectra, more exhaustive analysis covering a range of 

events with varying precipitation intensities and ice cloud microphysical properties should be 

possible. This analysis would give us a better understanding on how attenuation at Ka- and 

W-bands changes, and if current parameterizations are representative of the wide range of 
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precipitation systems. This analysis could be expanded by using data from aircraft campaigns 

that combine sampling of melting layer structure and multi-frequency radar observations. 

6.3. Useful open-source software packages 

There are several open software packages that can be beneficial for validation of cloud and 

precipitation observations. Majority of them is written is in Python. The list provided below is 

not exhaustive and we may miss some of the packages, see (Heistermann et al., 2015) for 

the overview of the open-source software development in the weather radar community. 

Python packages for analysis of radar data: 

● The Python ARM Radar Toolkit (Py-ART) (Helmus & Collis, 2016). This Python module 

was originally developed to facilitate the use of DOE ARM radar data. Since them it 

includes a large number of useful routines to access, display and analyze radar data 

● Wradlib is the library for processing weather radar data (Heistermann et al., 2013). This 

is a community-based library mainly aimed on sharing and documenting efficient 

algorithms for processing weather radar data 

Python packages that can be used for data analysis from variety of instruments, or models: 

● CloudnetPy is a Python package for processing cloud remote sensing data (Tukiainen et 

al., 2020). This package is being developed and maintained by the cloud remote sensing 

data center unit as part of the ACTRIS research infrastructure. It includes routines for 

reading ACTRIS cloud remote sensing data, from such instruments as cloud radars, lidars 

and microwave radiometers, and standard cloud retrieval procedures 

● Meteorological Python Library for Data Analysis and Visualization (MetPy) provides 

functionality for analyzing and visualizing meteorological datasets (May et al., 2022) 

Other useful software:  

● PyTmatrix is a Python code for computing the scattering properties of homogeneous 

nonspherical scatterers with the T-Matrix method (Leinonen, 2014). This software is 

particular useful for deriving radar-based rain retrievals algorithms 

● PAMTRA is a package that forward models microwave radiometer and full radar Doppler 

spectra observations of cloudy atmosphere (Mech et al., 2020) 

● Collection of ice particle single scattering databases: https://snowport.meteo.uni-

koeln.de/snow-scattering/scattering-databases 

 

 

https://snowport.meteo.uni-koeln.de/snow-scattering/scattering-databases
https://snowport.meteo.uni-koeln.de/snow-scattering/scattering-databases
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7. Chapter 7: Statistical validation   

Plain language summary 

Inter-comparisons between satellite-based remote sensing observations can provide a 

mechanism for characterizing the behavior of retrievals from spaceborne profiling instruments. 

Two classes of intercomparisons are possible: near-instantaneous comparisons and 

climatological comparisons.  Near-instantaneous comparisons are less common due to 

different orbit geometry and overpass times of satellites. Climatological comparisons are more 

common, whereby data are averaged temporally and spatially prior to comparison. Such 

analyses can provide useful validation data, though they must be treated carefully to avoid 

misinterpreting sampling biases caused by differences in observations times and locations. 

Differences in retrieval algorithms and instrument characteristics must also be considered. 

This chapter discusses statistical validation techniques from satellite-satellite 

intercomparisons and highlights the challenges that must be understood to gain meaningful 

data for validation. 

7.1. Overview 

Inter-comparisons with other satellite-based remote sensing observations provide a 

mechanism for characterizing the behavior of retrievals from spaceborne profiling instruments 

that can help uncover regional systematic biases. Occultation and limb-sounding observations 

are particularly useful for comparing against spaceborne lidar observations in the 

stratosphere. In the troposphere there are not yet satellite instruments in orbit that can be used 

to directly assess the accuracy of spaceborne profiling retrievals on a global scale. In many 

cases, passive sensor retrievals are not as accurate as lidar, for example in cloud cover, cloud 

ice/water phase, and others (Stubenrauch et al., 2024). In the case of cloud top height, lidar 

and radar can make a direct measurement, whereas some passive retrievals rely on external 

information for the height retrieval. Despite the challenges of finding accurate enough satellite 

observations to analyze, comparing against independent observations can still help to uncover 

systematic biases in profiling data, especially with large averaging.  

Ideally, the observations being intercompared would observe the same location at the same 

time throughout their orbits, but historically this has rarely been the case. Apart from CALIPSO 

and CloudSat which trailed each other by seconds and the remaining A-Train members by 

minutes, other spaceborne profilers have sampled Earth’s atmosphere in different orbits with 

different equatorial crossing times. Nevertheless, statistical comparisons are a viable solution 

for validation, whereby observations from the instruments being intercompared are 

aggregated monthly, seasonally, or annually. For example, continuous intercomparisons 

between various cloud products from different long-term satellite data records are essential to 

improve our understanding of the observed cloud properties. An important question arises 

when differences are observed in these intercomparisons: are the differences caused by 

instrument performance issues, natural variability, or sampling artifacts due to lack of spatial 

and temporal collocation? Differences also arise from the use of distinct instruments aboard 

each satellite, as well as differences in retrieval algorithms, all of which needs to be accounted 

for. Since the aim of the guidance in this report is to assist in understanding instrument 

performance issues, intercomparisons between aggregates of non-collocated measurements 
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need to be cognizant of the impacts of natural variability and any potential sampling biases 

that are expected. 

There are two classes of intercomparisons to consider. (1) Near-instantaneous comparisons 

where the two satellite-based instruments measure approximately the same location at a 

similar time. Spatiotemporal constraints are enforced to ensure the same airmass is sampled, 

with tighter constraints yielding fewer collocation opportunities. (2) Climatological comparisons 

where monthly, seasonal, or annual averages for the two instruments are compared over a 

given region without regard for which specific days are sampled or enforcing strict coincident 

criteria. The underlying assumption is that the climatological average from each instrument is 

reflective of what actually occurred in the atmosphere, so they can be compared directly with 

any remaining differences being reflective of instrument performance. The stringency of 

collocation requirement depends on whether the validation target is tropospheric aerosol, 

clouds, or stratospheric aerosol to account for the different autocorrelation length scales of 

these features. 

7.2. Near-instantaneous comparisons 

The most accurate approach for cross-validation between two satellite remote sensing 

observations requires collocation in space and time. Various criteria have been applied based 

on the type of remote sensors being compared (active-to-passive vs active-to-active) and the 

spatiotemporal variability of the atmospheric features (clouds, aerosols, etc.).  

Comparing active lidar or radar measurements to passive column observations provide more 

near-instantaneous collocations given the wider swath of the passive sensors. This enables 

tighter spatiotemporal constraints on the definition of collocation, minimizing the effects of 

sampling and natural variability of the atmospheric features. Two sensors flying in the same 

orbit, such as CALIOP/CALIPSO and MODIS/Aqua, further enable collocations at fine 

temporal and spatial scales. (Kotarba, 2020) collocated the centers of MODIS and CALIOP 

instantaneous fields of view (IFOVs) with an average spatial separation of 418 m and temporal 

separation of 81 s. These fine spatial and temporal scales are critical for comparing cloud and 

convection properties, which have autocorrelation lengths that depend on the parameter being 

investigated. For example, (Wood & Hartmann, 2006) found the spatial variability of cloud 

liquid water path existed primarily on horizontal scales of 10 - 50 km. Cloud ice-water phase 

heterogeneity also varies regionally on relatively fine scales (Sokol & Storelvmo, 2024). 

(Kittaka et al., 2011) required each 5 km CALIOP footprint to fall within a 10 km MODIS Aqua 

L2 pixel, yielding 2 min temporal collocation for their AOD assessment. This criterion is 

sufficient to capture typical aerosol variability, because the autocorrelation length scale for 

tropospheric aerosol is expected to be on the order of 40 – 400 km (Anderson et al., 2003).  

Near-instantaneous comparisons of two active sensors can be challenging given their narrow 

IFOVs compared to passive sensors. Opportunities for near-instantaneous collocation are 

rarer, so collocation criteria must be lessened. For aerosol intercomparisons between CATS 

and CALIOP which have very different orbit inclinations, (Lee et al., 2019) required retrievals 

from each instrument to be within +/-30 min and 0.4° lat/lon. A similar time of day was sampled 

by both instruments due to CALIOP’s fixed equatorial crossing times. In another study, (Sellitto 

et al., 2020) noted improved consistency between observations of high clouds when CATS-

CALIOP collocations were constrained to +/-3 hours. On the other hand, the ALADIN/CALIOP 

cloud occurrence comparisons of (Feofilov et al., 2022) examined a more challenging 
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situation. Overflights by these satellites are separated by 4.5 hours, with ALADIN crossing the 

equator at dusk/dawn and CALIOP in the afternoon/early morning. A spatial criterion of 1° 

lat/lon was imposed to constrain the expected fractional standard deviation of cloud water 

content and the study arrived at a < 6 hour criteria to balance temporal representativeness 

versus number of collocation opportunities. Citing cloud observation studies, (Feofilov et al., 

2022) rationalize the 6-hour criteria by noting that diurnal changes in oceanic cloud 

distributions are expected to be small within this timeframe. The length of the temporal 

constraint is dependent on the diurnal variability of the atmospheric feature being compared. 

Precipitation over South America and Africa, as well as ice clouds over the tropics and cumulus 

clouds over land, vary significantly over a 6-hour period (Nesbitt et al., 2000; Noël et al., 2018).  

Useful metrics for near-instantaneous comparisons of profiling retrievals are the mean relative 

bias and the de-biased standard deviation which characterizes the relative precision between 

the instruments (von Clarmann, 2006; Wang et al., 2020): 

𝑏(𝑧) = 100 ×
1

𝑛(𝑧)
∑

𝑛(𝑧)

𝑖=1

𝑥𝑖(𝑧) − 𝑥𝑖,𝑟𝑒𝑓(𝑧)

𝑥𝑖,𝑟𝑒𝑓(𝑧)
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7.3. Climatological comparisons 

Intercomparisons of climatological averages can be an effective method to elucidate 

systematic biases while reducing the effects of random variability (Hegglin et al., 2021). If the 

atmosphere is randomly sampled by both instruments and artifacts are removed, then any 

bias can be diagnosed by the difference between their averages: 𝑏(𝑧) = 𝑥(𝑧) − 𝑥𝑟𝑒𝑓(𝑧), where 

𝑥𝑟𝑒𝑓 is the reference measurement (von Clarmann, 2006). On the other hand, climatological 

averages risk masking instrument performance issues or introducing artificial biases if 

sampling is not handled carefully. Because patterns of cloudiness and aerosol occurrence 

vary regionally, it is important that intercomparisons sample the same regions as much as 

practical to ensure random sampling of similar populations. In the case of background 

stratospheric aerosol observations, similar latitude bands can be a good enough constraint as 

aerosol in the stratosphere tends to become homogeneously distributed around the planet 

over time. This is not always the case in the weeks following major volcanic aerosol or wildfire 

smoke injections where the aerosol mass steadily circumnavigates across longitudes and 

disperses across latitudes (e.g., (Khaykin et al., 2020)). The higher amount of heterogeneity 

in the troposphere typically necessitates regional analyses versus zonal means. 

A typical strategy for spaceborne climatological intercomparisons is to average each set of 

observations on an equal-angle latitude-longitude grid over a monthly or seasonal time period 

and then compare the averages. Several aspects of the sampling process that impact these 

level 3 averages can complicate intercomparisons. The latitude-longitude grid size should be 

selected such that the spatial correlation scale of the quantity being aggregated fits within the 

grid. This size can be larger for tropospheric aerosol compared to clouds because the scales 

of variability are smaller relative to aerosol (McComiskey & Feingold, 2012); e.g., mineral dust 

plumes in the Saharan air layer span hundreds of kilometers, whereas variability within a field 
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of trade wind cumuli occurs at shorter lengths. It is also important that identical aggregation 

methods are used for climatological intercomparisons. Derived mean AOD is highly dependent 

on the choice of aggregation method and weightings in level 3 products, causing differences 

of 30% depending on the distribution of aerosol sampled, cloud coverage, and other factors 

(Levy et al., 2009). Using a consistent averaging method minimizes the chance of apparent 

biases between climatological averages. 

A best practice for level 3 comparisons is to avoid aggregating over space-time intervals that 

are too small because sampling biases (i.e., representivity errors) can dominate the total 

uncertainty. The potential for sampling biases in level 3 averages is more likely with 

spaceborne profiling instruments relative to passive imagers because the instantaneous 

ground field of view is much smaller. Consequently, only a small area within each lat-lon grid 

cell is sampled by a series of transects. For observations from polar orbiting platforms, the 

density of observations is greatest for grid cells at high latitudes where multiple days are 

sampled over a month, whereas the density is least near the equator and only a few days are 

sampled. This has implications on comparing the apparent state of the atmosphere between 

spaceborne profiles with different repeat cycles causing dissimilar days of the month to be 

sampled. In regions where aerosol events are episodic, non-daily sampling tends to yield AOD 

averages that are lower estimates (Sayer et al., 2010). According to (Kotarba, 2022b), 

because lidars do not sample a given lat-lon grid daily, it can take 10 years of lidar cloud 

amount measurements to approach what would have been observed with a 1-day revisit time, 

assuming a 16-day repeat cycle and a 10° lat-lon grid. Nonetheless, the authors conclude that 

the sampling errors introduced in cloud climatologies due to repeat cycle differences are 

similar for currently operating spaceborne lidars.  

The size of lat-lon grid cells also impacts the ability to represent the true state of the 

atmosphere. In a study on the impact of transect sampling on cloud climatology, (Kotarba, 

2022a) demonstrated that errors decrease in gridded cloud amount, cloud optical thickness, 

and cloud top height as the choice of grid size increases from 1° to 5° for annual averages. At 

the same time, the underestimate in cloud amount increases. It is therefore critical to use 

consistent grid sizes when intercomparing climatological averages between instruments to 

avoid artificial biases due to sampling. 

The standard metric for climatological intercomparisons is the standard error on the mean 

(SEM) which assumes random sampling from the same population. It is most useful when 

random measurement errors are larger than natural variability, as is the case for passive 

imagers that can thoroughly sample a given lat-lon grid cell. However, when the sampled 

observations are sparse, as is the case with monthly lidar transects through a small grid cell, 

the SEM can under or overestimate the actual un (Toohey & von Clarmann, 2013) n. Based 

on these sample biases inherent to transect sampling with spaceborne lidars, gridded 

intercomparisons between such instruments should adopt confidence intervals as metrics for 

assessment rather than (or in addition to) simple means, medians or SEM analyses (Kotarba, 

2022b; Kotarba & Solecki, 2021). Comparing probability density functions is an even better 

assessment method (e.g., (Winker et al., 2024)). 

Global averages alone are not well suited for rigorous intercomparisons seeking to quantify 

instrument performance. Sampling biases can vary regionally, and the efficacy of capturing 

natural variability (which also varies regionally) might not be the same between each 

instrument (Kahn et al., 2011) . As a result, compensating biases can hide instrument 
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performance issues in the average making interpreting such intercomparisons difficult or 

misleading. Different types of retrieval errors are found in different cloud types and may be of 

either sign, exacerbating the difficulty of interpreting global averages. At a minimum, 

comparisons of globally averaged gridded quantities should apply an inverse cosine (latitude) 

weighting to avoid over-emphasizing contributions near the poles due to denser sampling. 

Globally-averaged intercomparisons should be supported by a regional analysis to diagnose 

differences in regional sampling biases between the instruments or aggregation strategy. 

Analyzing at regional scales helps to isolate particular cloud regimes or dominant aerosol 

types, though with the possibility of yielding insufficient observations to be statistically 

significant. Zonally-averaged statistics within distinct longitude bands that are segregated by 

altitude can also be useful for profiling intercomparisons. 

Differences in the time of day sampled for spaceborne intercomparisons can lead to apparent 

biases that are an expected consequence of diurnal variability. Convection over land is often 

greatest in the late afternoon relative to that observed in the morning hours, leading to higher 

cloud top observations and more precipitation (Nesbitt et al., 2000; Noël et al., 2018). Similarly, 

smoke plume injection heights are greater in the late afternoon when wildfires are most active 

(Nowottnick et al., 2022). For tropospheric aerosol and cloud analyses, it is important to either 

(1) constrain the overpass times for satellite intercomparisons to sample comparable portions 

of the diurnal cycle in order minimize biases due to natural temporal variability, or (2) 

acknowledge the influence of this variability as a source of uncertainty in the intercomparison 

interpretation. As an example, the CATS/CALIOP climatological comparison of Asian mineral 

dust by (Ren et al., 2023) restricted observations to the hours containing the CALIPSO 

equatorial crossing time to match the time of day sampled. Stratospheric aerosol 

intercomparisons are expected to be impacted less by differences in sampling time due to a 

lack of diurnal variability. 

Intercomparisons of stratospheric aerosol is a simpler task for climatological averages 

compared to the troposphere due to its lesser heterogeneity and fewer expected types of 

particulates. Several intercomparisons of the vertical structure of stratospheric aerosol exist in 

the literature that evaluate solar occultation and limb profiling observations against 

spaceborne lidar measurements (e.g., (Kar et al., 2019; Rieger et al., 2019; Taha et al., 2021). 

Typically, the intercomparison approach involves comparing monthly averages from each 

instrument, zonally averaged onto 5° – 10° latitude grids and averaged or interpolated upon a 

common altitude grid. In general, averages being compared should cover the same time-frame 

for as long as possible; in the realm of stratospheric trace gasses, 4 – 5 years is advisable 

(Hegglin et al., 2021).  

The multi-instrument mean (MIM) relative difference is a useful comparison metric for 

stratospheric aerosol, computed as the percent difference of one instrument relative to the 

mean of the instruments being compared: 

𝛥𝑥 = 100 ×
𝑥 − 𝑥𝑀𝐼𝑀

𝑥𝑀𝐼𝑀
 

This metric is preferable to a traditional relative difference when assessing the consistency 

between two retrievals with comparable uncertainty so that neither instrument is favored, 

though unphysical behavior or sampling biases in one instrument can impact its value (Hegglin 
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et al., 2021). Additional metrics in Table 7.1 provide valuable insights in climatological 

intercomparisons.  

Table 7.1. Common metrics for validating satellite data records. Adapted from the ESA Cloud Climate 
Initiative Product Validation and Intercomparison Report (ESA, 2020). 

Metric Description 

Bias Mean difference between used and reference dataset. See also Table 1.1. 

bc-RMSE Bias corrected root mean squared error quantifying the precision of the dataset of interest and 
the reference dataset. 

Stability The variation of the bias over a multi-annual time period, computed against a reference “truth” 
trend. Can only be computed to within the accuracy of the “truth” trend. 

POD Probability of Detection. The fraction of correct reports of a particular category of the dataset, 
relative to all reference reports of this category. 

PDF Probability density function (frequency distribution or histogram) 

FAR False Alarm Rate. The fraction of incorrect reports of a particular category of the dataset relative 
to all reports of this category for the same dataset. 

Hit Rate The total fraction of all correct reports of the dataset, relative to all reference reports. 

KSS Hanssen-Kuipers Skill Score. The correct reports of the dataset, with random correct and 
unbiased reports subtracted from those. 

 

7.4. Quantities to be compared 

Extensive intercomparisons have been conducted between the most commonly used satellite 

data records. Tables 7.2 and 7.3 list the most common satellite records and observables that 

have been historically used for satellite-to-satellite intercomparison studies. A more 

comprehensive list of satellite-based instruments and their observables is given in Table 3.12. 

Most tropospheric aerosol studies compare column-integrated AOD to collocated MODIS 

observations (e.g., (Kim et al., 2014; Liu et al., 2018; Ma et al., 2013; Redemann et al., 2012)). 

Stratospheric aerosol intercomparisons rely on aerosol extinction or scattering ratio 

measurements provided by limb profiling instruments (e.g., (Kar et al., 2019; Kovilakam et al., 

2023)). Cloud intercomparisons involve a larger variety of observables including top 

heights/pressures, cloud fraction, thermodynamic phase, ice water path, and ice water 

content. These studies have used collocated CloudSat and MODIS observations (e.g., (Chan 

& Comiso, 2011; Schulte et al., 2023)) as well as long-duration satellite climate data records 

(Karlsson & Devasthale, 2018) evaluated the CLARA-A2, ESA Cloud CCI V3, ISCCP-H, and 

PATMOS-x records). Cloud observations were also compared against a number of well 

validated datasets under the Product Validation and Intercomparison Report of the ESA Cloud 

Climate Change Initiative project. Snowfall and precipitation intercomparisons have been 

conducted between the GPM-DRP and CloudSat (e.g., (Casella et al., 2017)). 
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Table 7.2. List of satellite datasets for intercomparisons. 

Satellite dataset Description Orbit Comparison type 

ADM-Aeolus Active Doppler lidar measurements Polar Aerosol, cloud 

CALIPSO-CALIOP Active lidar measurements Polar Aerosol, cloud 

ISS-CATS Active lidar measurements Inclined Aerosol, cloud 

MODIS Collection 6.1 Visible and infrared radiance measurements, 

optical depth, microphysical properties. 
Polar Aerosol, cloud 

GCOM-C/SGLI Visible and infrared radiance measurements. Polar Aerosol, cloud 

SAGE III/ISS Solar, lunar occultation measurements Inclined Stratospheric aerosol 

OMPS-LP Limb scattering measurements Polar Stratospheric aerosol 

GOMOS Stellar occultation measurements Polar Stratospheric aerosol 

OSIRIS Limb scattering measurements Polar Stratospheric aerosol 

AMSR-E LWP Passive microwave observations of liquid water 
path over ocean 

Polar Cloud 

CLARA-A3 Visible and infrared Advanced Very High 
Resolution Radiometer (AVHRR) observations 

Polar Cloud 

Cloud_cci V3 AVHRR, ATSR2, AATSR observations Polar Cloud 

CLAAS-3 SEVIRI observations from MSG satellites Geostationary Cloud 

DARDAR Active lidar/radar observations of ice water path Polar  Cloud 

CloudSat 2C-ICE Active lidar/radar observations of ice water 
content 

Polar Clou 

GOES-ABI Visible and infrared observations Geostationary  Cloud 

Himawari Visible and infrared observations Geostationary  Cloud 

ISCCP-H Visible and infrared observations from both 
geostationary and polar-orbiting satellites 

Polar and 
geostationary  

Cloud 

PATMOS-x Visible and infrared AVHRR observations Polar Cloud 

GPM DPR Rain and rainfall rate Inclined Precipitation 
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Table 7.3. Common satellite observables for intercomparison studies. 

Product Description Comparison type 

Extinction coefficient Vertical profile Aerosol 

Backscatter coefficient Vertical profile Aerosol 

Backscatter scattering ratio Ratio of particulate + molecular backscatter 
to molecular backscatter 

Aerosol 

Aerosol optical depth Vertically integrated extinction Aerosol 

Aerosol layer top height Geometric top of aerosol layer Aerosol 

Fractional Cloud Cover Cloud fractional coverage derived from 
CMA. Usually also separated to low, mid-
level, and high clouds as defined by the 
ISCCP classification (Rossow & Schiffer, 
1999).  

Cloud 

Cloud Mask Binary cloud mask per pixel. Cloud 

Cloud Optical Thickness Vertical integral of the absorption coefficient 
and the scattering coefficient. 

Cloud 

Cloud Phase Thermodynamic phase of the observed 
cloud. 

Cloud 

Cloud Top Temperature Retrieved temperature at the top of the 
observed cloud. 

Cloud 

Cloud Top Pressure Retrieved atmospheric pressure at the top of 

the observed cloud. 
Cloud 

Cloud Top Height Retrieved height of the top of the observed 

cloud. 
Cloud 

Joint Cloud property Histogram Spatially resolved 2D histogram of COT and 
CTP for each grid cell. 

Cloud 

Ice Water Path Vertically integrated ice water content for the 
observed cloud layers. 

Cloud 

Liquid Water Path Vertically integrated liquid water content for 
the observed cloud layers. 

Cloud 

Ice water content Range-resolved ice water content. Cloud 

Cloud water content Range resolved cloud water content. Cloud 

Rain rate Range-resolved snowfall rate. Precipitation 

Snowfall rate Range-resolved snowfall rate. Precipitation 
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8. Chapter 8: Near-real time validation through monitoring in an 

NWP data assimilation system   

8.1. Overview of the Chapter 

The traditional approach to validation of satellite measurements is to correlate observations 

from similar instruments, either from the ground, from aircraft or from other space-borne 

sensors (cross-validation). However, this technique often requires a lot of time to be effective; 

for example, individual ground sites may only achieve one or two useful overpasses per 

month, or the representativity error of in-situ observations can be significant. In this section, 

we will discuss an alternative approach that uses numerical weather prediction (NWP) model 

or atmospheric composition model data assimilation systems to validate new sensors. Instead 

of cross-validating with other sensors, observations are monitored against simulated 

observations from within an NWP or atmospheric composition model’s forecast generated 

within their assimilation systems. 

Data assimilation systems produce atmospheric model analyses — a best-estimate of the 

current state of the atmosphere — by combining millions of observations from across the globe 

with a previous model forecast. The more the analysis is constrained by a diverse set of 

observations, the closer the analysis is to the truth and therefore the more powerful a 

monitoring system is likely to be for validation. Since NWP analyses now incorporate a wealth 

of observations related to clouds (e.g., (Geer et al., 2017)) NWP-based monitoring leverages 

indirect comparisons against all these observations. For observations related to aerosols, 

atmospheric composition model analyses can be used.  Monitoring against simulated 

observations from models has a number of additional advantages: for example, comparisons 

can be made at any point in time or space, and the model analyses are created frequently, so 

observations can be monitored in near-real time. By comparing observations collected over a 

long time period and over many geographic regions, the sampling noise in any individual 

observation is significantly reduced allowing the rapid detection of systematic instrument 

issues. 

The monitoring of observational data against a numerical model’s output is also a fundamental 

step of quality control before performing data assimilation since it helps identify problems with 

observations and/or the model. It also provides a template to understand and to exploit the 

new observations in an optimal way, before they become fully active in the analysis system. 

A data monitoring system also gives feedback to instrument mentors on potential 

measurement issues in a timely manner. As we will show, coupling observational information 

with model information allows for the quicker detection of errors than using observational 

information alone. 

8.2. Key considerations for monitoring observational data against model 

data 

8.2.1. Atmospheric model analysis or re-analysis 

An NWP model analysis’ primary function is to provide an estimate of the atmospheric state 

to use as the initial conditions for generating a weather forecast. Similar to an NWP model, an 

atmospheric composition model provides a weather forecast, but simultaneously produces a 
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composition forecast. Either way, analyses from these models are produced by combining 

observations of the atmospheric state with a previous forecast using a data assimilation 

system. Observations are compared with a set of simulated observations derived from the 

previous forecast (a departure) via an observation simulator, and, if a difference is found, the 

model analysis is pulled towards the observations. The amount the analysis is pulled towards 

an individual observation depends on the expected error of both the observation and model 

background, and the magnitude of the departure. 

Before assimilation, all observations enter a monitoring system which performs a series of 

statistical checks to assess the quality of the data. New observations will typically be monitored 

for several months before being assimilated operationally. Alternatively, new observations can 

be compared to reanalysis data. Reanalysis offer a higher quality analysis of the atmospheric 

state, but are run several days behind real-time to allow a greater number of observations to 

be included in the assimilation system.  For example, the ERA5 reanalysis (Hersbach et al., 

2020), uses re-processed observations, and observations that were not available in near-real 

time, to generate analyses that are better-constrained and generally closer to the truth than 

the analyses issued from operational weather forecasting. On the other hand, reanalysis data 

are usually at lower resolution and this could compromise the accuracy of the simulated 

observations compared to NRT high-res operational analyses. 

8.2.2. Observation simulators 

The primary requirement for monitoring observations against model data is a simulator to 

convert model variables to model equivalent observations. Note that the terminology varies 

according to the application, for example in retrievals, the simulators are known as ‘forward 

models’, while in data assimilation they are known as ‘observation operators’. Their complexity 

also varies according to the application, as compromises need to be made between precision 

and computational cost/speed. However, all simulators of active profiling observations share 

similar characteristics. Firstly, model hydrometeor or aerosol amounts must be converted to 

bulk optical (scattering and absorption) properties at the measurement wavelength, often via 

an off-line look-up table because calculation of scattering properties is computationally very 

demanding. Typically, single scattering optical properties are integrated over a chosen particle 

size distribution (PSD). These bulk optical properties are then passed, along with other 

atmospheric properties such as temperature and water vapor, to a scattering model or a 

radiative transfer model that simulates the active measurements. 

One challenge in the simulation of observations from model data lies in the approximations 

that must be made in the observation simulator. For example, any given PSD may provide a 

reasonable approximation to the true PSD in some circumstances, but is unlikely to be realistic 

in all cases. In addition, desert dust or ice hydrometeor properties are notoriously difficult to 

constrain, and the need to choose one particular shape to describe a diverse set of 

hydrometeors or aerosol particles in a variety of different cloud/aerosol systems undoubtably 

introduces uncertainty into the observation monitoring and assimilation process. 

Nonetheless, significant progress in simulating radar and lidar observations has been made, 

particularly since the launch of CloudSat and CALIPSO. In preparation for the monitoring and 

assimilation of EarthCARE data, a cloud radar and lidar simulator has been included in the 

ECMWF Integrated Forecast System (IFS). The simulator uses a triple-column approach to 

represent sub-grid condensate variability (Fielding & Janisková, 2022) coupled with the (Liu, 
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2008) and (Yang et al., 2000) ice optical properties databases, while choosing microphysical 

assumptions to be as consistent as possible with the IFS NWP model (see Fielding & 

Janisková, 2020) for full details). Likewise, aerosol backscatter and extinction operators have 

been included in the IFS composition configuration (IFS-COMPO) and have been used to 

model observations from CALIPSO initially and more recently from Aeolus. The simulator uses 

a look-up table of aerosol optical properties and the speciated aerosol concentrations 

predicted by the IFS-COMPO used operationally by the Copernicus Atmosphere Monitoring 

Service (CAMS) for the global aerosol forecasts.  

The active sensor module developed for the Community Radiative Transfer Model (CRTM) 

offers the ability to simulate radar reflectivity across various instruments and zenith angles, 

given the availability of specific CRTM coefficients tailored to each instrument (Moradi et al., 

2023). This simulator incorporates a comprehensive scattering database created through the 

discrete dipole approximation method, encompassing 19 distinct forms for both frozen and 

liquid hydrometeors (Eriksson et al., 2018; Moradi et al., 2022). Rigorous validation of the 

CRTM active module has been performed using CloudSat's observations at 94 GHz. Figure 1 

shows an example of simulated versus observed CloudSat reflectivities for a tropical cyclone 

where the CloudSat passed over the eye of a tropical cyclone. This study employed cloud 

liquid, rain, and cloud ice water content profiles from the CloudSat level 2B-CWC-RVOD 

dataset, derived using an algorithm based on CloudSat radar reflectivity and Aqua MODIS 

cloud optical depth. Snow water content was obtained from the 2C-SNOW-PROFILE dataset, 

while graupel was likely included within the ice water content. ERA-Interim atmospheric 

profiles were used for radiative transfer simulations, as they are validated and accurate for 

gas attenuation calculations. Hail scattering was not considered due to the lack of hail water 

content data (the readers are referred to (Moradi et al., 2023) for the details). The CRTM active 

sensor module is currently being integrated into the Joint Effort for Data assimilation 

Integration (JEDI) framework for radar observation assimilation into NOAA and NASA models. 

 

 
Figure 8.1. Simulated versus observed CloudSat reflectivities. 

https://www.jcsda.org/jcsda-project-jedi
https://www.jcsda.org/jcsda-project-jedi


 

 

196 

 

JMA uses different observation simulators for data assimilation and model validation. In the 

DPR assimilation, the observation operator is simplified and does not compute attenuation 

because it uses an attenuation-corrected reflectivity observation. In addition, since the DPR 

assimilation is limited to the liquid phase, a look-up table for Mie scattering is used (Ikuta et 

al., 2021). In the model validation, the observation operator uses SCATDB (Liu, 2008) 

assuming that solid precipitation is a non-spherical particle, and attenuation is also computed 

(Ikuta et al., 2021). 

8.2.3. Data assimilation system 

Data assimilation systems contain many tools that can be leveraged for observation 

monitoring. So, although not strictly necessary, monitoring observations ‘on-line’ through a 

data assimilation system has many advantages. 

Screening: 

Firstly, observations undergo quality control and screening to ensure that both observations 

and model equivalents are of suitable quality to be assimilated. For monitoring, this screening 

is relaxed so that observation issues can be detected, but it is important that any known issues 

are removed. For example, when assimilating CloudSat radar reflectivity, (Janisková & 

Fielding, 2020) screen profiles where multiple scattering is suspected because their radar 

simulator assumes only single scattering. The screening therefore removes situations where 

the model may be systematically biased compared with the observations. 

Bias correction: 

Data assimilation systems assume that all observations are unbiased with respect to the 

simulated observations. In practice, any comparison between observations and models 

contains some amount of systematic bias, either from the observations or the model, so the 

bias is mitigated with a bias correction scheme. Bias correction schemes can either be 

adaptive (e.g., VarBC,) or climatological. Bias correction can help with monitoring new 

observations by removing model biases, and also by enabling bias-free observations to be 

compared with the new observations. 

Observation errors: 

Fundamental to data assimilation, observation errors help control the weight of individual 

observations compared to the model background by specifying the amount of random error 

expected in the difference between the observations and the model. When observations are 

only monitored and not assimilated, these observation errors can still be leveraged to apply 

statistical significance tests to bias estimates or the setting and triggering of data quality 

alarms. Taking an ‘error inventory’ approach, (Janisková & Fielding, 2020) separate the 

observation error into three components: measurement error, observation operator error, and 

sampling error. For profiling observations with a narrow swath, sampling error typically 

dominates (Fielding & Stiller, 2019). Observation operator error also contains a significant 

contribution to the total random error, mostly from microphysical uncertainties. Alternatively, 

statistical relationships between the model variables and observations can be (e.g., 

(Desroziers et al., 2005)). 
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8.3. Principles of data quality monitoring using data assimilation 

8.3.1. Description of monitoring using data assimilation 

The purpose of the monitoring is to provide detailed statistical information on the quality and 

availability of the different components of the observing system. The monitoring results are 

primarily produced to help improve the usage of observations within the data assimilation 

systems. 

Using an automatic data checking system, the production of alarm messages is triggered if an 

anomaly is detected in the quality or the availability of the data assimilated by the model. Two 

kinds of ranges are usually used by the automatic checking: ‘soft’ and ‘hard’ limits. Soft limits 

are updated automatically based on the statistics of the measurements in the past 20 days. 

Hard limits are set manually and can be adjusted as needed. A severity level is also assigned 

to each alert depending on the magnitude of the anomaly. 

Statistical ‘indicators’, whose ranges are monitored, are chosen to represent different aspects 

of an observation. In a monitoring system these indicators can be typically, but not exclusively, 

one of the following: 

 mean first guess departures (i.e. difference between observations and model 

equivalent) 

 standard deviation of first guess departures 

 average analysis increment 

 standard deviation of analysis increments 

 number of observations 

These indicators can also be subset by height or geolocation. 

Before observations are included in the automatic monitoring system, we must first define hard 

limits for each indicator that will be used. One way to do this is by examining a climatology of 

the data (assumed to be free of any errors) and setting the limits using some threshold in the 

standard deviation.  

8.3.2. Statistical basis of validation through monitoring 

The detection of a sudden change in calibration: 

If the correlation between the observations and simulated observations is sufficiently strong, 

then monitoring the mean of first guess departures is a powerful method to detect changes in 

instrument calibration. To understand the importance of this correlation between observations 

the following conceptual model provides a theoretical basis.  

We first assume that our profiling instrument takes unbiased samples,  𝑦𝑡, from a ‘true’ global 

distribution of clouds or aerosols, 𝑌𝑡, drawn from a gaussian distribution with mean 𝑦𝑡  and 

standard deviation 𝜎𝑡, where 𝜎𝑡 can be interpreted as the natural variability of clouds and 

precipitation or aerosol particles. Now suppose after some time during its mission, the 
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instrument develops a fault that induces a systematic bias. If we define this systematic bias 

as 𝜀𝑜, we can define each sample, 𝑦𝑜, as: 

 𝑦𝑜 = 𝑌𝑡 + 𝜀0, 

 such that the calibration error can be computed as  

 𝜀𝑜 = 𝑦𝑜 − 𝑦𝑡. 

Assuming the global mean, 𝑦𝑡, has been found through a period of monitoring before the fault 

developed (i.e. where 𝜀𝑜 =0), then the standard error in the estimate of the calibration error is 

the same as the standard error of the observation: 

  𝛥𝑦𝑜 = 𝛥𝜀𝑜 =
𝜎0

√𝑛
, 

where n is the number of independent samples drawn from Yt. Finally, the number of samples 

required to detect a calibration error, with probability greater than Pd, can be found by 

combining eq. 5 with the complementary error function: 

  𝑃𝑑 = 1 − 𝑒𝑟𝑓𝑐(
𝑛𝜀0−√𝑛𝜎𝑜

√2𝜎𝑜
) 

In the case of monitoring against an NWP or atmospheric composition analysis, we can say 

that the model also makes observations, but from a ‘model world’ global distribution of clouds, 

𝑌𝑏, drawn from a gaussian with mean 𝑦𝑏 and standard deviation, 𝜎𝑏 , where 𝑌𝑏 are correlated 

with 𝑌𝑜. Monitoring first-guess departures therefore gives: 

𝑦𝑜 − 𝑦𝑏 = 𝑌𝑜 − 𝑌𝑏 +  𝜀𝑜. 

Again, assuming the global mean is known, the standard error in the mean of first guess 

departures is: 

𝛥𝜀𝑜−𝑏 = √𝜎𝑜
2+𝜎𝑏

2 −2𝜌𝜎𝑜𝜎𝑏

𝑛
, 

where 𝜌 is the correlation between the ‘random’ variables 𝑌𝑜 and 𝑌𝑏. Assuming a similar 

magnitude for 𝜎𝑜 and 𝜎𝑏, then we can see that 𝛥𝜀𝑜−𝑏 is less than 𝛥𝜀0when the correlation 

between simulated and real observations is greater than 0.5. This tells us that monitoring first 

guess departures to detect a change in calibration will require less samples than monitoring 

observations alone, hence an instrument error would be detected faster. Note if the correlation 

between model and observations is perfect then the change in calibration is known from one 

observation. However, if the correlation is less than 0.5, the additional noise from the model 

makes it harder to detect a calibration change. As an example, the model correlation with 

cloud radar reflectivity is around 0.7 so the number of samples required to detect a change in 

calibration is approximately 4 % less. 

Detection of drifts in calibration 
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To understand the skill of the monitoring system to detect a problem in the quality of 

observations, experiments with artificially degraded CloudSat data are performed. 

Experiments are performed for the period of two months where the CloudSat radar calibration 

is assumed to drift after day 10. The drift is set to a 1% decrease per day, which leads to a 

total bias of 3 dB after two months. We compare the monitoring of stand-alone observations 

to the monitoring of observation and model related variables to investigate whether there are 

any advantages in considering FG departures compared to using CloudSat observations 

alone. 

 

 

Figure 8.2. Example of monitoring global 12-hour mean CloudSat radar reflectivity (top) and mean 
CloudSat radar reflectivity minus simulated radar reflectivity (bottom). Left panels show monitoring with 
zero bias, while right panels have a drift of 1% per day applied after day 30. Red lines show hard limits, 
while green dashed lines show soft limits; see text for details. 

 

Figure 8.2 shows the monitoring of observation only indicators, where the bias has been 

introduced. Although a drift can be seen by eye in the global mean radar reflectivity (top right 

panel in Fig. 8.2), no additional alerts are triggered compared to the control (top left panel in 

Fig. 8.2). However, when using the global mean FG departures (bottom right panel in Fig. 8.2), 

the drift is detected with alerts triggered around 30 days after the bias was introduced. 

Because the drift is gradual, the alerts are triggered by the hard limits rather than the soft 

limits. The soft limits are more likely to detect any sudden jumps in calibration or instrument 

issues.  

Using monitoring for relative calibration 

Another possible application of a monitoring system is to use it for calibration of instruments 

against other instruments included in the monitoring system. If the bias between a similar, 

well-calibrated instrument and the model is known, then the new instrument could be 

calibrated to have the same bias between the model as the similar instrument. For this 

approach to be reliable, several assumptions must be valid, such as the model’s bias against 

reality should be the same, which could be problematic if the model biases are different for 

different cloud/aerosol regimes or seasons. Nevertheless, a monitoring system could provide 

a useful sanity check on the calibration of a new instrument. 
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8.4. Demonstration of monitoring L1 data in global NWP systems 

8.4.1. Example of monitoring CloudSat, CALIPSO cloud information 

 

Figure 8.3. Three months of monitoring the mean (top) and standard deviation (bottom) of CloudSat 
radar reflectivity departures using the ECMWF model. Each circle represents a single data assimilation 
window (12 hours). The dotted line shows the mean plus and minus three times the standard deviation. 

  

The monitoring of CloudSat radar reflectivity is demonstrated over a 3-month period between 

August 2007 and October 2007. To begin with the ‘used’ first-guess departures (those that 

pass screening, so would have been assimilated) of CloudSat radar reflectivity from the control 

experiments are monitored. The mean of all FG departures in each 12-hour assimilation 

window (Fig. 8.3) are remarkably stable over the period, with 95 % of global means after bias 

correction of between 0-1 dB. For reference, the dynamic range of radar reflectivity 

measurements from CloudSat is between -30 and 20 dBZ. The standard deviation of first 

guess departures gives a measure of the fidelity of the model to represent clouds and 

precipitation, and also the accuracy of the observation operators. Unlike the global mean bias, 

the global standard deviation of first guess departures (Fig. 8.3) does show some seasonality. 

The greatest standard deviations are found at the start and end of the period, which coincides 

with Northern Hemisphere summer. The seasonal effects are more pronounced when looking 

at the data regionally (not shown), where both the Arctic and North Hemisphere regions share 

the same signal. It is likely that the seasonality is due to the greater number of convective 

clouds and precipitation in summer months, which are more difficult for the model to represent. 

On the other hand, the standard deviation of FG departures in the tropics are very stable 

throughout the year.  

As an example of monitoring lidar observations, the passive monitoring of CALIPSO lidar 

backscatter first-guess departures (Fig. 8.4) during 2007 revealed a known quality issue with 

the data that could have been overlooked in an assimilation experiment. The global mean first-
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guess departure can be seen to be around 1.3 dB for most of the experimental period, but 

drops to under 1 dB for the period between 21 August 2007 and 7 September 2007. The 

reason for the change in bias is due to the CALIOP lidar changing its tilt from 0.3 to 3 degrees 

during the period. Horizontally aligned ice crystals can cause enhanced backscatter due to 

specular reflection, so, as expected, changing the pointing angle of the lidar to be off-nadir 

reduces the bias in the observations. A small reduction in the standard-deviation of FG 

departures can also be detected when the lidar was pointing off-nadir, suggesting that the 

specular reflection was also increasing CALIPSO’s observation error. For the remaining 

experiments, the lidar was pointing at 3 degrees off-nadir, as CALIOP changed its tilt 

definitively from 28 November 2007 onwards. 

 

Figure 8.4. Same as Fig. 8.3., but for CALIPSO lidar backscatter. 

 

8.4.2. Detection of instrument issues for Aeolus 

Many systematic errors in the Earth Explorer mission Aeolus’ wind data were first detected or 

confirmed via ECMWF’s HLOS wind O-B departure monitoring. The ECMWF model was found 

to be trustworthy as a reference when considering statistics over large area/time averages, 

because the short-range forecast is relatively unbiased compared to “conventional” well-

calibrated wind observations i.e. radiosondes, aircraft, radar wind profilers. 

Monitoring of Aeolus winds O-B departures against the ECMWF model helped divulge many 

wind biases in the measurements of the Atmospheric Laser Doppler Instrument (ALADIN) 

including Elevated dark current rates, likely induced by cosmic rays striking the ALADIN 

Charge-Coupled Device (ACCD) and hot-pixel related wind biases affecting specific lidar 

range-bins. Additionally, moon-blinding effects on the star tracker result in pointing (attitude 

knowledge) wind biases, while calibration-related biases are associated with disparities 

between star trackers A and B. During the commissioning phase, a discrepancy of 250 meters 
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in the altitude of range-bins was identified, particularly linked to the star tracker. Furthermore, 

the varying wind bias along the orbit was attributed to temperature fluctuations across the 

primary mirror. 

 

Figure 8.5. Global mean(O-B) as a function of time (every 3 hours) and pressure (a selection of 
pressure ranges from surface to near 24 km altitude) for Aeolus L2B Rayleigh-clear HLOS winds. The 
color-scale has units of m/s. 

 

ECMWF monitoring helped to highlight several other contributors to wind biases, including 

imperfect corrections for satellite-induced Line-of-Sight (LOS) velocity, biases related to the 

Rayleigh-Brillouin look-up table, and imperfections in Mie calibration. Differences in biases 

observed during October/March ascending/descending orbits were noted, as are biases 

associated with imperfect Level 2B (L2B) processor quality control (QC) or algorithm settings. 

Long-term drifts in wind random errors were monitored, influenced by changes in laser emit 

energy and emit path efficiency for the FM-B laser. Additionally, monitoring helped provide 

feedback to the European Space Agency (ESA) and industry based on instrumental tests 

aimed at improving radiometric performance, encompassing efforts to enhance the alignment 

and divergence of the laser and maintain primary mirror temperature stability. 

The automated correction that was developed by the Aeolus DISC of primary-mirror-

temperature related HLOS wind biases (reaching ~8 m/s) via O-B statistics has been critical 

for the success of the mission (e.g., Fig 8.5). The dependence of Rayleigh response (and to 

a lesser extent Mie response) on the main telescope temperature (gradients) was effectively 

calibrated against ECMWF O-B statistics of the past. This correction also dealt with the longer 

time drifts in the global offset wind bias, most strongly seen with the FM-B laser. 

8.4.3. Monitoring precipitation radar 

At Météo-France, it is planned to use spaceborne radar observations to perform systematic 

comparisons between NWP models and observations. This monitoring is a powerful tool to 
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diagnose the weaknesses of the physical parameterizations used in the models. An example 

of off-line monitoring (performed over a 2-month period) using the reflectivities observed by 

the Ku-band precipitation radar of GPM, is given here. 

The radar simulator available in version 13 of the radiative transfer model RTTOV-SCATT 

(Geer et al., 2021) is applied to the Météo-France global NWP model ARPEGE (Bouyssel et 

al., 2022) to simulate DPR reflectivities. The use of RTTOV-SCATT offers a good opportunity 

to simulate passive and active microwave observations using the same microphysical 

assumptions. The default configuration of RTTOV-SCATT is employed to simulate reflectivity 

observations. The ARTS database (Eriksson et al., 2018) is used for frozen hydrometeors, 

and Mie theory for drops. Frozen hydrometeors characteristics (shapes and PSDs) were 

inferred with parameter estimation by (Geer et al., 2021) using passive microwave 

observations. Cloud fraction is diagnosed from the cloud cover for large-scale snow and rain. 

In order to stay consistent with the parameters used operationally at Météo-France and at 

ECMWF to simulate passive microwave simulations, it is set to 5% over the full column for 

convective rain and convective snow (i.e. graupel). The bright-band is simulated using a 

revisited version of the (Bauer et al., 2002) parametrization. 

Contoured Frequency by Altitude Diagram (CFAD) of the first-guess departures (observations 

- simulations, in dB) are shown in Figure 8.6 for the Northern hemisphere (left), the tropics 

(middle panel) and the southern hemisphere (right panel). The total number of samples per 

altitude level is indicated by the numbers on the right-hand side y-axis. The mean of the first 

guess departures is indicated by the dashed black line. There is a positive bias of about 3 to 

5 dB in the three different hemispheres above the freezing level (above an altitude of 

approximately 4 km). Conversely, in the tropics, ARPEGE simulations tend to overestimate 

reflectivity in the rainy levels by an order of approximately 10 dB. This overestimation in the 

tropics could be related to an imperfect representation of convective hydrometeors in the 

global NWP model ARPEGE. Indeed, compared to large-scale hydrometeors, convective 

hydrometeors predominate in the tropics and, thus, have a much larger contribution to the 

simulated reflectivities. Unlike the prognostic hydrometeors from large-scale processes, the 

information on convective hydrometeors is diagnosed from the Tiedke/Bechtold convection 

parameterization. The comparison against DPR observations seems to indicate that this 

convective scheme tends to overestimate convective hydrometeors contents. On the other 

hand, this overestimation could also be explained by an imperfect representation of the effect 

of convective hydrometeors onto simulated reflectivities within the forward operator. This 

representation has several sources of uncertainties which could be at play for explaining part 

of the bias: single scattering properties specifications, particle size distribution specifications, 

sub-grid scale cloud fraction representation, conversions performed to estimate contents from 

precipitation fluxes. Various sensitivity analysis is currently ongoing at Météo-France in order 

to disentangle NWP model uncertainties from uncertainties in the forward operator. 
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 Figure 8.6. Contourned Frequency Diagram (CFAD) of the first-guess departures for the 

northern hemisphere (left), the tropics (middle) and the southern hemisphere (right panel) for 

a 2-month period (Jan-Feb 2021). The black solid line represents the mean of the first-guess 

departures.  

8.5. Demonstration of product-level data quality monitoring using data 

assimilation 

Besides raw lidar observations, atmospheric parameters derived from lidar observations can 

also be evaluated and cross-compared with numerical model simulations that assimilate 

passive-based retrievals.  This is because some parameters included in the product-level lidar 

data can also be obtained from passive-based retrievals. While a direct comparison of 

passive-based and active-based retrievals is feasible for those atmospheric parameters, 

passive-based retrievals are often limited by observing conditions (e.g. cloud free, day time). 

In comparison, modeled data through assimilation of passive-based observations have much 

improved data quality with reduced uncertainties and thus can be used for evaluating and 

inter-comparing with level-2/level-3 lidar products over regions and times that lack passive-

based observations/retrievals (e.g. nighttime). 

8.5.1. Example of monitoring CALIOP AOD retrievals 

An example of such a parameter is aerosol optical depth (AOD). Using the US Navy Aerosol 

Analysis and Prediction System (NAAPS) AOD data, (Campbell et al., 2010) evaluated one 

year of CALIOP AOD retrievals on both regional and global scales at both daytime and 

nighttime. NAAPS AOD analyses included assimilation of over-land and over-ocean passive-

based AOD retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS) and 

Multi-angle Imaging Spectroradiometer (MISR). It is concluded from the study that CALIOP 

AOD data have similar performance at daytime and nighttime, despite the fact that daytime 

CALIOP observations are much noisier due to solar contamination. It is worth mentioning that 

AOD analyses from International Cooperative for Aerosol Prediction (ICAP) multi-model 

ensemble (MME) are currently available with evaluations showing that the MME mean is 

consistently a top performer relative to the individual contributing models for AOD analyses 

and forecasts (Sessions et al., 2015; Xian et al., 2019). ICAP-MME is an ensemble of 9 

operational aerosol models (CAMS, GEOS-5, MOCAGE, SILAM, NAAPS, MASINGAR, 

NGAC, BSC MONARCH, and UKMO Unified Model), with each model supporting some form 

of assimilation (e.g. 2-D, 3-D, 4-D Var or ensemble Kalman filter) of passive-based aerosol 
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retrievals from Geostationary Equatorial Orbit (GEO) and/or low earth orbit (LEO) sensors. 

AOD mean analyses from ICAP-MME can and should be used for cross-evaluation of aerosol 

retrievals from space-borne lidars, especially during nighttime as operational passive-based 

aerosol retrievals from space-borne sensors are currently not available (e.g. (Zhang et al., 

2023)). It should also be noted that the ICAP-MME has the advantage of providing a measure 

of uncertainty in the AOD analyses through the ensemble spread, which should be taken into 

consideration when comparing space-borne lidars with model fields.  The multi-model 

ensemble is powerful in this regard as it accounts for uncertainty in emissions, meteorology, 

physics, and forward modeling of optical properties as well as different data assimilation 

methodologies that are not accounted for in single-model ensembles. 

A second view on cross-validation can be done by comparing analyses of the same data 

assimilation system that assimilate different types of observations. If the assimilated 

observations are linked to the same observable variable, the key similarities and differences 

between theses analyses can be attributed to differences in information carried by the input 

observations, as for example in the vertical resolution of the observations, their spatial or 

temporal sampling, or their prescription of uncertainties in the data assimilation system. 

Following this approach, (Escribano et al., 2022) (ACP) shows that the assimilation of the 

LIVAS mineral dust extinction coefficient (computed from CALIOP profiles) was highly 

beneficial for the representation of the vertical structure of the mineral dust plumes, as 

compared with ground-based lidar retrievals; while the impact of mineral dust AOD provide 

improvements in the larger horizontal structures, as expected. Although this application was 

not NRT oriented, positive feedback was established between the assimilation and data 

providers (for example in filtering criteria or in definition of uncertainties). 

8.5.2. Example of monitoring Aeolus aerosol information 

Lidar measurements of particle backscatter as a function of altitude can help to constrain the 

vertical structure of aerosol fields. Using this information in atmospheric composition 

forecasting can result in an improved understanding of the evolution of aerosols in time and 

space. The Aeolus mission was launched in August 2018, carrying onboard the Atmospheric 

Laser Doppler Instrument (ALADIN), the first ever Doppler wind lidar in space. The mission’s 

aim was to provide profiles of the wind component along the satellite’s horizontal line-of-sight 

(HLOS) direction, from the surface up to the lower stratosphere (∼30 km, ∼10 hPa), on a 

global scale (Rennie et al., 2021). In addition to the wind product, advanced retrieval 

algorithms applied to the satellite data yielded particle spin-off products of the atmospheric 

constituents sensed by the lidar. One of these products, the L2A particle backscatter mid-bin 

product calculated by the Standard Correct Algorithm (Flament et al., 2021), was monitored 

at ECMWF beginning in January 2022, as part of the wider Aeolus Data, Innovation, and 

Science Cluster (DISC) activities. 

Monitoring of this product was carried out using ECMWF’s Integrated Forecasting System in 

atmospheric composition mode (IFS-COMPO). The version of the CAMS IFS-COMPO setup 

used to monitor the Aeolus L2A particle backscatter assimilated the MODIS Terra and Aqua 

AOD, alongside the PMAp AOD product from the MetOp B and C satellites. The monitoring 

was carried out in order to compare the new observations and their model equivalent. The 
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model was calculated using an observation operator, which outputted the particle backscatter 

coefficient corresponding to the time and location of the Aeolus observation. In order to 

monitor any signal from aerosols, the larger backscatter signal from clouds had to first be 

screened out. A cloud screening was developed where the model trajectory data were used 

to screen the L2A backscatter values for cloud signals. Data were also filtered by altitude, to 

reduce the impact of signals from ground contamination and from optically thin cirrus clouds. 

 

 

Figure 8.7. First guess departures (black) and analysis departures (red) of backscatter profiles for 
February 2023, as a function of atmospheric pressure. Data are averaged over the globe, with the two 
top plots showing results for all data, and the two bottom plots showing results for data passing the 
cloud screening. Standard deviation is shown in the left-hand plot of each set, and the mean departures 
shown on the right-hand plot. 
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Figure 8.8. Plots show the time series of the first-guess (blue) and analysis (red) departures for 
February 2023, and the associated standard deviation for each. Two top plots give statistics for all data, 
and two bottom plots for data passing the cloud screening.  

 

Statistics for monitoring and assimilating the L2A particle backscatter product are shown in 

Figures 8.7 and 8.8. Moreover, the bias and the standard deviation of the first-guess and 

analysis departures, as a function of the atmospheric pressure are shown in Fig. 8.7. The 

number of data points used at each altitude is given by the middle number; this is the value 

passing the criteria for cloud and altitude screening. Statistics are shown for all data in the left 

two plots, with the right two plots showing the statistics only for data passing the cloud 

screening. 

All units are in 10−7/ (m sr). The solid black lines represent the first guess departures, i.e. the 

difference between the observation and the model first guess. The red dashed line gives the 

difference between the measurement and the analysis, where the analysis is the model with 

the Aeolus backscatter coefficient included in the data assimilation. The assimilation here uses 

a small, constant value for the observation error, which in turn assigns a relatively large weight 

to these data in the assimilation. The need for cloud screening is illustrated, with the reduction 

in bias shown in the right-hand plots, particularly at the 850 hPa level, decreasing from around 

360 × 10−7/ (m sr) to  1 × 10−7/ (m sr), resulting in a corresponding significant decrease in the 

standard deviation. 

Figure 8.7 shows plots of the backscatter as a function of time, again for the month of February 

2023. The left-hand plots show the statistics for all data, and the right for data passing the 

cloud screening. The top plots show the first-guess departures in blue, and the analysis 

departures in red, with the standard deviation of the departures shown in the middle plots. As 

for Figure 8.7, the need for cloud screening is clear, with large variations in the departures and 

their standard deviations shown on the left. Monitoring statistics as a function of time is crucial 

to assess any changes in the instrument data quality; here is shown a gap in the data following 

the satellite going into standby mode for several days, from February 21-24.  

8.6. Demonstration of monitoring benefits in regional/local area models 

Because of the current limited revisit time of spaceborne radar observations, these data are 

foreseen to provide less impact on forecast skills than other observations (e.g. ground-based 

radars, geostationary observations, etc.) to initialize km-scale NWP models. However, their 

fine vertical resolution and their high sensitivity to hydrometeor characteristics, makes them 

particularly appealing to monitor km-scale NWP models on high-impact events, especially over 

oceanic regions over which the coverage of other observations is limited. Météo-France runs 

a kilometer-scale NWP model over different regions of the globe called AROME (one centered 

over France in Europe (Brousseau et al., 2016), 5 overseas (Faure et al., 2020)). These 

models are run at a high horizontal resolution of 1.3 km. Deep convection is explicitly resolved 

and hydrometeors characteristics are governed by the ICE3 one-moment bulk microphysical 

scheme. 

RTTOV-SCATT v13 is used to simulate DPR reflectivities using AROME 1-h forecasts. The 

same default configuration, described in sec 6.2.3, is used. Unlike for the ARPEGE global 
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model, hydrometeors usually cover the entire 1.3 km*1.3 km horizontal grid of AROME. 

Therefore, their associated precipitation fraction is either 100%, or 0%, which removes the 

uncertainty on this free parameter within the forward operator. Figure 8.9 represents Ku-band 

non-attenuated reflectivities (top panels) and their associated AROME simulations (bottom 

panels) at different altitude levels (from left to right) for a heavy precipitation event which hitted 

Corsica on 17 August 2022. These profiles were observed at the genesis of the event at 02:00 

UTC, right before it hitted Corsica at 06:00 UTC. The comparisons between observations and 

simulations indicate that there is a good agreement between observations and simulations, 

especially in terms of localization. Besides, as shown in Figure 6.9, fine-scale structures are 

very well captured by the Ku-band precipitation radar which makes these data an undeniable 

asset for validating models for which convection is explicitly resolved. 

 

Figure 8.9. Observed (top panels) and Simulated (bottom panels) Ku-band reflectivities at (from left to 
right) an altitude of 2 km, 3.5 km and 6 km for a heavy precipitation event over the Mediterranean area 
on 17 October 2022.  

Radar reflectivities from the DPR/GPM and the CPR/CloudSat instruments have also been 

simulated at Météo-France with RTTOV-SCATT for the oversea AROME NWP model located 

over the Caribbean (Duruisseau et al., 2018). Results showed a quite good agreement with 

the observations but several discrepancies remained in the rainy levels. A lack of precipitating 

clouds was revealed in the AROME model in the Tropics, which was consistent with other 

studies conducted on accumulated precipitation forecasts.  

Japan Meteorological Agency (JMA) assimilates the GPM satellite observations for making 

the initial condition of the meso-scale model (MSM) which is the regional forecast model and 

routinely monitors it. Their monitoring results were also used to validate the cloud microphysics 

scheme. (Ikuta et al., 2021) simulated GPM/GMI and GPM/DPR from the MSM and compared 

them with observations. As a result, they identified issues with the cloud microphysics scheme 

and improved the scheme. Figure 8.10 shows the CFADs for the DPR observation and the 

simulation before and after the improvement. The improved model was closer to observations 

around the altitude of 3 km and above the altitude of ~6 km, and had improved accuracy in 

predicting temperature profiles. Based on this previous study, JMA is currently comparing the 

satellite observation simulations with the observations to evaluate the accuracy of cloud 

precipitation forecasts in the development of the regional NWP model. These satellite 
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observation simulations are performed using RTTOV-SCATT v13. This model validation is not 

performed in real-time monitoring, but retroactively over a specific experimental period. 

 

Figure 8.10. CFADs of (top) Ku-band reflectivity, (middle) Ka-band reflectivity, and (bottom) measured 
dual-frequency rate. (a), (d), (g) Observation; (b), (e), (h) simulation using the old scheme; and (c), (f), 
(i) simulation using the current scheme. The solid line shows the median and the dashed lines show 
the 25th and 75th percentiles. The red lines show the percentiles of observation corresponding to the 
element. From (Ikuta et al., 2021). Use permit not yet obtained. 

 

8.7. Summary and discussion 

In this chapter we have demonstrated the concept and benefit of monitoring cloud, aerosol 

and precipitation profiles against numerical weather prediction model output within data 

assimilation systems. Data assimilation combines millions of observations with a physical 

model to generate a ‘best estimate’ of the current state of the atmosphere, known as an 

‘analysis’. New observations can therefore be validated against simulated observations made 

from analyses, effectively providing correlative measurements from the millions of 

observations that entered the assimilation system. The effectiveness of the approach relies 

not only on the quality of the analyses, but the forward models used to simulate observations. 

For example, we have shown that current NWP systems have sufficient skill to simulate radar 

reflectivity and lidar backscatter to detect instrument issues much faster than monitoring 

observations alone. Other techniques available for data assimilation can be leveraged in a 

monitoring system to improve the validation, such as the incorporation of observation errors, 

use of bias correction schemes and screening simulated profiles that are known to contain 
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large systematic biases. These techniques help to focus the validation to regions where the 

model simulations best represent reality. 

The capability to use a data assimilation system as a validation tool for cloud and precipitation 

observations has been made possible by recent advances in both the physical processes 

represented within NWP and atmospheric composition models and the capability to assimilate 

observations related to clouds and aerosols. Developments to forward models to simulate 

complex remote sensing measurements such as radar reflectivity or lidar backscatter have 

also been crucial to reduce systematic biases and errors when comparing observations with 

models. Validation is also possible with local area models, which do not necessarily have the 

full data assimilation capability of global forecast models. Instead monitoring can be performed 

‘off-line’, and concentrated on case studies rather than near-real time monitoring. 

In addition to the validation benefits of monitoring, such as improving the quality control of 

measurements and detecting drifts in calibration, monitoring observations facilitates model 

evaluation by providing a platform for comparison and the use of profiling observations to 

improve models. Profiling observations contain huge amounts of information on the structure 

and microphysical properties of clouds and aerosols, yet paradoxically can be more 

challenging to interpret. Comparing observations directly with simulated observations allows 

assumptions to be made in the forward models that are consistent with the assumptions in the 

model physical parameterizations. Monitoring is also a first-step before assimilation of new 

observational datasets. By including new observations into the data assimilation system, a 

positive feedback is introduced: more high-quality observations improves the model analysis, 

which improves the quality of validation, which in turn improves the quality of the observations. 

 

  



 

 

212 

 

9. Chapter 9: Gaps and Challenges 

Plain language summary 

This chapter aims to provide an overview of currently existing challenges and gaps concerning 

the validation of aerosol and cloud profilers from space identified in the chapters above or 

during prior activities. These challenges can be manifold, either addressing general knowledge 

gaps, data coverage gaps, missing reference instruments, validation approaches, etc. 

An overview of the currently identified challenges is shown in Table 9.1. It is yet sorted by 

general, aerosol, and cloud/precipitation related gaps. A more thorough description follows 

afterwards in this section. 

Overview Table 

Table 9.1. Overview of gaps/challenges identified within the activity for a best practice document for 
validation of aerosol, cloud, and precipitation profiles and proposed recommendations to tackle the 
challenges.  

Gap/challenge Recommendations Section 

General 9.1 

Geographic gaps  none yet.  9.1.1a 

Measurement Gaps none yet.  9.1.1b 

Spatiotemporal 

representativeness 

Use of scanning capabilities. Perform representativeness 

analysis.  

9.1.2 

Harmonization of different 

data sets 

Standard QA/QC procedures and measurement setups. 9.1.3 

Validation of Level 1 data 

with ground-based systems 

Apply tools developed in CARDINAL to perform level 1 

validation. 

 

9.1.4 

Private satellite sector none yet. 9.1.5 

Aerosol profiling 9.2 

Wavelength dependence of 

aerosol mixtures 

Identify frequent aerosol mixtures and calculate optical 

properties based on mixing rules and mixing state out of 

optical properties from pure types.  

9.2.1 

European 

background/pollution 

aerosol 

Use of historic data sets to determine characteristic optical 

properties. 

9.2.2 
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Smoke identification and/or 

separation 

Analysis of existing datasets to propose new sub-

categories of smoke. 

9.2.3 

Impact of dried marine 

aerosol 

Review existing observations. Perform radiative transfer 

calculations to estimate the impact of even thin layers of 

dry marine aerosol.  

9.2.4 

Brown Carbon Account for brown carbon in additional typing 

subcategories. 

9.2.5 

355 + 1064 nm 

depolarization observations 

Analyse JATAC-CPEX datasets to identify the reasons for 

discrepancies in particle depolarization calculation (e.g. 

depolarization calibration techniques). 

9.2.6 

Cloud and precipitation profiling 9.3 

Ice cloud retrievals in rain 

cases 

Use data collected at several ACTRIS cloud profiling 

stations to develop and test radome, rain and melting 

layer attenuation correction algorithms. 

9.3.1 

Validation of CPR Doppler 

velocity and fall velocity 

products 

Use dual-polarization weather radar observations to 

estimate reflectivity-weighted mean Doppler CPR 

velocity. Use Radar Doppler measurements to estimate 

horizontal wind divergence on large domains. Perform 

statistical comparisons of ground-based radar 

observation. Use airborne Doppler measurements. 

9.3.2 

Ice microphysics Utilize observations from measurement campaigns that 

combine remote sensing and aircraft observations and in-

situ precipitation observations of snowfall. Implement 

dual-wavelength approaches to retrieve ice and snow 

microphysics in networks (e.g. ACTRIS) 

9.3.3 

Validation of snowfall 

product 

Use weather radar observations in combination with 

ground-based observations for validation of rainfall and 

snowfall products.  

9.3.4 

Attenuation in embedded 

supercooled liquid layers 

Apply novel machine learning based methods and use 

multi-frequency cloud radar Doppler spectral 

observations. 

9.3.5 

Doppler velocity 

measurements in 

convection 

Deploy agile adaptive radar strategies along with profiling 

radar systems. 

9.3.6 

Accounting for not detected 
clouds 

Use ground-based cloud profiling stations to assess the 

impact of not resolved liquid-clouds. 

9.3.7 
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9.1. General Gaps and challenges 

9.1.1. The geographical and measurement gaps 

No matter what efforts will be done in future, there will always be a heterogeneous distribution 

of high quality suborbital reference measurements. However, pointing to the current map for 

the validation of EarthCARE, it becomes clear that certain regions are significantly 

undersampled: 

 

Figure 9.1. Continuously updating map with respect to EarthCARE validation stations on ground. Blue: 
High power lidar stations, Orange: Cloud radar stations, Green: Synergistic lidar+radar stations. Purple: 
Other validation measurements. Map shown at: 
https://www.google.com/maps/d/viewer?mid=1u1BfCIB7Sh4g5HkHqhlMO18LcDJp1MrY&usp=sharing 

 

a) Continental Africa: There is almost no supersite on continental Africa. Here, efforts 

for establishing high-quality long-term observations or even campaigns 

deployments would be highly desirable. 

b) The Oceans: There are not many ground observations over the Oceans. However, 

there is a significant amount of research vessels having onboard instruments for high 

quality atmospheric observations as listed in Chapter 3 (section 3.2.1.2). Other sea-
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borne platforms like commercial vessels and buoys might become more important in 

future as well. It would be beneficial to link those activities also to the validation 

efforts of spaceborne profilers (networking, community awareness) and make the 

data available. 

c) Oceania: Currently, Oceania is significantly undersampled. Also here, the 

establishment of high quality long-term observations shall be envisaged and existing 

observatories be motivated to join validation efforts and share data. 

d) Northern Asia: Considering the current map, there are almost no observations for 

validation in the Asian midlatitudes. Thus, the availability of suited suborbital 

instrumentation shall be checked and, if applicable, existing observatories and 

institutions invited to join the global validation effort. 

e) Polar and high latitude regions. The Arctic and Antarctic are recognized as data 

sparse regions with only a limited number of observatories. In particular, there is a lack 

of observations over northern and eastern Greenland, and east of Svalbard. 

Furthermore, there are almost no lidar observations at 355 nm in the Arctic and 

Antarctica. It is very expensive and demanding to maintain polar stations, leading to 

sustainability gaps. The sustainability problem has recently been surveyed and 

documented by the Copernicus In Situ Coordination Component (Buch et al., 2019). 

Measurement gaps 

There are certainly also gaps with respect to measurement methodologies.  

To name a few:  

 Humidity measurements (e.g. G-band DAR option). 

 Surface-based facilities that can observe, both, clouds and precipitation conditions. 

For example, the ACTRIS stations are optimized for cloud profiling in non-raining 

conditions. 

 Generally, more measurements for radiation are desired.  

9.1.2. Spatio-temporal representativeness 

How representative a single station is with respect to the surrounding is important to know for 

judging the validation results. This challenge is specifically tackled in Chapter 3 (section 3.4 

and recommendations to determine criteria for validation exercises) and strategies/guidance 

might be very different depending on the validation target.  

The authors of Chapter 3 concluded the following on he still remaining challenge: 

Common assessment practices typically use a surface-based reference and bulk comparison 

metrics (e.g. correlation, bias) to assess performances over a given spatial and temporal 

domain. Metrics such as correlation, bias, contingency statistics should be applied with 

checking their relevance. For example, the definition of bias may be ambiguous as it can be 

defined as an additive satellite QPE-to-reference difference or a multiplicative difference 

(ratio), sometimes based on conditional (positive) values. The linear correlation is generally 

insufficient to describe the non-linear and heteroscedastic dependence structure between the 

satellite estimates and a reference. In addition, the satellite estimates are often assumed to 
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be consistent and display homogeneous performances over their spatial and temporal domain 

of comparison. Bulk metrics (correlation, bias, contingency, etc.) are computed over samples 

actually gathering a variety of scene characteristics (e.g., for precipitation: intermittency, 

typology, rates) for which the satellite retrieval algorithm is likely to behave differently. More 

generally the comparison is always performed with estimates ambiguously derived from the 

satellite sensor observations through the retrieval algorithm and associated assumptions. 

Individual retrievals are underconstrained by nature and sensitive to unobserved atmospheric 

parameters (e.g., (Stephens & Kummerow, 2007) for precipitation). Combined retrievals 

inherit the varying sensors’ performances and create additional uncertainties with 

temporal/spatial resampling. Hence bulk error metrics depict averaged space/time properties 

while the errors tend to be non-stationary and sensitive to parameters not accounted for in the 

assessment formulation. As a result, the representativeness of any overall satellite 

assessment or error model is confined to the time and space domain over which it is 

performed. It tends to be specific to the satellite instrument (e.g. resolution), the retrieval 

algorithm (and associated version), the space-time-scale and the accuracy of the reference, 

with limited applicability for other atmospheric regimes, regions, products, etc. Integrated 

assessment is necessary to track the origin of uncertainties and their propagation through 

various satellite retrieval algorithms. More informative assessment and information to 

algorithm improvement can be gained by stratifying (conditioning) the assessment according 

to relevant factors driving the state of the satellite estimation error. Hence targeting the most 

significant factors is essential to characterize uncertainties in satellite estimates and lead to a 

generalization of their assessment. 

Nevertheless, currently a study is initiated by ESA investigating this effect with respect to 

aerosol profiling validation based on long-term reference measurements at a single location 

in Cabo Verde and CALIPSO/LIVAS data around the site. The outcome of this study might be 

reported here after finalization of the study.  

Furthermore, use of the scanning capabilities of cloud radars to overcome the spatial distance 

between the two profilers is currently investigated as there is a growing number of scanning 

cloud radars that can be used for Cal/Val purposes. Already now, scans can be used to 

retrieve wind profiles within fog, clouds and precipitation. It is currently being investigated in 

the frame of FRM4radar if cloud radar scans can be used to mimic CPR underflights. This 

might only be doable for some sites and stations due to specific scanner hardware and 

meteorological conditions (attenuation of Ka- and especially W-band in rain). Scanning has 

also the advantage to make use of polarimetric variables and explore their usages for 

microphysical process understanding and classification of hydrometeors (see gap 9.3.3). 

Furthermore, developing a method to estimate the spatial distribution of clouds within the 

scanned area could be envisaged. This could help to develop criteria for statistical 

comparisons of cloud profiles with the satellite passing close to the site. 

9.1.3. Harmonization of different data sets 

Harmonization of different data sets is tackled in Chapter 3 and Chapter 4, nevertheless, this 

task is never completed. Next to different instrument specifics (e.g. wavelength, frequency, 

representativeness) also harmonization among global reference observations is an ongoing 

effort. First attempts were successfully made, e.g., in the framework of the ATMO-ACCESS 
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pilot, FRM4Radar, and GALION (https://galion.world/) in close collaboration with the ESA 

Atmospheric Validation Centre (EVDC), and will continue to be made through other programs 

such as the upcoming EU Horizon project CARGO-ACT (in the EU call for Strengthening the 

international dimension of ESFRI and/or ERIC research infrastructures). However, a 

complete comparability of all data sets is not yet achieved. This counts for validation 

purposes as well as for climatological studies. 

For example, standardization of in-situ measurements for estimating the particle size 

distribution properties at the surface in rain/snow conditions is still needed. 

The full overview of the current status of the harmonization, links to data formatting templates 

etc. is listed in Table 4.1. of Chapter 4.  

As an example for a one specific profiling instrument, ESAs FRM4Radar radar network as a 

testbed for a path towards Cloud Radar Fiducial reference measurements (FRM) is mentioned 

in the following. Some QC methods were tested but still following challenges and gaps are 

identified within the project: 

● More hands-on training needed, 

● Defining common measurement setups and strategies.  

● Common data processing following the same QA/QC routines. 

By this, measurement gaps and wrong data acquisition can be minimized. 

The FRM4Radar project shows that a homogenization of cloud radar data is possible, but 

coordinated effort and work is needed which also counts for other instruments and respective 

networks.  

9.1.4. Validation of Level 1 data with ground-based systems 

Guidance for validation of L1 data has been tackled in Chapter 5 for aerosol products and 

Chapter 6 for cloud and precipitation products.  

For the evaluation of the Level 1 products, specific assumptions that introduce additional 

uncertainties in the validation exercise have to be considered, in terms of the differences that 

may exist between the satellite profiles and the reference instrument in the operation principle 

(e.g. HSRL, Elastic, Raman for lidar), the viewing angle and field-of-view, the sampling 

resolution, and the signal-to-noise ratio. An approach to account for these assumptions is the 

development of simulator tools which use the data from the reference instrument to 

simulate the L1 products that would be obtained from the satellite based on its design. In the 

course of the writing, several tools have been developed to simplify validation approaches. 

Specifically, simulators to mimic space-born profiles of EarthCARE based on sophisticated 

ground-based observations have been developed and are currently under testing. 

Nevertheless, even though these tools are very helpful, they cannot account for all instances, 

like, e.g., exact multiple scattering calculation in case of lidar. Furthermore, the tools need to 

be instrument-specific adapted for each new spaceborne profiler. Thus, an open 

gap/challenge for the future but also historic satellite missions is the development of such tools 

https://galion.world/
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to facilitate the comparisons between the satellite and the reference instrument for the L1 

validation. 

9.1.5. Private satellite sector 

General aspect which is considered to be a challenge is the guidance on quality control for 

the private satellite sector, e.g., by using ACTRIS/ARM data for validation. This is currently 

not the case, as not private sector aerosol or cloud profiles are in space, but may become an 

issue soon. 

9.2. Aerosol profiling-related gaps and challenges 

9.2.1. Wavelength dependence of aerosol mixtures 

A good data set of optical properties at different wavelengths for specific, mostly pure, aerosol 

types is available (e.g. DeLiAn, (Floutsi et al., 2023)), but currently such information is not fully 

available for aerosol mixtures, which, however, are frequently observed in nature. 

Furthermore, the optical properties do of course depend on the mixing state, which is usually 

not fully known. One approach for future studies could be to calculate optical properties for 

specific aerosol mixture based on mixing rules and mixing state out of optical properties 

from pure types and then compare these values to existing high quality observations at 

multiple wavelengths, e.g. ACTRIS, LALINET or AD-NET. If satisfying results are achieved, a 

data homogenization could be envisaged for aerosol mixtures which will help validation 

approaches but also climatological studies.   

9.2.2. Optical properties of European background / pollution aerosol 

So far, a full set of optical properties of European background conditions or moderate pollution 

is rare. The reason is that the aerosol amount is low and mostly confined to the first kilometers 

for which many ground-based lidars have overlap problems. Nevertheless, spaceborne 

profiles do more frequently sense in remote areas and are able to take profiles close to the 

ground. Therefore, studies using historic and novel data sets covering the first kilometers of 

the atmosphere with backscatter, extinction (Raman or HSRL), and depolarization 

measurements to derive background properties (e.g. ACTRIS dataset) should be 

envisaged. 

9.2.3. Smoke identification and/or separation 

Biomass-burning smoke is difficult to characterize and to classify because of changing 

properties depending on origin, processing during transport, location in the atmosphere 

(troposphere vs stratosphere). Furthermore, measured optical properties are difficult to 

differentiate from the optical properties of pollution aerosol. Thus, efforts shall be done to find 

suitable measures to differentiate smoke from pollution aerosol. This could lead to proposals 

for new sub-categories of smoke. 

9.2.4. Impact of dried marine aerosol  

The presence of cubic-like marine aerosol particles under dry conditions was shown, e.g., by 

(Haarig et al., 2017). However, the frequency of occurrence, the vertical distribution (thin 
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layers only or entire marine PBL), and the related radiative impact of dry marine aerosol is 

unknown. Therefore, it is hard to estimate the effect of misclassification as a dusty-marine 

mixture. One possible way of addressing this issue, would be to use several coastal sites 

with continuous ground-based lidar observations to estimate the frequency of occurrence (per 

year) or to investigate lidar observation on research vessels (e.g., (Bohlmann et al., 2018)). 

However, space-borne observations may lack the required vertical resolution and thus might 

be simply “biased”, although they can be used on statistical basis in regions with only marine 

aerosol like in the Southern Ocean (Thomas et al., 2022). Studies shall be performed by using 

radiative transfer calculations to estimate the impact of even thin layers of dry marine aerosol. 

9.2.5. Brown Carbon 

“Brown carbon” (light-absorbing organic carbon) has attracted interest as a possible cause of 

climate change. This class of organic carbon, known for its light brownish color, absorbs 

strongly in the ultraviolet wavelength range and less significantly in the visible. But so far 

it is unclear if it is possible to measure and separate brown carbon from black carbon. BrC is 

emitted by primary combustion processes of fossil fuels and mostly biomass/biofuel burning 

but can also be formed as a secondary organic aerosol (SOA) by-product, through a series of 

photochemical reactions. Global modeling studies have unveiled that BrC-related light 

absorption and radiative forcing may range from 27% to 70% of that attributed to BC, as 

documented in the literature. Nevertheless, ongoing scientific debates persist regarding BrC 

characteristics due to limited BrC-related measurements, coupled with its highly variable 

chemical composition and optical properties, resulting in significant uncertainties in assessing 

radiative forcing. 

Hence, elucidating the optical properties and sources of carbonaceous aerosols, particularly 

those of BrC, holds paramount importance. The EC mission can be used, in principle, to 

retrieve the vertical distribution of aerosol/cloud optical properties to be considered as 

important sources of uncertainties in estimation of aerosol radiative effect on climate.  

In-situ observations of aerosol vertical distribution using aircraft or UAV are tedious and 

expensive methods, the use of active remote sensing techniques. Lidar techniques 

complemented with satellite and ground-based passive remote sensors are widely used to 

characterize the 3-D structures of atmospheric brown clouds (ABCs) over many regions of the 

world, with particular interest in regions close to areas where biomass burning activities are 

intense, such as the Amazon Basin and neighboring areas where agricultural development 

are occurring and in expansion. 

The word “ABCs” is used to define the regional scale pollution plumes mainly containing the 

different types of aerosols from both anthropogenic and natural origins such as mineral dust, 

smoke, and urban-industrial pollution plumes in the atmosphere. A bird-eye-view of the earth 

can identify various ABCs’ hotspots over the globe.  

EC will provide a set of optical data which may be able to sub-categorize Carbon based 

aerosol and thus enabling to reduce uncertainties with respect to validation but finally also to 

radiative effect estimations of such aerosols. It should be considered to merge this issue to 

topic 9.2.3 in the next release of this document. 
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9.2.6. 355 nm + 1064 nm depolarization observations 

Even though related to general aspects of data set harmonization (see 9.1.3), especially the 

data set of depolarization ratio at 1064 nm is rare and discrepancies have been identified for 

collocated measurements. Thus, specific efforts shall be envisaged to clarify this issue with 

historic data sets (e.g., JATAC) but also to improve calibration for future measurements. A 

dedicated comparison would also be well received. 

Similar accounts for depolarization at 355 nm, even though the data set is much richer and 

efforts to upgrade lidars for EarthCARE validation have been done recently. Nevertheless, the 

majority of global lidar observations with depolarization capabilities is still performed at 532 

nm only.  

9.3. Cloud and precipitation profiling related gaps and challenges 

9.3.1. Ice cloud retrievals in rain cases 

Currently, quantitative ground-based remote sensing observations of ice clouds are limited to 

non-rain cases. In the current ACTRIS cloudnet processing, cases of presence of ice above 

rain and melting-layer are identified and flagged. For such cases, no ice microphysical 

retrievals are performed, thus limiting ground-based ice cloud observations and Cal/Val 

capabilities to non-rain cases. A way forward would be to use data collected at several ACTRIS 

cloud profiling stations to develop and test radome, rain and melting layer attenuation 

correction algorithms. 

For example: 

 to use cloud radar observations in combination with disdrometers to estimate rain and 

radome attenuation, 

 to use multi-frequency radar observations (Li & Moisseev, 2020) to improve 

parametrization of melting layer attenuation, 

 to use direct overpasses of CPR or coordinated aircraft observations to evaluate the 

attenuation of ground-based radar systems under different meteorological/precipitation 

conditions. Differences between ground-based and CPR (or aircraft-borne radar) 

reflectivities at cloud top are thus caused due to attenuation of the ground-based radar 

signals. Given appropriate meteorological conditions, this approach can potentially be 

extended toward the derivation of profiles of the signal extinction. 

9.3.2. Validation of CPR Doppler velocity and fall velocity products 

Since EarthCARE is the first Doppler radar in space, there are no methods previously 

developed for the validation of spaceborne Doppler radar observations. Additionally, the air 

motion contribution to the observed Doppler velocity must be accounted for when employing 

microphysical retrievals with a terminal fall speed term (Radenz et al., 2018). Furthermore, 

EarthCARE CPR pulse repetition frequency depends on latitude. Since the pulse repetition 

frequency affects Doppler velocity observations, validation of Doppler observations should be 

performed at different latitudes.  

Suggested approach are: 
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 to develop a method to derive terminal fall velocities of raindrops from dual-polarization 

weather radar observations, 

 to apply the extended velocity–azimuth display method to radar Doppler 

measurements to estimate horizontal wind divergence on large domains from which 

the air velocity profile can be estimated by solving the continuity equation, 

 to derive a method for a statistical comparison of CPR and ground-based observations 

of cloud velocities, i.e. by using reflectivity-velocity relations, tuned to specific cloud 

types and geographical locations, 

 to additionally use airborne Doppler measurements (e.g. on airborne platforms).  

9.3.3. Ice microphysics 

There is still lacking knowledge on ice microphysics (number-size distribution, shape 

distribution, orientation), and their connection to scattering properties of the ice particles, which 

constitute one of the bigger uncertainties in cloud microphysical retrievals.  

Thus, it is proposed to utilize observations from measurement campaigns that combine remote 

sensing and aircraft observations, or coordinated ground-based remote sensing and in situ 

precipitation observations of snowfall in geographical regions where it occurs to reduce 

uncertainties in the retrieval algorithms. More and more cloud radar sites perform 

measurements with more than one wavelength. Developing or implementing a dual-

wavelength retrieval for ice and snow microphysics in some networks such as ACTRIS might 

be possible. The implementation has to include common QA/QC standard and data 

processing routines for the sensors.  

9.3.4. Validation of snowfall product  

Quantitative estimation of snowfall intensity from radar observations is still rather uncertain 

(von Lerber et al., 2017). The uncertainty of the estimate appears to be a function of radar 

wavelength (Schoger et al., 2021). Because of this, there is a need for datasets that can be 

used for validation of the snowfall product, which minimizes uncertainties and takes into 

account wavelength dependence. E.g., use weather radar observations in combination with 

ground-based observations for validation of rainfall and snowfall products (i.e. (von Lerber et 

al., 2018)).  

9.3.5. Attenuation in embedded supercooled liquid layers 

Supercooled liquid cloud layers can cause significant radar signal attenuation at mm-

wavelengths. The difference in observation geometries between satellite and ground-based 

remote sensors results in different attenuation profiles. Identification of supercooled liquid 

layers embedded in ice clouds, which can be identified by a collocated lidar, are limited to the 

first layer encountered in the particular viewing geometry. Therefore, new approaches like 

machine learning based methods for identification of embedded supercooled liquid cloud 

layers (Schimmel et al., 2022) shall be used for validation.  

As a first step, the methodology should be applied, trained, tested and validated at several 

cloud profiling stations. At the same stations, the use of multi-frequency cloud radar Doppler 

spectral observations to estimate the attenuation caused by the embedded supercooled liquid 

cloud layers should be applied. 
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9.3.6. Strategies for evaluating Doppler velocity measurements in convection  

The coming decade will feature several new space-borne missions including the ESA-JAXA 

Earth Cloud Aerosol and Radiation Explorer (EarthCARE), the NASA-Investigation of 

Convective Updrafts (INCUS) and the NASA-Atmosphere Observing System (AOS) that 

specifically focuses on improving our understanding of convective processes, evolution, and 

outcomes (Dolan et al., 2023; Illingworth et al., 2015; Kollias et al., 2022). Despite being 

deployed hundreds of kilometers above the Earth’s surface, these planned missions are 

expected to offer unprecedented measurement capabilities that in many ways will be superior 

to those available today from suborbital (airborne and surface-based) platforms.  

The systematic collection of observations of convective motion from the ground remains 

challenging. The most direct way for measuring convective vertical air motions is aircraft in-

situ sampling. However, practical hazards and operational costs have resulted in a valuable, 

but limited, dataset (e.g. (LeMone & Zipser, 1980)). The use of airborne Doppler radar systems 

that fly over the top of the convective clouds has eliminated some of the hazards (Heymsfield 

et al., 2010) but there are only a few aircraft with high altitude capabilities.  

Profiling Doppler radar systems (Kumar et al., 2015; Wang et al., 2020) have been also useful 

in collecting observations of convective vertical air motions. The profiling radars provide a high 

degree of detail of convective clouds in time and height, and can sample even the most intense 

convective cores. However, profiling radars potentially have a limited role for direct (rather 

than statistical) cloud model constraint due to their narrow view of these large, three-

dimensional systems. The use of Doppler radar networks and multi-Doppler radar techniques 

(North et al., 2017; Potvin et al., 2012) can provide a large sampling area, however, recent 

studies have highlighted a number of uncertainties and shortcomings of traditional multi-

Doppler radar retrievals of convective vertical air motion (Oue et al., 2019).  

As a result, and despite their importance, there are considerable measurement gaps in 

convective updrafts. These gaps limit our ability to constrain these important aspects of model 

parameterization and verification. Observations of the number and magnitude of updrafts 

contributing to vertical transport in deep convection are not available over the tropical oceans 

and are rarely available over land. These gaps will not only hinder our efforts to understand 

convective storms but will also challenge our ability to validate the upcoming, planned 

spaceborne missions (EarthCARE, INCUS and AOS). In a recent study, (Dolan et al., 2023) 

demonstrated the ability to use agile adaptive radar observations to track convective cores 

and estimate the convective vertical air motion (Lamer et al., 2023). In the future, surface 

observatories should deploy agile adaptive radar strategies along with profiling radar 

systems to provide adequate samples of convective motions to evaluate satellite mission and 

numerical models. 

9.3.7. Accounting for radiatively-important liquid clouds not detected by 

spaceborne lidars 

This section will be completed in the next issue of this document. Main topics are clouds not 

detected by spaceborne lidar, e.g.: 

 Deep ice clouds: embedded mixed- phase layers 
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 Layered cloud scenes 

 Warm liquid clouds within cold rain 

Thus, one needs to discuss how observations from cloud profiling remote stations located in 

various climatological regions can be used to assess the impact of not resolved liquid-clouds. 

  



 

 

224 

 

List of acronyms 

ALADIN  Atmospheric Laser Doppler Instrument 

AOD                      Aerosol Optical Depth 

API   Application Programming Interface  

AROME                Applications of Research to Operations at MEsoscale 

ARPEGE              Action de Recherche Petite Echelle Grande Echelle 

ASCII   American Standard Code for Information Interchange 

AVDC    Aura Validation Data Centre 

CALIOP              Cloud-Aerosol Lidar with Orthogonal Polarisation 

CALIPSO              Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 

CAMS                    Copernicus Atmosphere Monitoring Service 

CF convention  Climate and Forecast metadata convention 

CFAD                    Contour Frequency by Altitude Diagram 

CloudSat                NASA’s cloud radar mission 

CPR                      Cloud Profiling Radar 

CRTM          Community Radiative Transfer Model 

CSV   Comma-separated value  

DISC                      Data Innovation Science Cluster 

DOI   Digital Object Identifier 

DPR                       Dual-frequency Precipitation Radar 

EarthCARE            Earth, Clouds, Aerosols and Radiation Explorer 

ECMWF                 European Centre for Medium Range Weather Forecasts 

EVDC   ESA Validation Data Center  

FAIR   Findability, Accessibility, Interoperability, and Reusability 

FG                         First Guess 

GEOMS  Generic Earth Observation Metadata Standard 

GMI                       GPM Microwave Imager 

GPM                      Global Precipitation Measurement mission 

HDF   Hierarchical Data Format 

HLOS                     Horizontal Line-Of-Sight 

IFS                         Integrated Forecasting System of ECMWF 

JMA                       Japan Meteorological Agency 

MODIS                   MODerate resolution Imaging Spectroradiometer 

NASA                     National Aeronautics and Space Administration 

NDACC  Network for Detection of Atmospheric Composition Change 

netCDF  Network Common Data Form 

NWP                      Numerical Weather Prediction 

PID   Persistent Identifier 

RTTOV                   Radiative Transfer for TOVS 

RTTOV-SCATT      RTTOV multi-scattering scattering package 

TIROS                   Television InfraRed Observation Satellite 

TOVS                     TIROS Operational Vertical Sounder 

URL   Uniform Resource Locator 

UTC                       Universal Time Coordinated 
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XML   Extensible Markup Language 
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