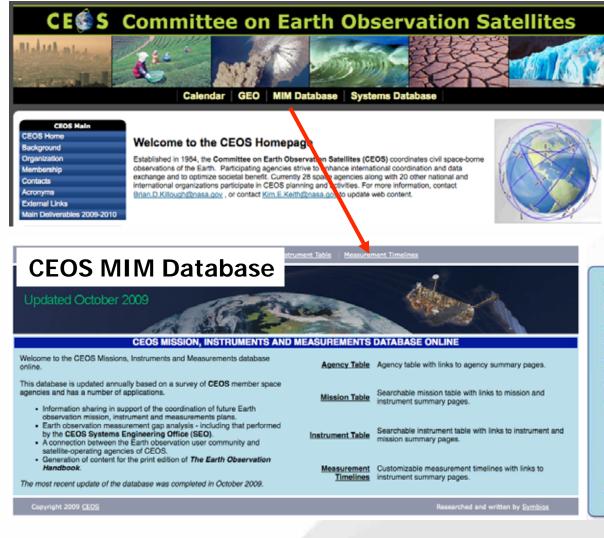
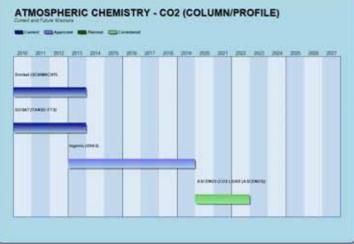

An Atmospheric CO₂ Gap Analysis for CEOS

CEOS SIT-25 Meeting Tokyo, Japan April 12-15, 2010

Brian Killough CEOS Systems Engineering Office (SEO)



Starting Point... the CEOS Databases


www.ceos.org

Search for CEOS missions that measure CO₂ ... you will find only 4 on the "official" agency MIM list. We know there are many more ...

Further web searches found valid CO₂ data products produced by 19 CEOS missions.

General Mission Timeline Results

Mission	Instrument	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
ENVISAT	SCIAMACHY	-																	
SCISAT-1	ACE-FTS																		
Aura	TES										\mathbf{b}		DC	0	22				
Aqua	AIRS								- NO GAPS ???										
Metop-A	IASI																		
GOSAT	TANSO-FTS																		
Metop-B	IASI						1												
NPOESS-1	CrIS																		
FY-3C	IRAS			1							а. — а								
FY-3D	IRAS																		
OCO-2	OCO Spec				1		-	1			°—°			· _ ·					
FY-3E	IRAS	1						î î						1					
FY-3F	IRAS	1			90 1						°°			22					
Metop-C	IASI				9														
PREMIER	IMIPAS	1									1								
FY-3G	IRAS	1			9									1			1 1 1		
NPOESS-3	CrIS	1			2			°°						1					
ASCENDS	LAS													î—î					
NPOESS-4	CrIS													1					

- Timelines from the expanded mission list (above) **DO NOT** accurately reflect gaps.
- Gap analyses must consider instrument types (measurement approach), atmospheric layers, and detailed requirements (accuracy, spatial resolution, temporal resolution).
- Automation of the detailed gap analysis process using existing CEOS databases is not currently possible ... maybe in the future.

Next... Search the Systems Database for Requirements

www.ceos.org

aera Pugal Missilme Zostriveneste Mosaurerezeite Moslemente Missilar Treatinge Gay America's Tables. Thefailter (FAQ)

COS Missions:	Minute I.	Agencies		Lowest Co.	105
SAVE TABLE TO SEEN.	30 White Tree Dinameteral Transplant, Wheth Fort Space Record Litter	NIGA.	Contractor	200-01-01	
CUSOW2E VEW	ACE Accurd Douts and Ecolution Marian	TARGA	Crabel	2125-01-21	2123-01-01
	ACRIMENT Active Cavity Railemeter Instance Menter	nada.	Currently being Reet	1999-12-25	2011-09-30
	ADEOR Adapted Fart Chartery Saturde		Masor Gryan	1000-00-17	1407-00-00
	ACKICH Advanced Earth Closering Solelite	pARA Chill Stiff (separt) Stiff (separt) Stiff	Master brights	1040.08-17	1887-06-25
	ACEON Advanced Facts Classically Sociality	ANA Chill MT1 (Apper) H10 (Apper)	Useer organ	1046-00-17	1467-04-50
VIIW DEFAULT	ACEDS	JAKA Charles	Manuel and page	tem in 17	1001-00-00

Search for CO₂ measurement requirements from GCOS, EUMETSAT, and WMO.

Examples: Spatial resolution, vertical resolution, repeat cycle, accuracy, spectral resolution, atmospheric layers.

			-	Accurac	y (RMS)	Δx ((km)	Δz ((km)	Δt ((h)	5(h)	
	Param Type	Application	Source	thresh	break	thresh	break	thresh	break	thresh	break	thresh	break	
	Lower Troposphere	Climate	6008	2.00000	1.50000	500.00000	70.00000	2.00000	1.00000	12.00000	6.00000	1440.00000	480.00000	
	Lower Troposphere	Composition and climate	EUM	5.00000	3.00000	250.00000	50.00000	5.00000	2.00000	24.00000	12.00000	6.00000	0.50000	
	Lower Troposphere	Atmospheric chemistry	WMO	5.00000	3.00000	500.00000	150.00000	4.00000	2.00000	24.00000	12.00000	168.00000	96.00000	
	Higher Troposphere	Climate	6008	2.00000	1.50000	250.00000	100.00000	2.00000	1.50000	6.00000	4.00000	1440.00000	480.00000	
,	Higher Troposphere	Composition and climate	E								0000	6.00000	0.50000	
				Re	2 N	ui	rei	\mathbf{m}	ρr	2TC				
L	Lower Stratosphere	Climate	GC		- 4	мп				IL S	000	4380.00000	1680.00000	
-	Lower Stratosphere	Composition and climate	EUM	5.00000	3.00000	250.00000	100.00000	3.00000	2.00000	168.00000	24.00000	6.00000	0.50000	
U	pper Stratosphere & Mesosphere	Climate	GCOS	2.00000	1.50000	500.00000	350.00000	4.00000	3.00000	6.00000	4.00000	4380.00000	1680.00000	
U	pper Stratosphere & Mesosphere	Composition and climate	EUM	10.00000	7.00000	500.00000	200.00000	5.00000	2.00000	168.00000	24.00000	6.00000	0.50000	
	At Cloud Top	Climate	6008	2.00000	1.50000	500.00000	100.00000	NA	NA	6.00000	4.00000	4380.00000	1680.00000	
	At Cloud Top	Composition and climate	EUM	1.00000	0.70000	50.00000	25.00000	NA	NA	12.00000	6.00000	6.00000	0.50000	

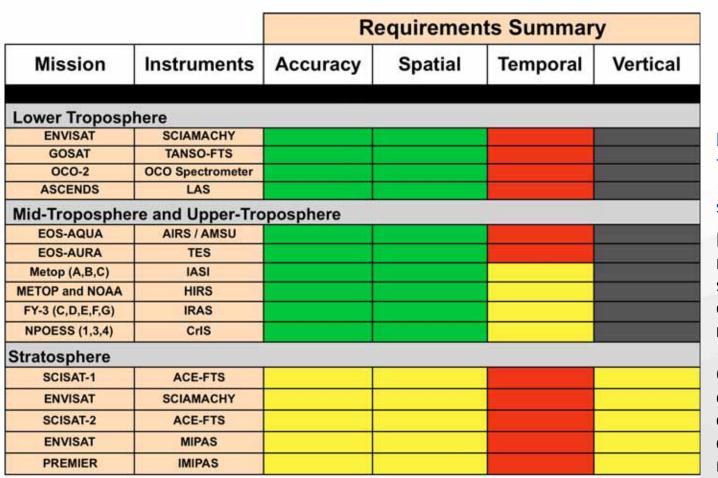
What are the Detailed Requirements?

Profile or Column			Accuracy (ppmv)			Z	∆x (km)			∆z (km)		Repeat Cycle (h)		
Atmosphere Layer	Application	Source	thresh	break	obj	thresh	break	obj	thresh	break	obj	thresh	break	obj
CO ₂ Profile	Chemistry	WMO	19	12	8	500	150	50	4	2	1	24	12	6
Lower Troposphere Weighted Columns	Climate	GCOS	8	5	4	500	70	10	2	1	0.5	12	6	3
	Composition & Climate	EUMETSAT	19	12	8	250	50	10	5	2	0.5	24	12	6
		41												
CO ₂ Profile	Climate	GCOS	8	5	4	250	100	50	2	1.5	1	6	4	3
Higher Troposphere Weighted Columns	Composition & Climate	EUMETSAT	19	12	8	250	50	10	5	2	0.5	24	12	6
CO ₂ Profile	Climate	GCOS	8	5	4	500	350	250	4	2	1	6	4	3
Lower Stratosphere	Composition & Climate	EUMETSAT	19	12	8	250	100	50	3	2	1	168	24	12

 GCOS Climate requirements are the most restrictive. For example, objectives of 4-ppm accuracy, 10-km spatial resolution and 3-hour repeat cycle are required in the lower troposphere.

Source: WMO GOS Dossier Volume-5 compiled for WMO by B. Bizzarri.

What are the Detailed Mission Capabilities ?



Detailed mission capability information is not currently available in the MIM or Systems Databases so this step requires extensive web searches. Hopefully, in the future this level of detail will exist in the databases so this process can be automated.

be automateu.			Resolutions									
Mission	Instrument	Spatial Sample ∆x (km)	Spatial Swath (km)	Vertical ∆z (km)	Temporal Repeat Cycle ∆t (hrs/days)	Total Troposphere Column						
Nadir Absorption,	Total Troposphere C	olumns wei	ghted to	the Low	er Troposphere	e						
ENVISAT	SCIAMACHY	30 x 60	960		840 (35 days)	2% (8 ppm)						
GOSAT	TANSO-FTS	10.5	790	1	72 (3 days)	1% (4 ppm)						
000	OCO Spectrometer	1.3 x 2.25	10	1	384 (16 days)	0.25% (1 ppm)						
ASCENDS	LAS	TBD	TBD		384 (16 days)	0.25% (1 ppm)						
EOS-AQUA	AIRS / AMSU	13	1620		384 (16 days)	0.4% (1.5 ppm)						
	tal Troposphere Co	lumns weigh		e Mid-Tr								
			50		1 1 1							
EOS-AURA	TES	0.5 x 5.0	1		384 (16 days)	0.3% (1.3 ppm)						
Metop (A,B,C)	IASI	12	2052	-	12 hours	0.5% (2 ppm)						
METOP and NOAA	HIRS	10	2240		12 hours	1% (4 ppm)						
FY-3 (C,D,E,F,G)	IRAS	17	952		12 hours	0.5% (2 ppm)						
NPOESS (1,3,4)	CrIS	14	2200	1	12 hours	0.5% (2 ppm)						
Limb Viewing, Stra	tosphere Profiles											
SCISAT-1	ACE-FTS	500		3	annual	2.5% (10 ppm)						
ENVISAT		960		3	840 (35 days)	1% (4 ppm)						
In the cost of the last	SCIAMACHY	900										
SCISAT-2	SCIAMACHY ACE-FTS	500		3	annual	2.5% (10 ppm)						
SCISAT-2 ENVISAT	The second second second			3	annual 840 (35 days)	2.5% (10 ppm) 0.7% (3 ppm)						

7

Which Missions Meet the Requirements ?

Largest issue is temporal sampling (repeat cycle) near the surface ...

Limited LEO missions do not allow adequate sampling to achieve desired threshold requirement of 24-hr (one-day) repeat cycle. GOSAT is best at 3-days due to its wide (790-km) crosstrack scanning capability, but it does not make constant measurements across the swath width.

Meets Some or All Objectives (maximum) Meets Some or All Threshold Requirements (minimum) DOES NOT MEET REQUIREMENTS

Detailed Timeline Analysis

Mission		09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Lower Troposphere																		
ENVISAT							· · · ·											
GOSAT																		
OCO-2											GA	Ρ]						
ASCENDS																		
Mid-Troposphere	an	d U	lpp	er-1	Fro	oos	phe	ere		6 								
EOS-AQUA																		
EOS-AURA																		
Metop (A,B,C)																		
METOP and NOAA		5	5	5	5	4	4	3	3	2								
FY-3 (C,D,E,F,G)							2	2	3	2	3	2	3	2	2			
NPOESS (1,3,4)											2	2	3	2	2	2	2	2
Stratosphere								-										2 2
SCISAT-1																		
ENVISAT																		
SCISAT-2																		
PREMIER																		

Detailed timeline analysis takes into consideration the instrument type and atmospheric layer.

Largest issue is the potential time gap beyond OCO-2.

It is unlikely that ENVISAT and GOSAT will last beyond 2015. OCO-2 has fuel for 8-years (till 2020). ASCENDS is uncertain for a 2020 launch and may be later.

OCO-2 may be the only near-surface CO_2 mission in 2015 with limited repeat cycle (16 days) and spatial coverage (swath width 10-km).

Gap Analysis Results

- Atmospheric CO₂ measurements in the lower troposphere (near surface), critical for measuring sources and sinks, have a time gap beyond 2016.
 – see TIMELINE ANALYSIS
- Temporal sampling (repeat cycle) requirements are not met for all lower troposphere missions and most mid-troposphere missions. GCOS threshold requirements are 12 hours (lower trop) and 6 hours (middle trop), which requires multiple coordinated LEO satellites with wide swath capabilities.
 - see **REQUIREMENTS ANALYSIS**

- Accuracy requirements (< 4-ppm) are met for all middle-troposphere instruments and most lower-troposphere instruments (exception is SCIAMACHY). Most future low-troposphere instruments expect ~1-ppm accuracy, which will significantly improve our knowledge of sources and sinks.
 - see REQUIREMENTS ANALYSIS

Lessons Learned and the Future

Lessons Learned

• Future gap analyses efforts will require detailed assessments of **timelines and requirements** to reach valid conclusions. Online automation of the gap analysis process is not yet possible.

Future Work

 Capabilities need to be updated in MIM database. Agencies need to provide more accurate and complete data for the 2010 MIM data request.

- Plan to review existing requirements and add more space-based measurement requirements for CO₂ and other climate ECVs.
- Consider adding data availability or quality indicators to instrument-measurement combinations.
- Conduct a CH₄ gap analysis. Significant discussion at the recent ACC-5 meeting included several new mission concepts for Methane (CH₄).
- Conduct a coverage analysis for CO₂ to determine the relationship between repeat cycle, swath width and the number of satellites to support solution options for the CO₂ measurement gap.

The full CO₂ Gap Analysis report is available on the CEOS website.

Backup Charts

Near-term Potential Solutions

- Extend existing missions: Utilize the full mission capacity of ENVISAT and GOSAT to make total column CO₂ measurements in the lower troposphere at least until OCO-2 is launched.
- Future mission lifetimes: Consider designing future space missions with more capacity for extended operations. This "research to operations" concept may extend science missions from 3-5 years to beyond 10 years.
- Adjust new missions: Optimize time overlap of current and future missions by adjusting launch schedules or adjusting orbits to maximize coverage or sampling.
- Add new missions: Consider new missions focused on near-surface (lower troposphere) atmospheric CO₂ measurements with a direct benefit to studies of sources and sinks. This requires absorption spectrometers or lasers focused in the near-IR.

For example, a JAXA GOSAT follow-on, ESA Earth Explorer CarbonSat 2018 concept, NASA OCO-3 instrument (Mission of Opportunity), Mini-Carb (CNES).

Are there others ???

Long-term Potential Solution: Constellation Concept

- A constellation of CEOS satellites dedicated to CO₂, requires careful consideration of requirements and must be coordinated with in-situ and ground resources.
- Repeat cycle must be considered along with accuracy (ppm), spatial sampling (single sample) and swath coverage.

Example:

GOSAT: 3-day repeat, 4-ppm accuracy, 10.5-km/sample, 790-km swath
* High repeat cycle achieved with large swath width.
OCO-2: 16-day repeat, 1-ppm accuracy, 1.3-km/sample, 10-km swath
* Narrow swath width and sample size to optimize cloud-free scenes.

• Other new mission concepts are being considered internationally, but it is uncertain whether a single satellite, or a constellation of coordinated satellites can meet the full set of space-based requirements.

