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Motivation

• There are many groups around the world using 
atmospheric data to glean source/sink information using 
different techniques and different models

• The source/sink estimation problem is ill-posed – inherent 
uncertainty in the inference arising from 
– Regularization constraints (“prior information”)
– Methods
– Assumptions about data (precision, bias, error 

correlations)
– Meteorological driving fields (“transport”)

• We can use ensembles to try to get a handle on the 
trustworthiness of our estimates of sources/sinks

• Past studies (i.e. Transcom) showed that in situ data 
constrain estimates that are highly sensitive to 
assumptions outside of North America and Europe
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The OCO-2 Flux Model Intercomparison Project

OCO-2 v7/v9 Standard
 10s “Good” Data
Standardized errors
Separate by 

mode/surface type

Meaningful Spread
 Transport + Prior + Prior 

Uncert
 (Not from obs handling)

Inversion Models
Different 

transport
Different initial 

conditions
Different bio and 

ocean priors
Different prior 

uncertainties
Different DA 

Methods
Standardized 

fossil fuel

Also, standardized 
ObsPack NRT in situ

data from Andy 
Jacobson and Ken 
Schuldt at NOAA

(Updated for Round 2)

Baseline In Situ Results
 Ties to previous 

literature (Transcom, 
etc)

Gives useful 
comparisons in well 
observed regions

https://www.esrl.noaa.gov/gmd/ccgg/OCO2_v9mip/index.php

https://www.esrl.noaa.gov/gmd/ccgg/OCO2_v9mip/index.php
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• GEOS-Chem
• PCTM

• LMDZ 
• TM5

Inversion 
Models

Different transport
Different initial 

conditions
Different bio and

ocean priors
Different prior 

uncertainties
Different DA 

Methods
Standardized 

fossil fuel (ODIAC 
with Nassar
temporal scaling)

• CASA-GFED
• BEAS
• CT Clim

• SiB-CASA
• SiB4
• ORCHIDEE

• 4DVar
• Ensemble 

Kalman Filter
• Ensemble 

Kalman

Smoother
• Bayesian 

Synthesis
• Geostatistical 

Inverse Modeling

• CT Clim
• Takahashi
• CESM-BEC

• Landschutzer et 
al

• ECCO2-Darwin

Ensemble Spread Ingredients
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MIPV9 Gridded Annual Flux and 
Uncertainty

• All inverse estimates are 
constrained by the same 
dataset: OCO-2 land data

• “Typical” annual non-fossil 
flux 

• NH Sink
• Tropical source

• Uncertainty = standard 
error of the mean

• Generally follows the 
regions of largest flux

• Assumes no 
correlation between 
ensemble members
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• Different models (colors) respond differently to the 
OCO-2 data – particularly in data sparse time periods 
such as the NH winter

• Seasonal differences have a strong impact on annual 
differences, meaning that our annual uncertainty 
budget is controlled by what the models do when the 
data is sparse!  

Inferred Flux at Regional Scales
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• There is no clear linkage between prior fluxes and the inferred fluxes

– Example: OU is a relatively weak sink in the prior, but the largest sink in the inferred 
flux for North America, and vice versa for Baker in North Asia

• The uncertainty on the prior flux is another critical variable that is not specified in a 
common way different models (and so is hard to compare)

Prior Dependence?
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• Estimation of sources and sinks is highly sensitive to 

– How quickly the model moves air out of the atmospheric boundary layer

– How quickly the model mixes the atmosphere in the latitudinal direction

• These time scales (together with the prior uncertainty) determine where the signal from 
the observations ultimately is used to update the fluxes

• The bottom right figure shows the persistent seasonal differences between TM5 and 
GEOS-Chem using the same fluxes and initial conditions.  They seem to diverge at the 
equator and the NH “storm track”

Atmospheric Transport Sensitivity
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• These results are separated by 
driving met reanalysis

• We see that the magnitude of the 
seasonal cycle depends strongly on 
the driving atmospheric fields –
“standard error of the mean” may 
not be appropriate as uncertainty

• A key limiting factor for reducing 
uncertainty is improving 
atmospheric transport

Transport-dependent Results
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Discussion

• Ensembles are necessary to quantify the trustworthiness of flux 
estimates that are driven by atmospheric data

• Former paradigm: sparse, high quality in situ data
• Modern paradigm: less precise satellite data with global coverage, 

likely with residual regional biases
• Perennial issues

– Atmospheric transport (effects depend on the dataset used!)
– Prior fluxes and prior uncertainties
– Methods used (are we using the right techniques to handle these 

data)
• BUT with all of these challenges, we are still learning new things about 

the carbon cycle (e.g. Liu et al, 2017; Palmer et al, 2019; Crowell et al, 
2019; Yin et al, 2020; ….) 



Thanks!
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