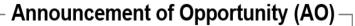
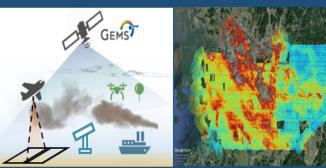


GEMS validation activities



GEMS validation activities


to harness professional knowledge and expertise of experienced scientists to perform validation and accuracy assessment of data and products of GEMS through independent data analysis

- 1. Evaluation of Level 2 retrieval algorithms
- 2. Assessment of regional errors and their sources
- 3. Comparison with other space-borne instruments
- 4. Comparison with ground-based and/or airborne measurements
- Comparison of diurnal variations of each atmospheric species between GEMS measurements and modeling results
- 6. Assessment of the impact of auxiliary data used in product retrieval
- 7. Analysis of major error sources and error budget
- 8. Assessment of heterogeneous geographic effects

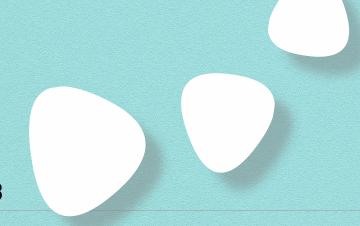
International collaboration

GEMS AO information can be obtained from https://nesc.nier.go.kr

Help desk: Dr. Changsuk Lee, leecs00@korea.kr

Contents

01 GMAP & SIJAQ


- * SIJAQ: Satellite Integrated Joint monitoring of Air Quality
- * GMAP: GEMS Map of Air Pollution

02 PAN

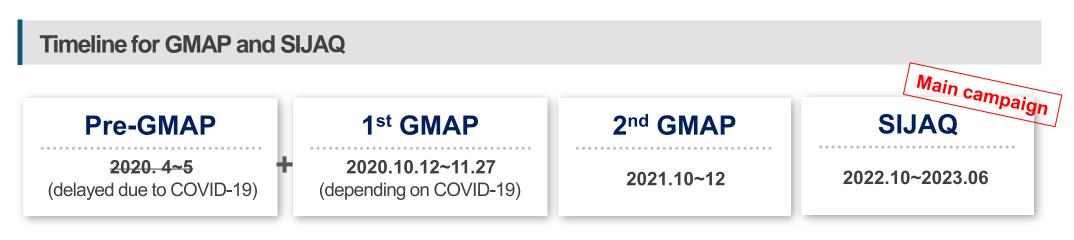
* Pandora Asia Network

03 AO

* Announcement of opportunity

01 GMAP & SIJAQ

1.1. introduction of GMAP & SIJAQ



GMAP: GEMS Map of Air Pollution

SIJAQ: Satellite Integrated Joint monitoring of Air Quality

Background

- Succession of KORUS-AQ (2016.5~6)
 - → Further analysis on high-concentration air pollution in winter is required
 - * KORUS-AQ: the Korea-United States Air Quality Study
- Need for validation and evaluation of the Geostationary Environment Monitoring Spectrometer (GEMS), which is world's first Geostationary Earth Orbit (GEO) environmental satellite

1.1 introduction of GMAP & SIJAQ

SIJAQ main tasks

- 1. Investigating unknown mechanism of secondary PM formation in winter
 - Observation based in-depth analysis of long range transport (LRT)
 - Modeling based impact assessment of emission change, LRT, chemical mechanism
 - Synthesis analysis
- 2. Mapping air pollution in Asia and large point source (LPS) characterization
 - Spatial and temporal variation of air pollutants in GEMS FOV
 - Measurement of air pollutants by ground supersite
 - Air pollution forecasting using CTM (CMAQ, WRF-Chem, Cams, Geos-Chem, etc.)
- 3. Cal/Val of GEMS products
 - GEMS algorithm and products, validation
 - Establishment of ground remote sensing monitoring network
 - Airborne remote sensing instrument development and application

1.1 introduction of GMAP & SIJAQ

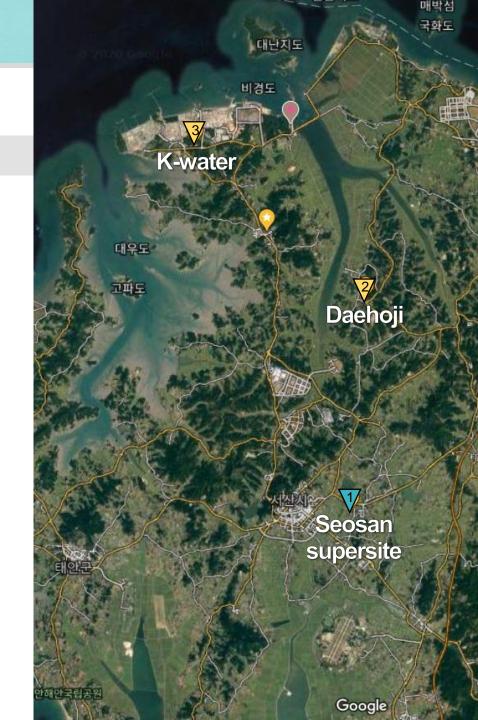
Plan for SIJAQ and GMAP

Plan for 1st GMAP (2020)

Period

12 Oct.~27 Nov. (tentative)

Place


Seosan supersite

Participating organization

- Korea: NIER, SNU, YSU, UNIST, PKNU
- Other countries:

NASA, Univ. Bremen, MPI-C, BIRA, KNMI, Chiba Univ., JAMSTEC, etc.

Objective of 1st GMAP (2020)

Validation of GEMS measurement

- GEMS L2 products (NO2, SO2, HCHO, O3, PM) are validated by ground-based FRM and airborne simulator (e.g., Pandora, GCAS)
 - **% GCAS : Geo-CAPE Airborne Simulator**
- Inhomogeneity of trace gases within a pixel will be investigated (Pandora horizontal representativeness)

Impact of Large Point Source in Daesan complex on local air quality

- Chemical and physical evolution of large plume from Daesan petrochemical complex and Hyundai steel manufacture is monitored by remote sensing data and in-situ chemical data
- All measurement data are compared to each other and analyzed with the help of CTM

Basic investigation of high concentration fine dust in winter

Participating Instruments

- Instruments(operator):
 PANDORA(NIER, NASA, SNU, UNIST, YSU, PNU), Sun photometer(YSU),
 MAX-DOAS (MPIC, Bremen Univ., BIRA)
- Measuring Item:
 SCD(SO2, NO2, O3, HCHO), AOD
 Vertical profile (SO2, NO2, HCHO, aerosol)

Ground-based Fiducial Reference Measurement

- Instruments(operator):
 Ceilometer (YSU), Micro Pulse Lidar(PKNU),
 Radiosonde (lease), 10-m AWS tower (lease)
- Measuring Item:
 PBL Height, Cloud base height, Aerosol vertical distribution, T, Wind, RH, Pressure

Auxiliary

- NASA: Geo-CAPE Airborne Simulator (GCAS)
- Measuring Item : VCD (SO2, NO2, HCHO)

Airborne Simulator

- Instruments(operator):
 NO2, CO, NH3, SO2, PM2.5 monitors,
 Ambient Ion Monitor, carbon aerosol analyzer
- Measuring Item:
 NO2, CO, NH3, SO2, PM2.5 mass, PM2.5 ionic components, EC/OC

In-situ chemical

Schedule of 1st GMAP (tentative)

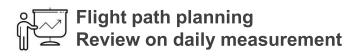
October 2020

November 2020

Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	М	on	Ti	ле	W	ed	Tl	าน	F	ri	Sat
27	28	29	30	1	2	3	1		ening vent	3	+	4	+	5	+	6	+	7
			Kore	an Thank	sgiving H	oliday				ľ	Main	Cam	paig	n Ph	ase			
4	5	6	7	8	9	10	8	9	+	10	+	11	+	12	+	13	+	14
					Hangul Day					N	/lain	Cam	paigı	ր Ph	ase			
11	12 Site opening	13	14	15	16	17	15	16	+	17	+	18	+	19	+	20	+	21
		Inst	allation a	nd calibra	tion					N	/lain	Cam	paigı	ր Ph	ase			
18	19 Start	20	21	22	23	24	22	23	+	24	+	25	+	26		27 Fir ata m	nal neetin	28 g
		Inter-c	ompariso	n at Seos	san					N	/lain	Cam	paigı	n Ph	ase			
25	26	27	28	29	30	31	29	30										
	Relocation	on, install	ation and	calibration	on													

Period

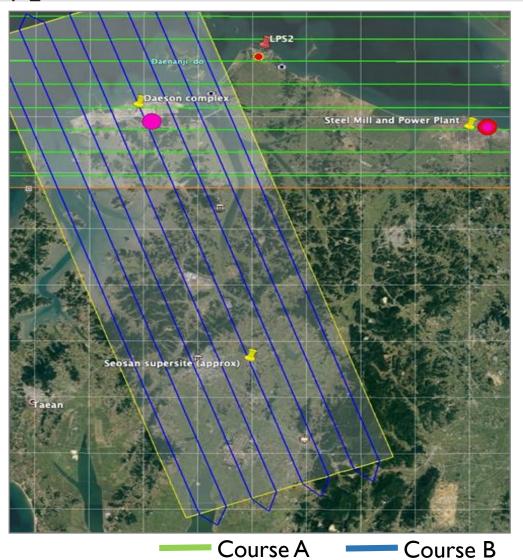
6 weeks (19 Oct.~ 27 Nov.)

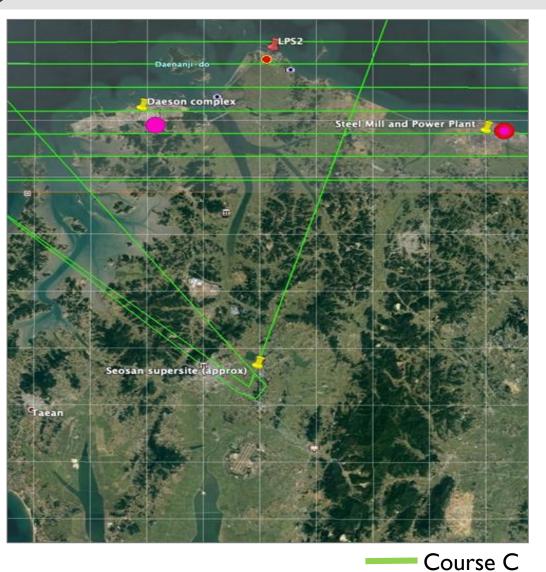

Preceded by the full one week of 1week for installation and warm-up

Flight

15 times 4 hours per flight Total 60 hours

Daily briefing





Expected flight path for 1st GMAP (2020)

GMAP surface sites (tentative)

1. Seosan supersite

36.78°N, 126.49°E

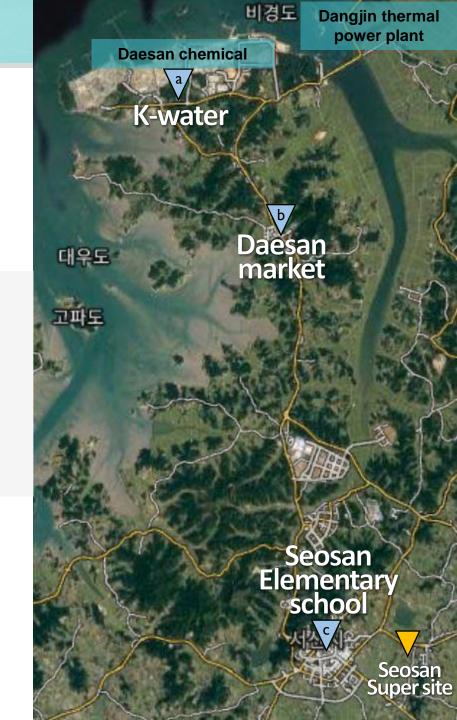
2. Daehoji Community Center

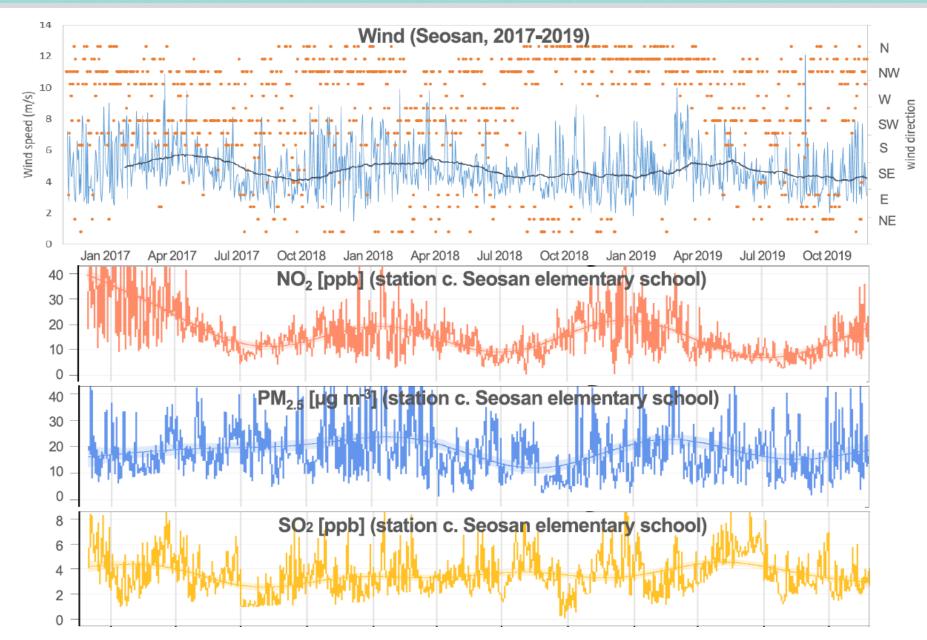
36.90°N, 126.50°E



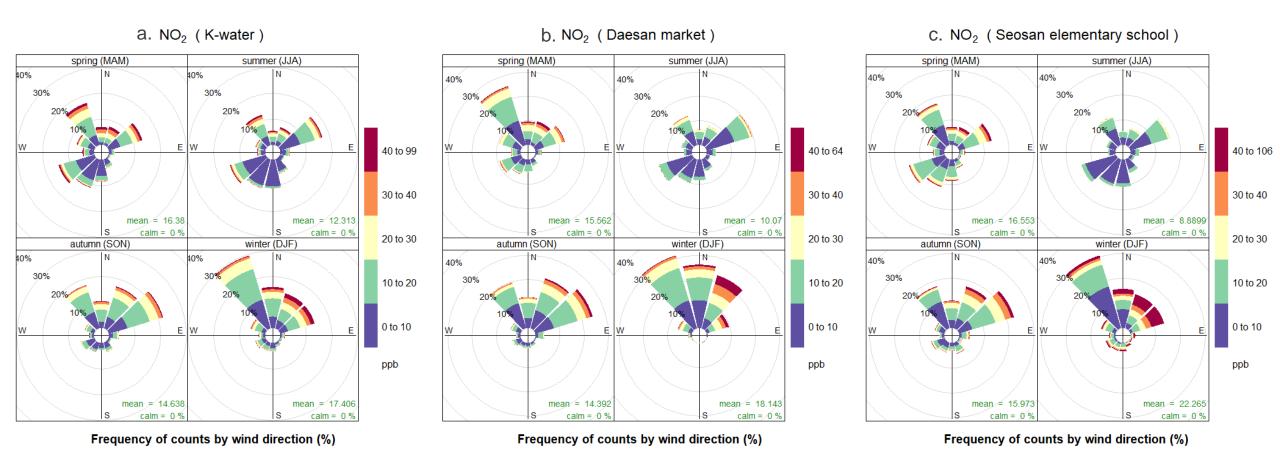
3. K-water resource cooperation

36.99°N, 126.38°E



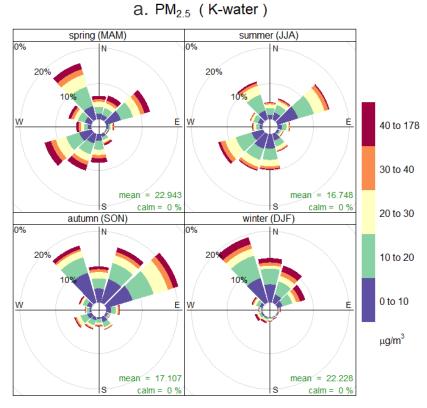

Site 3. K-water

Seosan Air Quality Characteristics based upon urban air quality monitoring and meteorological data (2017-2019)



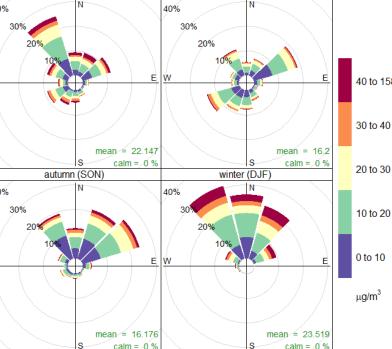
NO2 pollution rose

10 to 20


0 to 10

μg/m³

mean = 19.162


PM2.5 pollution rose

spring (MAM) summer (JJA) 40 to 153 30 to 40 mean = 18.573 mean = 17.526 20 to 30 autumn (SON) winter (DJF)

C. PM_{2.5} (Seosan elementary school)

b. PM_{2.5} (Daesan market) spring (MAM)

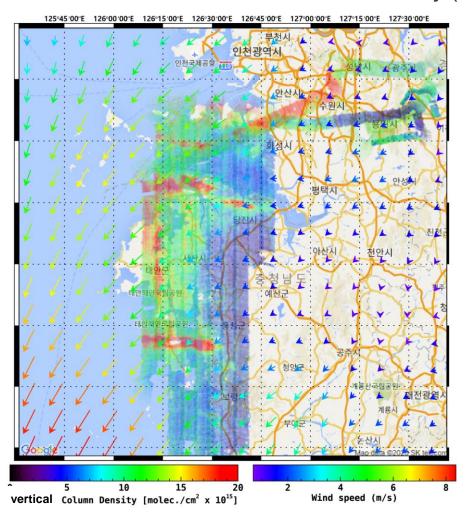
summer (JJA)

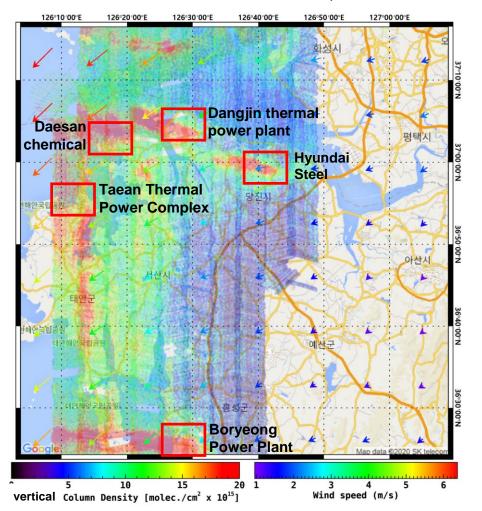
Frequency of counts by wind direction (%)

Frequency of counts by wind direction (%)

mean = 16.37

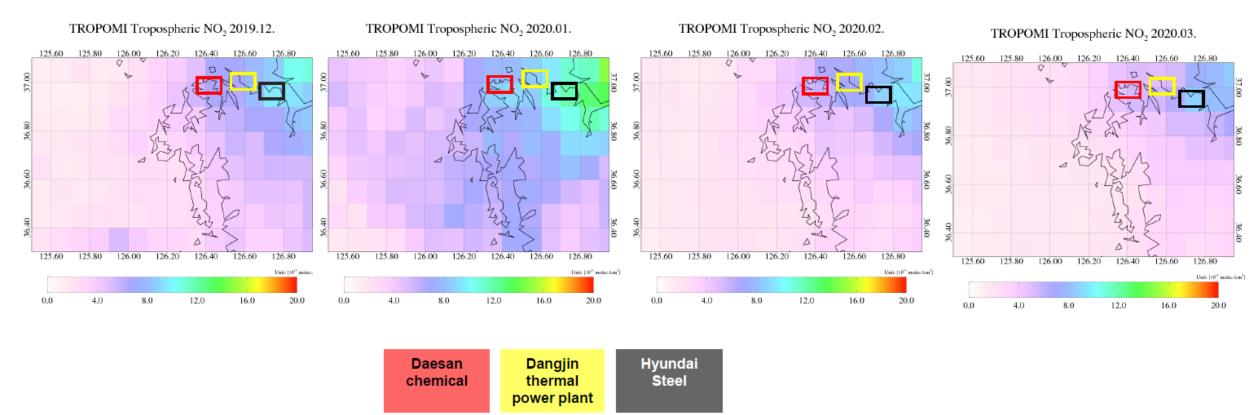
Frequency of counts by wind direction (%)

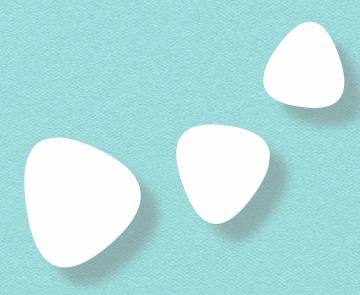




Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO)

NO2 Vertical Column Density (KORUS-AQ, June 5, 2016, Seosan)





TROPOMI NO2 monitoring

NO₂ Vertical Column Density (TROOMI, L2, res. 0.1°X0.1°, for pixels with quality value>0.75)

02 PAN

2.1. Introduction of PAN

A need for PAN

Real-time Air Quality Index Visual Map

Africa

Accean

Ocean

Ocean

Www.aqicn.org

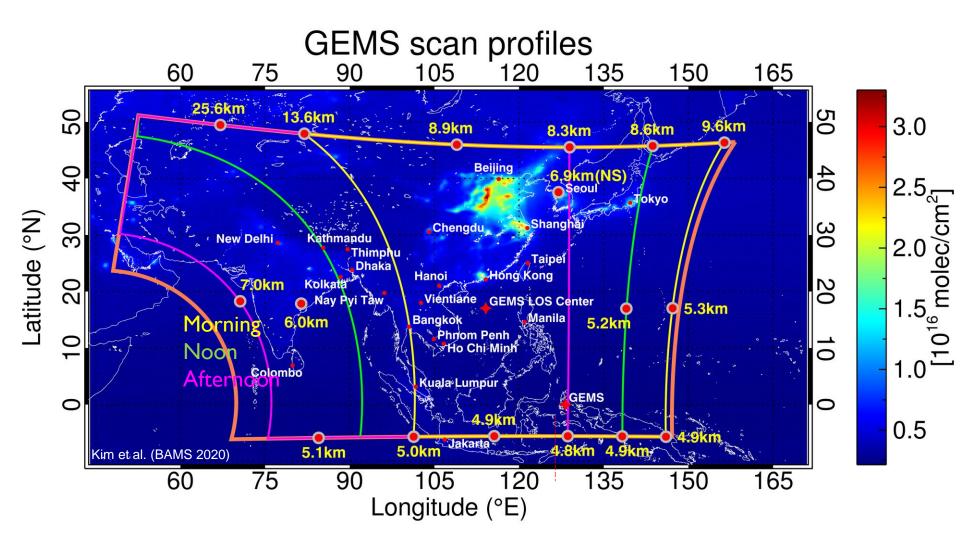
GEMS provides information on air quality from 36,000km away from Earth

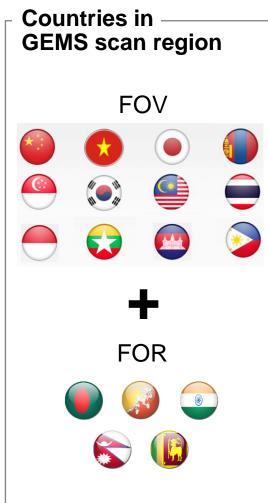
- A variety of validation activities (network, AO, campaign) are needed
- More dense network of ground-based remote sensing instruments are needed in **Asia** to validate satellites (GEMS, TROPOMI,GOME-2, OMPS, etc.)

Pandora monitors local atmospheric composition and satellite data quality

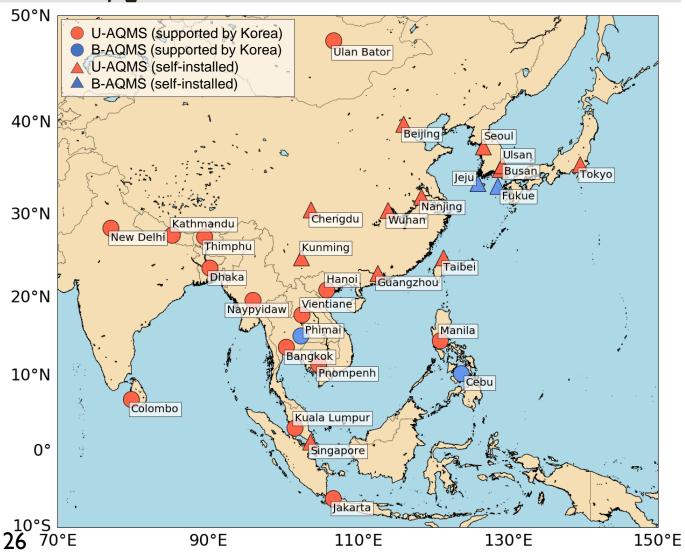
- · Comprehensive air quality monitoring
- Monitoring satellite data quality for the whole mission durations

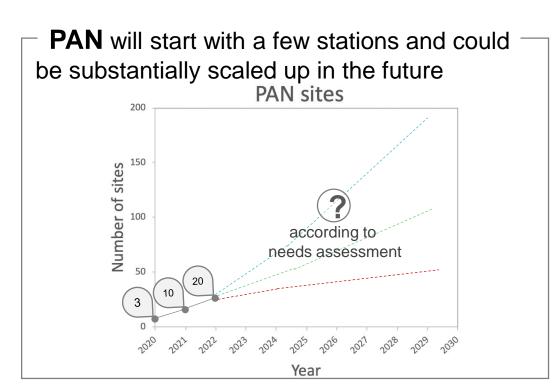
2.1. Introduction of PAN



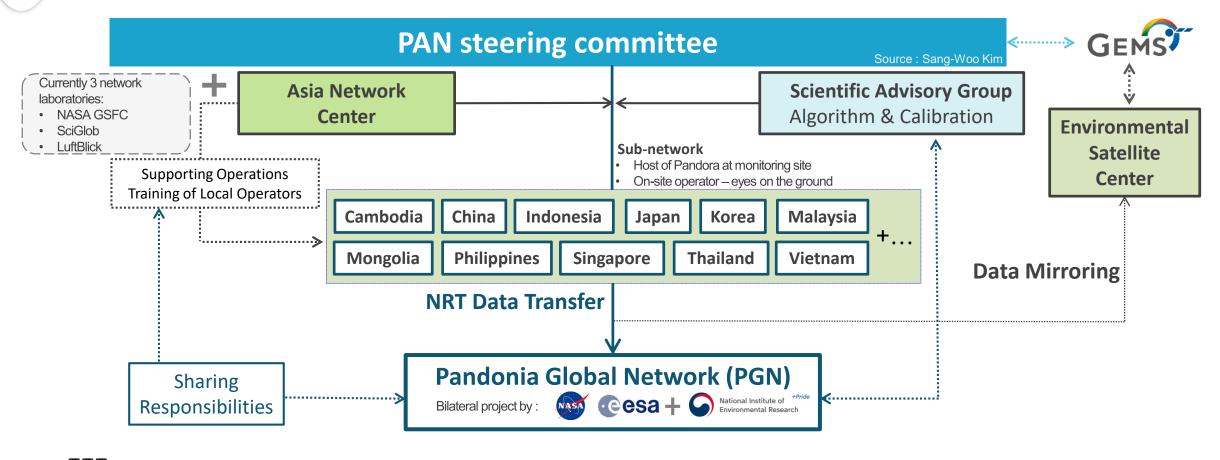


- Goal Install at least 1 Pandora set at the polluted area in each Asian country → Total 20 Pandora sets
- Period : 2020-2022
- Requirements for Pandora site
 - 1. Highly polluted area: Capital city or area vulnerable to wildfire and biomass burning
 - 2. Regional background area : Jeju, Korea / Phimai, Thailand / Cebu, Philippines
- Requirements for Pandora station
 - 1. 220/120VAC power supplied
 - 2. Ethernet or WiFi available
 - 3. Firm, fixed base for mounting (a tripod can be provided)
 - 4. Clear horizon (ie. minimal obstructions) to view the Sun
 - 5. National air quality monitoring station preferred




2.3 PAN site map

Expected PAN station distribution


PAN consists of two groups

- Urban air quality monitoring stations (U-AQMS)
 located on capital cities, industrial complexes, and areas
 prone to wildfires or biomass burning
- Background AQMS (B-AQMS)
 free from direct influences of anthropogenic emissions such as the Atmospheric Brown Clouds (ABC) Asian background

2.4 PAN organization

Asia Network Center(ANC)

- ✓ Algorithm and software development
- ✓ Data processing/QA
- ✓ Laboratory calibrations
- Network operations

Korea Environment Corporation (KECO)

- / Initial site deployment and setup
- ✓ Major site instrument repairs in consultation with ANC, SciGlob and NASA

2.5 PAN online conference

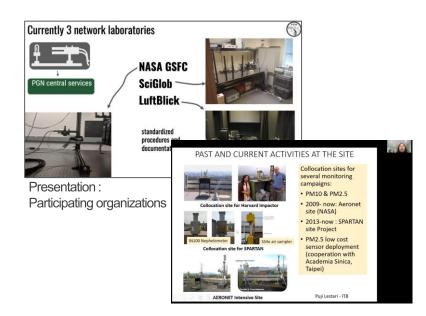
Pandora Asia Network (PAN) Online Conference

(28 may 2020, 10:00-14:00 Seoul, UTC+9)

person:		

		Chairperson: James H. Crawford						
Time	Speaker	Title						
10:00~10:05	President of NIER	Opening remarks						
10:05~10:10	Deputy Executive Secretary of ESCAP	Welcoming remarks						
10:10~10:15	President of KOICA	Welcoming remarks						
10:15~10:30	Limseok Chang (NIER)	Introduction of PAN project						
10:30~10:40	Keran Wang (ESCAP)	Introduction of Pan-Asia partnership						
10:40~10:50	Jhoon Kim (YSU)	GEMS algorithms status						
10:50~11:00	Kyunghwa Lee (NIER)	GEMS current status and application						
11:00~11:20	Alexander Cede(Luffblick) Tom Hanisco (NASA)	PGN status and future plans						
11:20~11:35	Nader Abuhassan and Matt Kowalewski (Sciglob)	Pandora overview						
11:35~11:50	Jim Szykman (EPA)	EPA Experience with Pandora						
11:50~11:55	Sangwoo Kim (SNU)	Pandora in Korea (PAN-Korea)						
11:55~12:20	Break							
Short introduction to	each of the Pandora Asia Network participants, including site details and research interests							
	Abdus Salam	Bangladesh						
	Kok Sothea	Cambodia						
	Aijun Ding and Xuguang Chi	China (Nanjing)						
	Jinyuan Xin	China (Chengdu)						
	Puji Lestari and Didin Agustian Permadi	Indonesia						
	Hitoshi Iire	Japan						
	Yugo Kanaya	Japan						
	Won Jun Choi	Korea						
12:20~13:40	Mohd Talib Latif	Malaysia						
12.20~13.40	Soyol-Erdene Tseren-Ochir	Mongolia						
	Ohnmar May Tin Hlaing	Myanmar						
	James Simpas	Philippines(Manila)						
	Roland Otadoy	Philippines (Cebu)						
	Liya Yu	Singapore						
	Nguyen Thi Oanh Kim	Thailand (Bangkok)						
	Ronald Macatangay	Thailand (Chiang Mai)						
	Ly Bich Thuy	Vietnam(Hanoi)						
	To Thi Hien	Vietnam (Ho Chi Minh)						
→ 13:40~13:55	Jim Crawford(NASA)	Short Discussion, Q&A						
15.46415.55								

PAN Online Conference


- May 28, 2020 10:00-14:00 (Seoul time)
- Meeting registrants : 67
- Participating Asian Countries: 13 (Bangladeshi, Cambodia, China, etc)
- Participating organizations : NASA, UN ESCAP, Sciglob, Luftblick, EPA, KOICA, KECO, NIER etc.

2.6 National Pandora network

Korean Pandora network establishment plan

2020

Planning on purchasing 3 Pandora spectrometers

Pandora sites (tentative)

NIER ESC (Incheon) Seosan supersite Jeju supersite

Type of Pandora to be purchased

1. Pandora 1S (single spectrometer) - standard wavelength range 280~530nm, resolution 0.6nm

Pandora sites will be determined according to GMAP results

- 2. Pandora 1S extended
 wavelength range approx. 280 nm 800 nm, resolution 1.1nm
- 3. Pandora 2S (dual spectrometer) → NIER ESC (Incheon) wavelength range 310~370nm, resolution 0.08nm wavelength range 280~800nm, resolution 1.1nm

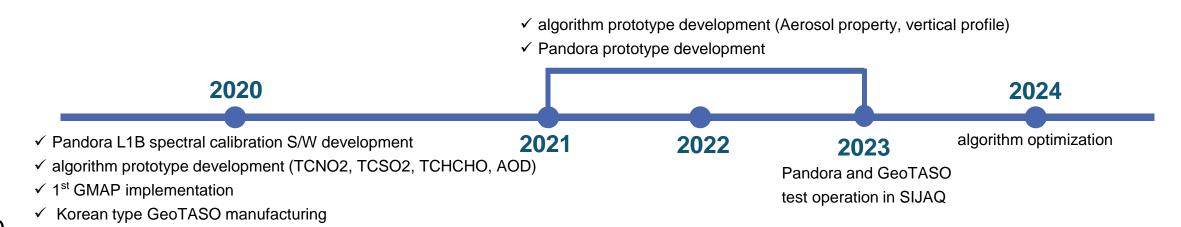
Three Pandoras will be implemented during the GMAP for comparison of differences between them

2021

Planning on purchasing 3 Pandora spectrometers

(Pandora type and installation sites: TBD according to GMAP results)

PAN-Korea map



Development of Pandora and its algorithm, GeoTASO manufacturing for satellite validation

• Period: 2020-2024

Needs:

- Pandora algorithm development in order to support PM forecasting and real-time monitoring of air pollutants, which is more sensitive to air pollutants(NO2, SO2, O3, HCHO, and Aerosol Optical Depth(AOD)) in PBL than satellite algorithm
- customized in east Asia
- Expected application:
 validation and improvement of GEMS data, SIJAQ implementation, etc.

Development of Pandora algorithm for satellite validation

AOD profile algorithm absence

Uncertainty due to Aerosol physical information absence Uncertainty due to Aerosol vertical profile error

Calculation of Aerosol microphysical property

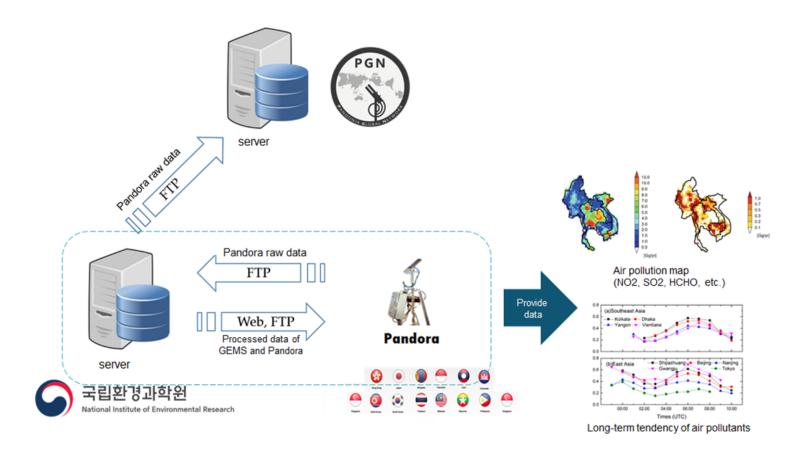
Aerosol extinction profile calculation through sensitivity of O2-O2 absorption on aerosol

Vertical profile algorithm development of strong absorbing NO2

Development of Vertical profile algorithm for other pollutants (e.g. HCHO)

Microphysical properties of Aerosol

Vertical profile of aerosol and its microphysical properties

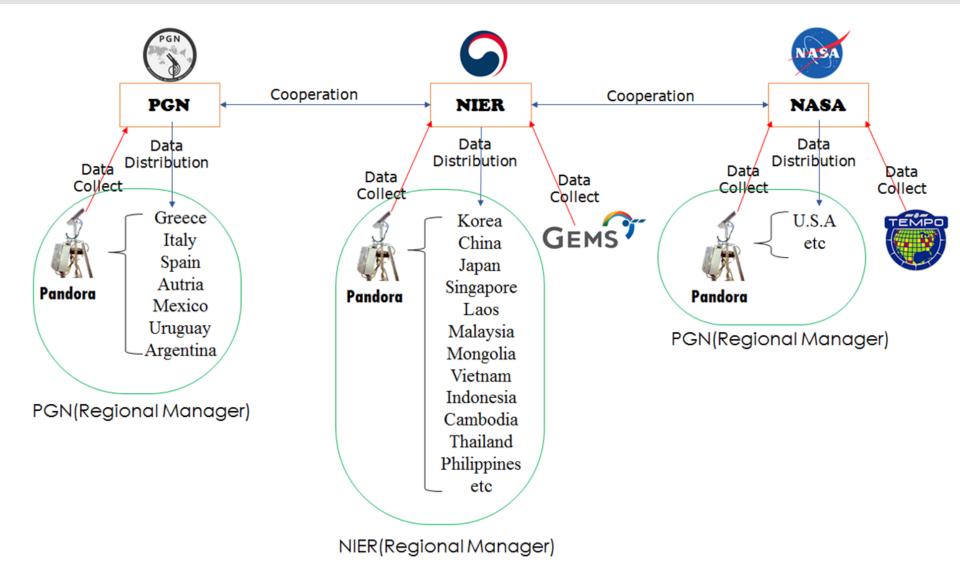

Establish of PAN data-processing system

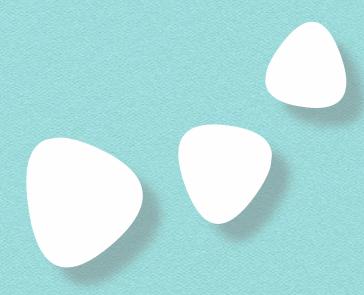
Objective

Establish data-processing system for data collection, processing, storage, dissemination

Tasks

- Pandora data collection S/W development
- Server construction for data collection, processing, storage, dissemination
- Operation of data processing algorithm for collected Pandora data





Establish of PAN data-processing system

03 AO

Announcement of Opportunity

GEMS AO objectives

AO call is

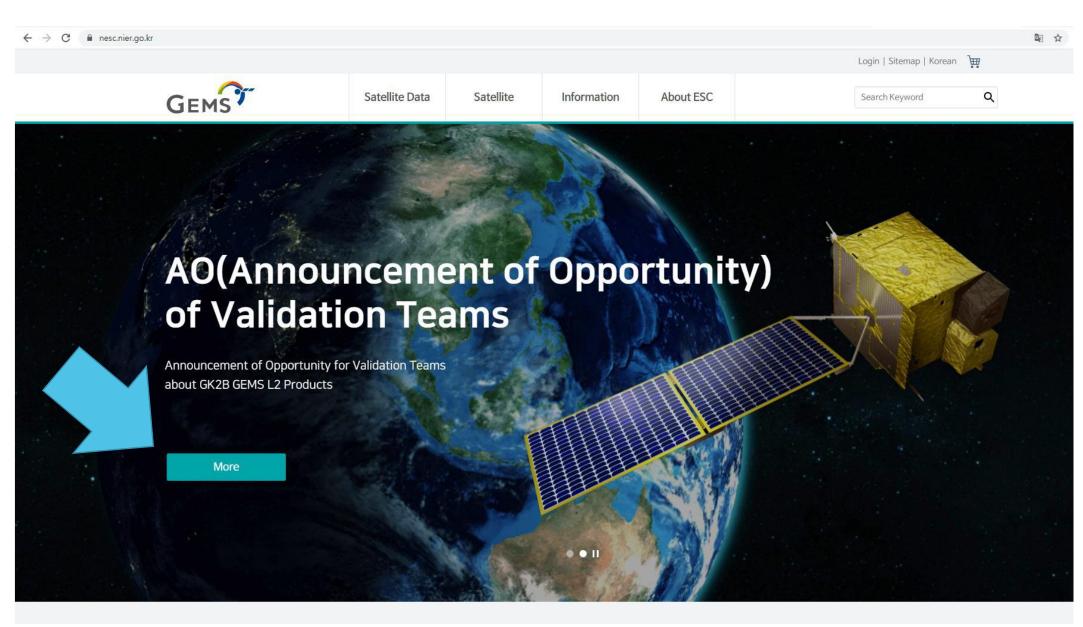
to harness professional knowledge and expertise of experienced scientists to perform validation and accuracy assessment of data and products of GEMS through independent data analysis

- 1. Evaluation of Level 2 retrieval algorithms
- 2. Assessment of regional errors and their sources
- 3. Comparison with other space-borne instruments
- 4. Comparison with ground-based and/or airborne measurements
- Comparison of diurnal variations of each atmospheric species between GEMS measurements and modeling results
- 6. Assessment of the impact of auxiliary data used in product retrieval
- 7. Analysis of major error sources and error budget
- 8. Assessment of heterogeneous geographic effects

Product		Importance	Window (nm)	Spatial resolution (km × km) at Seoul	Algorithm	Remark	
NO ₂	Trop Strat	O3/aerosol precursor	432-450	7×8	DOAS	RD-04	
S	⊃₂	Aerosol precursor	310-326	7×8	DOAS-PCA	RD-05	
		volcano	310-340	7.0	DOAS-FCA		
	HO	VOC proxy	328.5-356.5	7×8	DF	RD-06	
CHO	ÇHO	roc proxy	435-461	7×8	DF	RD-07	
O ₃	Trop		300-340		OE	RD-08	
	Strat	Oxidant, pollutant,	300-340	7×8	OE	VD-00	
	Total	Ozone layer	317.5, 331.2, 331.2, 340, 380	7.0	TOMS	RD-09	
	AOD				LUT, OE		
	UVAI	Air quality,	354, 388, 412, 443, 477, 490	3.5×8	LUT	RD-10	
Aerosol	SSA.	climate			LUT, OE		
	AEH		477		O ₂ -O ₂	RD-11	
Cloud	ECF		300-500		O ₂ -O ₂		
	CCP	Retrieval, climate	477	7×8		RD-12	
	CRF	ciiiiate					
Surface reflectivity		Retrieval, environment	300-500	3.5×8	Multi- channel, BRDF	RD-13	
-	UVI				LUT	RD-14	
	VitaD		354				
UVI	DNA	Public health		7×8			
-	Plant						

Announcement of Opportunity

GEMS cal/val activities timelines


GEMS AO information can be obtained from https://nesc.nier.go.kr

Help desk: Dr. Changsuk Lee, leecs00@korea.kr

Announcement of Opportunity

Thank you


Terima kasih

cảm ơn bạn

谢谢

감사합니다

Salamat

баярлалаа

ありがとうございました

ขอบคุณ

