

Sentinel-5 Precursor Mission and Cal/Val lessons learned

C. Zehner (ESA) & J.-C. Lambert (BIRA-IASB)

ESA UNCLASSIFIED - For Official Use



Cal/Val Lessons learned

Importance of the pre-flight calibration campaign!

- unexpected response observed in pre-launch calibration measurements;
 - -> NIR channel (661 786 nm)
- origin & magnitude of effect initially unclear
- analyses of spectral filters & light sources revealed signals originated by emissions at wavelengths
 800 nm

Cal/Val Lessons learned

Importance of the pre-flight calibration campaign!

All Sentinel-5 Precursor Products have been delivered so far to the public except the Ozone Profile – reason: problems during the pre-flight calibration campaign causing wrong calibration in the UV wavelength range for sun irradiance measurements

Solution: 'adjustment' of Sentinel-5P irradiance measurement to Suomi-NPP OMPS irradiance measurements

ESA UNCLASSIFIED - For Official Use

AC-VC-16 Meeting Slide 3

opernicus Cal/Val Organisation for the Sentinels Cesa

SENTINEL VALIDATION TEAM: The validation team complete the MPC activities by providing independent validation measurements or independent analysis. The team members are selected through an open call process. The intention of this call is to create scientific validation teams to provide structured coordination of international activities that contribute to Sentinel validation across the entire mission (i.e. Phase E1 and E2).

The Mission Performance Center

The Mission Performance Center is in charge of the operational and overall validation providing the synthesis of the results.

MPC S1, MPC S2, MPC S3, MPC S5P have been set up.

Quality Working Group QWG

ESA Data Quality Manager

The information is then discussed, further processed in the **Quality Working Groups** which provide synthetic results to the Mission Managers, used for improving the products quality and the products knowledae.

The Sentinel Validation Teams (SVT):

The validation team complete the MPC activities by providing independent validation measurements or independent analysis.

S2VT, S3VT, S5PVT have been set up.

Fiducial Reference Measurements providers

Specific activities need to be put in place for providing mandatory FRMs (e.g. for atmospheric FRMs: PANDONIA/PGN, FRM4DOAS, FRM4GHG)

User Community and international forum:

The validation program benefits from the feedback from:

- Workshops/conferences (ESA or international)
- Bilateral relation (NASA, NOAA, CNES, DLR, UKSA, JRC, EUMETSAT etc.)
- Coordination within CEOS WGCV

and CEOS VCs

ESA UNCLASSIFIED - For Official Use AC-VC-16 Meeting Slide 4

MPC Routine Operations Validation Tropomi Monitoring Portal - H X ← → C ♠ 67% · · · ☑ ☆ Q Search ↓ III\ ① ■ ■ ② = http://mpc-vdaf.tropomi.eu **To the Automated Validation Server** VALIDATION FACILITY SENTINEL 5P MISSION PERFORMANCE CENTER **Results and resources by product Quarterly Routine Validation Report Validation Web Articles** produced jointly by S5P MPC and S5PVT AO projects FSA UI

Opernicus S5P MPC Quality Information Output

Representative Quality Indicators

Based on the validation results reported in this document, representative values of key quality indicators (bias and spread) have been derived for the following S5P operational data products:

04				
Stream	Product	Bias	Dispersion	Special features
NRTI	O ₃ column	0.8%	2.5%	Larger dispersion over snow/ice due to coarse surface albedo climatology
OFFL	O ₃ column	0.3%	2%	
OFFL (CCD)	O ₃ tropospheric column	+14%	23%	Positive bias over biomass burning. Geographical imprints of sampling- related biases.
NRTI	NO ₂ troposphere NO ₂ stratosphere NO ₂ total	-22% -9% 0±50%	3.6 Pmol/cm ² 0.4 Pmol/cm ²	Total NO ₂ bias depending on total column: pristine areas to slight pollution overestimated, high pollution underestimated.
OFFL RPRO	NO ₂ troposphere NO ₂ stratosphere NO ₂ total	-23% -6% 0±50%	3.6 Pmol/cm ² 0.3 Pmol/cm ²	
NRTI OFFL RPRO	HCHO low HCHO high	+26% -31%	7 Pmol/cm² 13 Pmol/cm²	Positive bias over clean areas (<2 Pmol/cm²), negative bias over large emissions (> 8 Pmol/cm²).
NRTI	SO ₂ column	0.2 DU	0.2 DU	Lack of validation sites in areas with high SO ₂ .
OFFL	SO ₂ column	0.2 DU	0.2 DU	
NRTI	CO column	6.5%	5%	Along orbit stripes. High pollution underestimated. 5% SZA dependence of bias. Outliers in SAA and other sporadic locations not filtered by qa_value. Since July 2019 NRTI similar as OFFL.
OFFL	CO column	6.5%	5%	
OFFL	CH4 column	-0.27%	0.6%	Along orbit stripes. Underestimation at low albedo. Remaining outliers with qa_value>0.5. 1-4% seasonal and SZA dependence of bias.
NRTI	CAL CTH CRB CH CAL COT	-20% -30% +7.9 [-]	2 km 1 km	Bias towards the a priori cloud height up to and including 01.01.07. Snow/ice degrades retrievals. Occurrence of C(T)H equal to surface height at low cloud fraction. Across track CTH and CF pattern. North-South cloud al
OFFL	CAL CTH CRB CH CAL COT	-20% -30% +7.9 [-]	2 km 1 km -	
NRTI	aerosol index	-1.1 Al unit	0.1 Al unit	Negative bias exceeding 1 Al unit after March 2019, attributed to irradiance data degradation.
OFFL	aerosol index	-1.1 Al unit	0.1 Al unit	
OFFL	aerosol layer height	50 hPa	100 hPa	Over ocean only. Larger bias and dispersion expected over land.
	NRTI OFFL OFFL OFFL NRTI OFFL	NRTI O3 column OFFL O3 column OFFL O3 column OFFL O3 tropospheric column NC2 tropospheric NC2 transopheric NC2 transopheric NC2 transopheric NC3 total OFFL NC3 transopheric NC2 total OFFL NC4 tropospheric NC2 total NRTI NC5 tropospheric NC2 total NRTI HCHO low HCHO high NRTI SO2 column OFFL SO2 column OFFL CO column OFFL CO column OFFL CH4 column NRTI CAL CTH CRB CH CAL COT OFFL CAL COT OF	NRTI O3 column 0.8% OFFL O3 column 0.3% OFFL O3 tropospheric column +14% OFFL NO2 tropospheric column +14% NRTI NO2 troposphere NO2 stratosphere	NRTI O3 column 0.8% 2.5% OFFL O3 column 0.3% 2% OFFL O3 tropospheric column +14% 23% OFFL O3 troposphere NC; stratosphere NC; stra

Table 2 - Representative quality indicators (bias, dispersion and special features) as estimated from the validation studies of the S5P TROPOMI operational data products identified in the Table 1. The processor version number is not mentioned as the estimates are representative for all versions available publicly. CTH: cloud-topheight; CH; cloud height; COT; cloud optical thickness.

opernicus Validation Data Streams into S5P MPC

ESA FRM programme + WMO GAW contributing networks

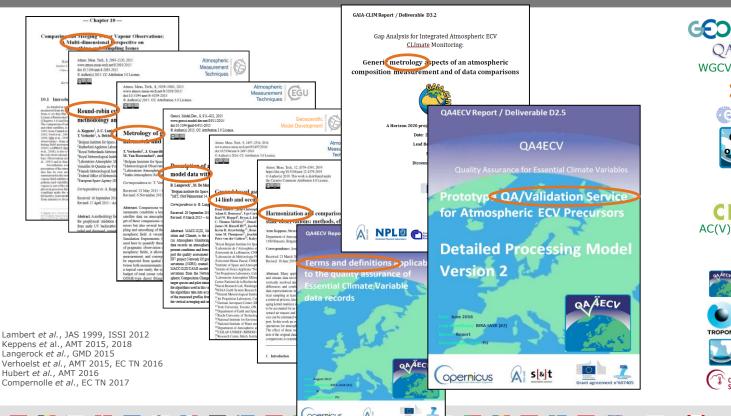
	S5P ID	S5P Data Product	Fiducial / Validation Reference Measurements		
	L2_O3	O ₃ total column	Brewer, Dobson, ZSL-DOAS, PGN/Pandonia		
	L2_O3_PR	O ₃ profile (incl. troposphere)	ozonesonde, stratospheric DIAL, tropospheric DIAL		
	L2_O3_TCL	O ₃ tropospheric column	ozonesonde		
	L2_NO2	NO ₂ stratospheric column	ZSL-DOAS		
		NO ₂ tropospheric column	MAX-DOAS		
		NO ₂ total column	PGN/Pandonia		
	L2_SO2	SO ₂ total column	MAX-DOAS, PGN/Pandonia		
	L2_HCHO	HCHO total column	MAX-DOAS, NDACC FTIR, PGN/Pandonia		
	L2_CO	CO total column	NDACC FTIR (MIR), TCCON FTIR (NIR)		
	L2_CH4	CH₄ total column	NDACC FTIR (MIR), TCCON FTIR (NIR)		
	L2_CLOUD	Cloud Fraction	not available (satellite-to-satellite only)		
		Cloud Height (pressure)	Cloudnet lidar/radar, ARM		
		Cloud Optical Thickness	not available (satellite-to-satellite only)		
	LO AED	UV Aerosol Absorbing Index	not available (satellite-to-satellite only)		
W	L2_AER	Aerosol Layer Height	EARLINET aerosol lidar, EUMETNET/ALC ceilometer		

Colour code: automated, full stream

automated, partial stream

manual

in development



Generic validation chain, state-of-the-art co-locators, harmonised terminology and comparison metrics... in permanent evolution

Cross GEOSS/ cross-FO domains Cal/Val harmonization

Prototyping in Multi-TASTE and ESA CCI Ozone

Community feedback & endorsement

Implementation and continuous development in FP7 QA4ECV, H2020 GAIA-CLIM. Envisat QWGs, ISSI Cross-EO Val., CCI+/C3S ozone, Sentinel-5p MPC

Generic validation chain, state-of-the-art co-locators, harmonised terminology and comparison metrics... in permanent evolution

S5P TROPOMI validation and FRM programme contribute further progress in:

- Harmonisation of validation practices across networks
- Harmonisation of validation reporting across species
- Harmonisation of unified error/uncertainty reporting
- Validation of ex-ante satellite uncertainties
- Criteria of compliance with user/mission requirements

Atmospheric Chemistry and Physics
An interactive open-access journal of the European Geosciences Union

[EGU.eu | EGU Publications | EGU Highlight Articles | Contact | Imprint | Data protection |

Special issue | TROPOMI on Sentinel-5

Precursor: first year in operation

(AMT/ACP inter-journal SI)

Editor(s): J. Joiner, B. Veihelmann, D. Loyola, H. Worden, J. Kim, H. Boesch, P. Levelt, I. Aben, and T. Röckmann Special issue jointly organized between Atmospheric Measurement Techniques and

Special issue jointly organized between Atmospheric Measurement Techniques and Atmospheric Chemistry and Physics

Lambert et al., JAS 1999, ISSI 2012
Keppens et al., AMT 2015, 2018, 2019
Langerock et al., GMD 2015
Verhoelst et al., AMT 2015, EC TN 2016, AMT 2020
Hubert et al., AMT 2016, LOTUS 2019, AMT 2020
Compernolle et al., EC TN 2017, ACP 2019, AMT 2020
Vigouroux et al., AMT 2020

pernicus Sentinel-5p Lessons Learnt

Satellite data uncertainties and QA/QC:

- State-of-the-art ex-ante uncertainties required for a successful validation
- Efficient Quality Control of Level-1b and Level-2 data production necessary before validation can start

FRMs (and other validation data):

- FRM data: fitness-for-purpose (representativeness, influence quantities...), reliable error bars
- <u>FRM data streams</u>: timeliness, sustainability, QA/QC of FRM streams (e.g., issue of ozonesonde network drop since 2016)
- Cooperation with ground-based networks fruitful
- <u>Satellite-to-satellite</u> to capture features and patterns like striping, sea/ice and cloud related outliers...
- <u>Ancillary data</u>: for changes in coordinates, end-to-end validation of retrieval... ⇒ campaigns, supersites
- Data governance (and acknowledgment, licence, redistribution etc.) is a key issue!
- Satellite perspective on FRM data developments: e.g., (why) is the lack of FRM sites in Africa a problem?
- Agreements necessary for guarantying access to national in situ/RS data

ESA UNCLASSIFIED - For Official Use AC-VC-16 Meeting Slide 10

pernicus Sentinel-5p Lessons Learnt

about methods and tools

Validation methods and tools:

- Harmonized, state-of-the-art, fit-for-purpose validation methods still in development
- Challenges of high resolution validation (e.g. Sentinel-5p at 3.5 x 5.5 km²)
- Propagation of satellite and FRM uncertainties along data harmonization and validation chains
- Closure of <u>comparison error budget</u>, including co-location mismatch errors
- Verification of compliance with mission/user requirements not straightforward
- Full traceability (documentation) of validation data and of validation process

Additional challenges for GEO missions:

- Change in paradigm w.r.t. LEO: diurnal cycle, VZA, SZA, BRDF ("directional accuracy")...
- LEO-AQ satellites as "travelling standards" for GEO-AQ validation

 implementation TBD

opernicus Sentinel-5p Lessons Learnt

and validation needs for the Air Quality Constellation

Recommendations

- 1. Consistently perform intensive campaigns dedicated to the validation of the capability of the Geo-AQ missions to observe the diurnal cycle of the target species. Such campaigns are conducted at several supersites within each Geo-AQ mission domain where a comprehensive suite of correlative reference measurements is made and a comprehensive set of auxiliary data from a variety of sources is exploited.
- 2. Conduction validation campaigns vitte exchange of reference airborne and ground-based instruments.
- 3. Further develop and eventually apply approaches to the radiometric inter-calibration of the Geo-AQ missions, based on comparisons of Earth radiance data acquired over known targets. SItraceable test sites where available, precise and approximate ray matching between GEO and LEO pairs of missions, and by taking the LEO missions as a travelling standard. These activities should be pursued within the frame of the WMO GSICS initiative.
- 4. Further develop and eventually apply approaches to the inter-calibration of the Level-2 products of the Geo-AQ missions. These approaches include the comparison of products with intercalibrated ground-based network data, cross-validation of Level-2 algorithms by exchanging Level-1b data, comparing zonal mean values of the stratospheric sub-column in the Level-2 ozone products, and taking validated LEO missions as a travelling standard.
- 5. Systematically process to Level-2 Constellation Products of the Geo-AQ missions, using one selected common algorithm per Constellation Product.
- 6. Further pursue toe harmonization of the reference data used for validation and inter-mission consistency verification or Level-2 products, aiming at common measurement protocols, common QA protocols, common data formats, harmonized data policy and open access.
- 7. Implement data centre for storage and exchange of all validation data collected for the Geo-AQ missions. Make these data accessible to the entire community involved in the validation of the Geo-AQ mission products and their inter-mission consistency, very soon after acquisition.
- 8. Implement a coordinating unit for ensuring the consistency of the approach and the metrics used for validating the Geo-AQ mission products and uneir inter mission consistency.

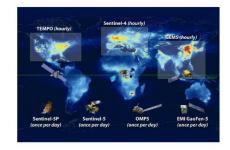
in-depth validation campaigns essential

exhaustive pre-launch calibration essential

FRM-based satellite-to-satellite alternative retrievals

internal coherence of product families

round-robin to agree on constellation algorithm sustained FRM


FVDC successful

programme

harmonisation of validation to be continued

Geostationary Satellite Constellation for Observing Global Air Quality: Geophysical Validation Needs

> and the CEOS Working Group on Calibration and Validation Version 1.1. 2 October 2019

ESA UNCLASSIFIED - For Official Use

AC-VC-16 Meeting Slide 12

