



### CEOS VC-20-01 Activity on Tropospheric Ozone

# **Geophysical Validation Goals and Plans**

Jean-Christopher Lambert, Daan Hubert, Arno Keppens (BIRA-IASB), Gordon Labow (NASA), and Diego Loyola (DLR)

CEOS AC-VC-16 teleconference June 8-12, 2020

Atmospheric Composition Virtual Constellation & Working Group on Calibration and Validation

### Assessment of tropospheric ozone from satellites Multi-satellite assessments C Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

## **Typical findings**

- Satellites capture well major features and trends.
- Biases between satellites change with time.
- Differences in sensitivity and sampling matter.
- Vertical sensitivity differences not straightforward to assess and handle
- Data harmonisation improves mutual consistency.



.



### GOME(-2A/B), SCIA, OMI, IASI-A/B

**Ouality assessment of the Ozone cci Climate Research Data** Package (release 2017) – Part 2: Ground-based validation of nadir ozone profile data products

Arno Keppens<sup>1</sup>, Jean-Christopher Lambert<sup>1</sup>, José Granville<sup>1</sup>, Daan Hubert<sup>1</sup>, Tiil Verhoelst<sup>1</sup>, Steven Compernolle<sup>1</sup>, Barry Latter<sup>2</sup>, Brian Kerridge<sup>2</sup>, Richard Siddans<sup>2</sup>, Anne Boynard<sup>3,4</sup>, Juliette Hadji-Lazaro<sup>3</sup>, Cathy Clerbaux<sup>3,5</sup>, Catherine Wespes<sup>5</sup>, Daniel R, Hurtmans<sup>5</sup>, Pierre-Francois Coheur<sup>5</sup>, Jacob C, A, van Peet<sup>6</sup>, Ronald J van der A<sup>6</sup>, Katerina Garane<sup>7</sup>, Maria Elissavet Koukouli<sup>7</sup>, Dimitris S. Balis<sup>7</sup>, Andy Delcloo<sup>8</sup>, Rigel Kivi<sup>9</sup>, Réné Stübi<sup>10</sup>, Sonhie Godin-Beekmann<sup>3</sup>, Michel Van Roozendael<sup>1</sup>, and Claus Zehner<sup>11</sup>

1 Royal Belgian Institute for Space Aeronomy (BIRA-IASB), 1180 Brussels, Belgium <sup>2</sup>Rutherford Appleton Laboratory (RAL) and National Centre for Earth Observation (NCEO), Chilton, Didcot, OX11, UK <sup>3</sup>LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSO, CNRS, 78280 Paris, France, <sup>4</sup>SPASCIA, 31520 Ramonville-Saint-Agne, France <sup>5</sup>Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium 6 Roval Netherlands Meteorological Institute (KNMI), 3731 De Bilt, the Netherlands

<sup>7</sup>Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece

8 Royal Meteorological Institute of Belgium (RMIB), 1180 Brussels, Belgium

<sup>9</sup>Finnish Meteorological Institute (FMI-ARC), 99601 Sodankylä, Finland

10 Federal Office of Meteorology and Climatology, 1530 Paverne, Switzerland 11 European Space Agency (ESA/ESRIN), 00044 Frascati, Italy

#### Correspondence: Arno Keppens (arno.keppens@aeronomie.be)

### Submitted to AMT for the **TROPOMI** Special Issue



J.-C. Lambert et al. - Tropospheric Ozone Validation Plan

# Assessment of tropospheric ozone from satellites Data assimilation - Reanalyses



# • Performance of reanalyses depends on assimilated satellite data.

• Temporal (in)consistency affects trends and interannual variability assessments.

| Geosci. Model Dev., 13, 1513–1544, 2020<br>https://doi.org/10.5194/gmd-13-1513-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Geoscientific                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Author(s) 2020. This work is distributed under<br/>the Creative Commons Attribution 4.0 License.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Model Development                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |
| An intercomparison of tropospher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ic ozone reanalysis products from                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |
| CAMS, CAMS interim, TCR-1, an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd TCR-2                                                                                                                                                                                                                                       |
| CAMS, CAMS interim, TCR-1, an<br>Vincent Huijnen <sup>1</sup> , Kazuyuki Miyazaki <sup>2</sup> , Johannes Flemmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nd TCR-2<br>ng <sup>3</sup> , Antje Inness <sup>3</sup> , Takashi Sekiya <sup>4</sup> , and Martin G. Schultz <sup>5</sup>                                                                                                                     |
| CAMS, CAMS interim, TCR-1, an<br>Vincent Huijnen <sup>1</sup> , Kazuyuki Miyazaki <sup>2</sup> , Johannes Flemmin<br><sup>1</sup> Roval Netherlands Meteorological Institute. De Bilt, the Neth                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd TCR-2<br>g <sup>3</sup> , Antje Inness <sup>3</sup> , Takashi Sekiya <sup>4</sup> , and Martin G. Schultz <sup>5</sup><br>erlands                                                                                                           |
| CAMS, CAMS interim, TCR-1, an<br>Vincent Huijnen <sup>1</sup> , Kazuyuki Miyazaki <sup>2</sup> , Johannes Flemmin<br><sup>1</sup> Royal Netherlands Meteorological Institute, De Bilt, the Neth<br><sup>3</sup> 2et Propulsion Laboratory, California Institute of Technology.                                                                                                                                                                                                                                                                                                                                                                                     | nd TCR-2<br>bg <sup>3</sup> , Antje Inness <sup>3</sup> , Takashi Sekiya <sup>4</sup> , and Martin G. Schultz <sup>5</sup><br>erlands<br>Pasadena, CA 91109, USA                                                                               |
| CAMS, CAMS interim, TCR-1, an<br>Vincent Huijnen <sup>1</sup> , Kazuyuki Miyazaki <sup>2</sup> , Johannes Flemmin<br><sup>1</sup> Royal Netherlands Meteorological Institute, De Bilt, the Nethe<br><sup>2</sup> Jet Propulsion Laboratory, California Institute of Technology,<br><sup>3</sup> ECMWF, Shinfeld Park, Reading, RG2 9AX, UK                                                                                                                                                                                                                                                                                                                         | nd TCR-2<br>ng <sup>3</sup> , Antje Inness <sup>3</sup> , Takashi Sekiya <sup>4</sup> , and Martín G. Schultz <sup>5</sup><br>erlands<br>Pasadena, CA 91109, USA                                                                               |
| CAMS, CAMS interim, TCR-1, an<br>Vincent Huijnen <sup>1</sup> , Kazuyuki Miyazaki <sup>2</sup> , Johannes Flemmin<br><sup>1</sup> Royal Netherlands Meteorological Institute, De Bilt, the Neth<br><sup>2</sup> Jet Propulsion Laboratory, California Institute of Technology,<br><sup>3</sup> ECMWF, Shinfield Park, Reading, RG2 9AX, UK<br><sup>4</sup> Research Institute for Global Change (RIGC), Japan Agency f                                                                                                                                                                                                                                             | nd TCR-2<br>g <sup>3</sup> , Antje Inness <sup>3</sup> , Takashi Sekiya <sup>4</sup> , and Martin G. Schultz <sup>5</sup><br>erlands<br>Pasadena, CA 91109, USA<br>for Marine–Earth Science and Technology (JAMSTEC),                          |
| CAMS, CAMS interim, TCR-1, an<br>Vincent Huijnen <sup>1</sup> , Kazuyuki Miyazaki <sup>2</sup> , Johannes Flemmin<br><sup>1</sup> Royal Netherlands Meteorological Institute, De Bilt, the Neth<br><sup>2</sup> Jet Propulsion Laboratory, California Institute of Technology,<br><sup>3</sup> ECMWF, Shinfield Park, Reading, RG2 9AX, UK<br><sup>4</sup> Research Institute for Global Change (RIGC), Japan Agency f<br>Yokohama 2360001, Japan                                                                                                                                                                                                                  | nd TCR-2<br>g <sup>3</sup> , Antje Inness <sup>3</sup> , Takashi Sekiya <sup>4</sup> , and Martin G. Schultz <sup>5</sup><br>erlands<br>Pasadena, CA 91109, USA<br>for Marine–Earth Science and Technology (JAMSTEC),                          |
| CAMS, CAMS interim, TCR-1, an<br>Vincent Huijnen <sup>1</sup> , Kazuyuki Miyazaki <sup>2</sup> , Johannes Flemmin<br><sup>1</sup> Royal Netherlands Meteorological Institute, De Bilt, the Nethe<br><sup>3</sup> Jet Propulsion Laboratory, California Institute of Technology,<br><sup>3</sup> ECMWF, Shinfeld Park, Reading, RG2 9AX, UK<br><sup>4</sup> Research Institute for Global Change (RIGC), Japan Agency I<br>Yokohama 2360001, Japan<br><sup>5</sup> Julich Supercomputing Centre, Forschungszentrum Julich, Jul                                                                                                                                      | nd TCR-2<br>g <sup>3</sup> , Antje Innese <sup>3</sup> , Takashi Sekiya <sup>4</sup> , and Martín G. Schultz <sup>5</sup><br>erlands<br>Pasadena, CA 91109, USA<br>for Marine–Earth Science and Technology (JAMSTEC),<br>lich, Germany         |
| CAMS, CAMS interim, TCR-1, an<br>Vincent Huijnen <sup>1</sup> , Kazuyuki Miyazaki <sup>2</sup> , Johannes Flemmin<br><sup>1</sup> Royal Netherlands Meteorological Institute, De Bilt, the Nethe<br><sup>3</sup> Jet Propulsion Laboratory, California Institute of Technology,<br><sup>3</sup> ECMWF, Shinfeld Park, Reading, RG2 9AX, UK<br><sup>4</sup> Research Institute for Global Change (RIGC), Japan Agency I<br>Yokohama 236001, Japan<br><sup>5</sup> Julich Supercomputing Centre, Forschungszentrum Julich, Jul<br>Correspondence: Vincent Huijnen (vincent.huijnen@knmi.nl)                                                                          | nd TCR-2<br>g <sup>3</sup> , Antje Innese <sup>3</sup> , Takashi Sekiya <sup>4</sup> , and Martín G. Schultz <sup>5</sup><br>erlands<br>Pasadena, CA 91109, USA<br>for Marine–Earth Science and Technology (JAMSTEC),<br>lich, Germany         |
| CAMS, CAMS interim, TCR-1, an<br>Vincent Huijnen <sup>1</sup> , Kazuyuki Miyazaki <sup>2</sup> , Johannes Flemmin<br><sup>1</sup> Royal Netherlands Meteorological Institute, De Bilt, the Nethe<br><sup>3</sup> Let Propulsion Laboratory, California Institute of Technology,<br><sup>3</sup> ECMWF, Shinfeld Park, Reading, RG2 90AX, UK<br><sup>4</sup> Research Institute for Global Change (RIGC), Japan Agency f<br>Yokohama 2360001, Japan<br><sup>3</sup> Julich Supercomputing Centre, Forschungszentrum Jülich, Jül<br><b>Correspondence:</b> Vincent Huijnen (vincent.huijnen@knmi.nl)<br>Received: 18 October 2019 – Discussion started: 6 November 2 | nd TCR-2<br>g <sup>3</sup> , Antje Inness <sup>3</sup> , Takashi Sekiya <sup>4</sup> , and Martin G. Schultz <sup>5</sup><br>erlands<br>Pasadena, CA 91109, USA<br>for Marine–Earth Science and Technology (JAMSTEC),<br>lich, Germany<br>2019 |

| Instrument (satellite)                                                                                                                           | Product                                                          | Data provider, version                                                                                                                                                                                                                 | Period                                                                                                                                                                                                                                                                    | Reference                                                                                                                                   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SCIAMACHY<br>(Envisat)                                                                                                                           | TC                                                               | ESA, CCI<br>(TC_SCIAMACHY), fv0300                                                                                                                                                                                                     | 1 Jan 2003 to 8 Apr 2012                                                                                                                                                                                                                                                  | Lerot et al. (2009)                                                                                                                         |  |  |  |
| MIPAS (Envisat)                                                                                                                                  | Prof                                                             | – ESA CCI<br>(HARMOZ_MIPAS),<br>fv0004                                                                                                                                                                                                 | 27 Jan 2005 to 31 Mar 2012                                                                                                                                                                                                                                                | Von Clarmann et al.<br>(2003, 2009)                                                                                                         |  |  |  |
| MLS (Aura)                                                                                                                                       | Prof                                                             | NASA, V2<br>NASA, V3.4                                                                                                                                                                                                                 | 3 Aug 2004 to 31 Dec 2012<br>1 Jan 2013 to 31 Dec 2016                                                                                                                                                                                                                    | Schwartz et al. (2015                                                                                                                       |  |  |  |
| OMI (Aura)                                                                                                                                       | TC                                                               | KNMI, V3<br>KNMI, NRT                                                                                                                                                                                                                  | 3 Aug 2004 to 31 May 2015<br>1 Jun 2015 to present                                                                                                                                                                                                                        | Liu et al. (2010)                                                                                                                           |  |  |  |
| GOME (ERS-2)                                                                                                                                     | Prof                                                             | RAL                                                                                                                                                                                                                                    | 1 Jan 2003 to 31 May 2003                                                                                                                                                                                                                                                 | Munro et al. (1998)                                                                                                                         |  |  |  |
| GOME-2 (Metop-A) TC                                                                                                                              |                                                                  | ESA, CCI, fv0100<br>ESA, CCI, fv0300<br>NRT                                                                                                                                                                                            | 23 Jan 2007 to 31 Dec 2012<br>1 Jan 2013 to 31 Dec 2016<br>1 Jan 2017 to present                                                                                                                                                                                          | Hao et al. (2014)                                                                                                                           |  |  |  |
| GOME-2 (Metop-B)                                                                                                                                 | TC                                                               | ESA, CCI, fv0300<br>NRT                                                                                                                                                                                                                | 1 Jan 2013 to 31 Dec 2016<br>1 Jan 2017 to present                                                                                                                                                                                                                        | Hao et al. (2014)                                                                                                                           |  |  |  |
| SBUV/2<br>(NOAA-14-NOAA-19)                                                                                                                      | PC                                                               | NASA, v8.6 13L<br>NRT 21L                                                                                                                                                                                                              | 1 Jan 2003 to 31 Dec 2012<br>1 Jan 2013 to present                                                                                                                                                                                                                        | Bhartia et al. (1996),<br>McPeters et al. (2013                                                                                             |  |  |  |
|                                                                                                                                                  |                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                           |                                                                                                                                             |  |  |  |
| ble 3. Observations of ozono                                                                                                                     | e used in the                                                    | CAMS-Rean assimilation system                                                                                                                                                                                                          | -<br>L                                                                                                                                                                                                                                                                    |                                                                                                                                             |  |  |  |
| ble 3. Observations of ozono<br>Instrument (satellite)                                                                                           | e used in the<br>Product                                         | CAMS-Rean assimilation system<br>Data provider, version                                                                                                                                                                                | Period                                                                                                                                                                                                                                                                    | Reference                                                                                                                                   |  |  |  |
| ble 3. Observations of ozone<br>Instrument (satellite)<br>SCIAMACHY (Envisat)                                                                    | e used in the<br>Product<br>TC                                   | CAMS-Rean assimilation system<br>Data provider, version<br>ESA, CCI<br>(TC_SCIAMACHY), fv0300                                                                                                                                          | Period<br>1 Jan 2003 to 8 Apr 2012                                                                                                                                                                                                                                        | Reference<br>Lerot et al. (2009)                                                                                                            |  |  |  |
| ble 3. Observations of ozona<br>Instrument (satellite)<br>SCIAMACHY (Envisat)<br>MIPAS (Envisat)                                                 | e used in the<br>Product<br>TC<br>Prof                           | CAMS-Rean assimilation system<br>Data provider, version<br>ESA, CCI<br>(TC_SCIAMACHY), fv0300<br>ESA, NRT<br>ESA, CCI<br>(HARMOZ_MIPAS),<br>fv0004                                                                                     | Period<br>1 Jan 2003 to 8 Apr 2012<br>27 Jan 2003 to 26 Mar 2004 and<br>27 Jan 2005 to 31 Mar 2012                                                                                                                                                                        | Reference<br>Lerot et al. (2009)<br>Von Clarmann et al.<br>(2003, 2009)                                                                     |  |  |  |
| ble 3. Observations of ozona<br>Instrument (satellite)<br>SCIAMACHY (Envisat)<br>MIPAS (Envisat)<br>MLS (Aura)                                   | e used in the<br>Product<br>TC<br>Prof<br>Prof                   | CAMS-Rean assimilation system<br>Data provider, version<br>ESA, CCI<br>(TC_SCIAMACHY), fv0300<br>ESA, NRT<br>ESA, CCI<br>(HARMOZ_MIPAS),<br>fv0004<br>NASA, V4                                                                         | Period<br>1 Jan 2003 to 8 Apr 2012<br>27 Jan 2003 to 26 Mar 2004 and<br>27 Jan 2005 to 31 Mar 2012<br>3 Aug 2004 to 31 Dec 2016                                                                                                                                           | Reference<br>Lerot et al. (2009)<br>Von Clarmann et al.<br>(2003, 2009)<br>Schwartz et al. (2015                                            |  |  |  |
| ble 3. Observations of ozone<br>Instrument (satellite)<br>SCIAMACHY (Envisat)<br>MIPAS (Envisat)<br>MLS (Aura)<br>OMI (Aura)                     | e used in the Product TC Prof Prof TC TC                         | CAMS-Rean assimilation system<br>Data provider, version<br>ESA, CCI<br>(TC_SCLAMACHY), fv0300<br>ESA, NRT<br>ESA, CCI<br>(HARMOZ_MIPAS),<br>fv0004<br>NASA, V4<br>KNMI, V3<br>KNMI, NRT                                                | Period<br>1 Jan 2003 to 8 Apr 2012<br>27 Jan 2003 to 26 Mar 2004 and<br>27 Jan 2005 to 31 Mar 2012<br>3 Aug 2004 to 31 Dec 2016<br>3 Aug 2004 to 31 May 2015<br>1 Jun 2015 to present                                                                                     | Reference<br>Lerot et al. (2009)<br>Von Clarmann et al.<br>(2003, 2009)<br>Schwartz et al. (2015<br>Liu et al. (2010)                       |  |  |  |
| ble 3. Observations of ozona<br>Instrument (satellite)<br>SCIAMACHY (Envisat)<br>MIPAS (Envisat)<br>MLS (Aura)<br>OMI (Aura)<br>GOME-2 (Metop-A) | e used in the<br>Product<br>TC<br>Prof<br>Prof<br>TC<br>TC<br>TC | CAMS-Rean assimilation system<br>Data provider, version<br>ESA, CCI<br>(TC_SCIAMACHY), fv0300<br>ESA, NRT<br>ESA, CCI<br>(HARMOZ_MIPAS),<br>fv0004<br>NASA, V4<br>KNMI, V3<br>KNMI, NRT<br>ESA, CCI, fv0100<br>ESA, CCI, fv0300<br>NRT | Period<br>1 Jan 2003 to 8 Apr 2012<br>27 Jan 2003 to 26 Mar 2004 and<br>27 Jan 2005 to 31 Mar 2012<br>3 Aug 2004 to 31 Dec 2016<br>3 Aug 2004 to 31 May 2015<br>1 Jun 2015 to present<br>23 Jan 2007 to 31 Dec 2012<br>1 Jan 2013 to 31 Dec 2016<br>1 Jan 2017 to present | Reference<br>Lerot et al. (2009)<br>Von Clarmann et al.<br>(2003, 2009)<br>Schwartz et al. (2015)<br>Liu et al. (2010)<br>Hao et al. (2014) |  |  |  |

SBUV/2

(NOAA-14-NOAA-19)

PC

NASA, v8.6 13L

NRT 21L

#### CEOS AC-VC-16 teleconference, June 8-12, 2020

#### J.-C. Lambert et al. - Tropospheric Ozone Validation Plan

Bhartia et al. (1996)

McPeters et al. (2013)

1 Jan 2003 to 7 Jul 2013

8 Jul 2013 to present

# **Assessment of tropospheric ozone from satellites** IGAC Tropospheric Ozone Assessment Report (TOAR)

## Lessons from TOAR-I (Gaudel et al., 2018)

- Satellites report a wide variety of trends (2008-2016) and variations in tropospheric ozone.
- Differences in vertical sensitivity and sampling
- Differences in tropopause column definition
- Biases change over time.
- (In)consistencies with TOST (ozonesonde trajectories)

## TOAR-II Satellite Ozone Working Group goals

https://igacproject.org/satellite-ozone-working-group

- Address above issues
- Global chemistry transport models as transfer standard
- Reconcile satellite-, ground- and aircraft-based data
- Provide common methodology for validation of trends







#### J.-C. Lambert et al. - Tropospheric Ozone Validation Plan

#### CEOS AC-VC-16 teleconference, June 8-12, 2020

# **Assessment of tropospheric ozone from satellites**

FGU

## Validation practices for: sensitivity, bias, drift, precision, sampling errors, geophysical features

1 Royal Belgian Institute

<sup>2</sup>Laboratoire de l'Atmos

(Université de La Réuni

<sup>3</sup>Laboratoire de Météore

(Université Blaise Pasca

4Institute of Space and

<sup>5</sup>Istituto di Fisica Appli

<sup>6</sup>Jet Propulsion Laborat

7Laboratoire Atmosphè

Centre National de la Re

Atmos. Meas. Tech., 8, 2093-2120, 2015 www.atmos-meas-tech.net/8/2093/2015/ doi:10.5194/amt-8-2093-2015 C Author(s) 2015 CC Attribution 3.0 License (c) (l)



### Information content, validation metrics... Discussed at ACC-10/11

Round-robin evaluation of nadir ozone profile retrievals: methodology and application to MetOp-A GOME-2

A, Keppens<sup>1</sup>, J.-C, Lambert<sup>1</sup>, J, Granville<sup>1</sup>, G, Miles<sup>2</sup>, R, Siddans<sup>2</sup>, J, C, A, van Peet<sup>3</sup>, R, J, van der A<sup>3</sup>, D, Hubert<sup>1</sup>, T. Verhoelst1, A. Delcloo4, S. Godin-Beekmann5, R. Kivi6, R. Stübi7, and C. Zehner8

<sup>1</sup>Belgian Instr <sup>2</sup>Rutherford <sup>3</sup>Roval Nethe <sup>4</sup>Roval Meteo <sup>5</sup>Laboratoire Versailles St-<sup>6</sup>Finnish Met <sup>7</sup>Federal Offic <sup>8</sup>European Sr

Correspond

Atmos. Meas. Tech., 11, 3769-3800, 2018 https://doi.org/10.5194/amt-11-3769-2018 C Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. (c) (t)

Atmospheric Measurement Techniques

### GOME(-2A/B), SCIA, OMI, IASI-A/B

Quality assessment of the Ozone cci Climate Research Data Package (release 2017) - Part 2: Ground-based validation of nadir ozone profile data products

Arno Keppens<sup>1</sup>, Jean-Christopher Lambert<sup>1</sup>, José Granville<sup>1</sup>, Daan Hubert<sup>1</sup>, Tiil Verhoelst<sup>1</sup>, Steven Compernolle<sup>1</sup>, Barry Latter<sup>2</sup>, Brian Kerridge<sup>2</sup>, Richard Siddans<sup>2</sup>, Anne Boynard<sup>3,4</sup>, Juliette Hadji-Lazaro<sup>3</sup>, Cathy Clerbaux<sup>3,5</sup>, Catherine Wespes<sup>5</sup>, Daniel R. Hurtmans<sup>5</sup>, Pierre-Francois Coheur<sup>5</sup>, Jacob C, A, van Peet<sup>6</sup>, Ronald J van der A<sup>6</sup>, Katerina Garane<sup>7</sup>, Maria Elissavet Koukouli<sup>7</sup>, Dimitris S. Balis<sup>7</sup>, Andy Delcloo<sup>8</sup>, Rigel Kivi<sup>9</sup>, Réné Stübi<sup>10</sup>, Sophie Godin-Beekmann<sup>3</sup>, Michel Van Roozendael<sup>1</sup>, and Claus Zehner<sup>11</sup>

1 Royal Belgian Institute for Space Aeronomy (BIRA-IASB), 1180 Brussels, Belgium <sup>2</sup>Rutherford Appleton Laboratory (RAL) and National Centre for Earth Observation (NCEO), Chilton, Didcot, OX11, UK

<sup>3</sup>LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSO, CNRS, 78280 Paris, France 4SPASCIA, 31520 Ramonville-Saint-Agne, France

<sup>5</sup>Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium

- <sup>6</sup>Royal Netherlands Meteorological Institute (KNMI), 3731 De Bilt, the Netherlands
- <sup>7</sup>Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece





Atmos. Meas. Tech., 9, 2497-2534, 2016 www.atmos-meas-tech.net/9/2497/2016/ doi:10.5194/amt-9-2497-2016 @ Author(s) 2016. CC Attribution 3.0 License. (c) ①



### **Biases, drifts and their uncertainties**

Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records

Daan Hubert<sup>1</sup>, Jean-Christopher Lambert<sup>1</sup>, Tiil Verhoelst<sup>1</sup>, José Granville<sup>1</sup>, Arno Keppens<sup>1</sup>, Jean-Luc Barav<sup>2,3</sup>, Adam E. Bourassa<sup>4</sup>, U

Atmos. Meas. Tech., 12, 4379-4391, 2019 Karl W. Hoppel<sup>8</sup>, Brya C. Thomas McElrov<sup>1</sup> https://doi.org/10.5194/amt-12-4379-2019 James M. Russell III1 © Author(s) 2019. This work is distributed under Kevin B. Strawbridge<sup>2</sup> the Creative Commons Attribution 4.0 License. Anne M. Thompson<sup>21</sup> cc 🛈 Peter von der Gathen

Atmospheric EGL Measurement Techniques

### **Representativeness**, vertical sampling

Harmonization and comparison of vertically resolved atmospheric state observations: methods, effects, and uncertainty budget

Arno Keppens, Steven Compernolle, Tijl Verhoelst, Daan Hubert, and Jean-Christopher Lambert

#### Department of Atmd 1180 Brussels, Belgi Correspondence: A Received: 21 March

Revised: 18 June 20

### Validation, sampling errors. geophysical variability and patterns

**TROPOMI** tropospheric ozone column data : Geophysical Abstract. Many ar

assessment and comparison to ozonesondes, GOME-2B and OMI

Daan Hubert<sup>1</sup>, Klaus-Peter Heue<sup>2</sup>, Jean-Christopher Lambert<sup>1</sup>, Tijl Verhoelst<sup>1</sup>, Marc Allaart<sup>3</sup>, Steven Compernolle<sup>1</sup>, Patrick D. Cullis<sup>4</sup>, Angelika Dehn<sup>5</sup>, Christian Félix<sup>6</sup>, Bryan J. Johnson<sup>4</sup>, Arno Keppens<sup>1</sup>, Debra E. Kollonige<sup>7,8</sup>, Christophe Lerot<sup>1</sup>, Diego Lovola<sup>2</sup>, Matakite Maata<sup>9</sup>, Sukarni Mitro<sup>10</sup>, Maznorizan Mohamad<sup>11</sup>, Ankie Piters<sup>3</sup>, Fabian Romahn<sup>2</sup>, Henry B, Selkirk<sup>12,13</sup>, Francisco R, da Silva<sup>14</sup>, Rvan M, Stauffer<sup>13,15</sup>, Anne M, Thompson<sup>13</sup>, J. Pepiin Veefkind<sup>3</sup>, Holger Vömel<sup>16</sup>, Jacquelyn C, Witte<sup>16</sup>, and Claus Zehner<sup>5</sup>

<sup>1</sup>Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle (Brussels), Belgium 2German Aerospace Centre (DLR), Münchener Straße 20, 82234 Weßling, Germany <sup>3</sup>Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3730 AE De Bilt, The Netherlands <sup>4</sup>NOAA Global Monitoring Laboratory (NOAA/ESRL/GML), 1325 Broadway, Boulder 80305-3337, CO, USA <sup>5</sup>European Space Agency/Centre for Earth Observation (ESA/ESRIN), Largo Galileo Galilei 1, 00044 Frascati (Roma), Italy Eederal Office of Meteorology and Climatology MeteoSwiss Payerne Switzerland

#### CEOS AC-VC-16 teleconference, June 8-12, 2020

#### J.-C. Lambert et al. - Tropospheric Ozone Validation Plan

# **Quality Indicators for tropospheric ozone column**



### Bias

- Vs. ozonesondes :
- Dependences SAT-to-SAT :
  - meridian :
  - zonal:
  - seasonal:
- Consistent with ex-ante systematic error?
- Consistent with tropopause definition/sensitivity effects ?

### **Dispersion**

- From pairwise :
- From triplets :
- Dependences SAT-to-SAT :
  - meridian:
  - seasonal:
- Sampling errors :
- Consistent with ex-ante uncertainty estimate?

### **Geophysical patterns & signals**

- Annual + semi-annual cycles ?
- ENSO, MJO, QBO ?
- Zonal wave one ?
- Biomass burning season?
- Other known features?







# **Sensitivity and Tropospheric Burden**

CE

Lack of harmonisation between the different satellite records, e.g., regarding terms and definitions of the tropopause and the tropospheric content

Use high-resolution T and O<sub>3</sub> profiles and averaging kernels (or weighting functions) to explore effects of

- difference in top level tropospheric column,
- difference in tropopause definition,
- difference in auxiliary data to define tropopause.

Correlative T and  $\mathsf{O}_{^3}$  profile data

- ozonesonde network (GAW, NDACC, SHADOZ)
- (IAGOS aircrafts)
- (NDACC and TOLNet tropospheric lidars)
- (NDACC FTIR)



#### CEOS AC-VC-16 teleconference, June 8-12, 2020

# **Sensitivity and Tropospheric Burden**



Adapted from Keppens et al., 2018



# **O3S-DQA Improving Ozonesonde Network Homogeneity**



WMO/GAW O3S-DQA evaluation/improvement of ozonesonde network(s) homogeneity



- Satellite ensemble based evaluation approach
- 2000-2013; 60 WOUDC sites, 28 NDACC sites, SHADOZ
- Network inhomogeneities caused by ozonesonde type, manufacturer, solution strength
- By-product: mutual consistency of data archives (WOUDC, NDACC, SHADOZ, ESRL...)

# Assessment of tropospheric ozone from satellites CE Ongoing activities

## NASA (G. Labow et al.)



- The Great Tropospheric Ozone Cook-Off @CEOS AC-VC-15
- Intercomparison of monthly/daily gridded satellite data records
  - Spatial structure of the bias

## DLR (K.-P. Heue, M. Coldewey-Egbers, D. Loyola et al.)



- Harmonisation, multi-satellite trends
- Intercomparison CCD S5P, GOME-2, OMI and S5P/BASCOE
  - Spatial & temporal structure of the bias
  - Trends
  - Validation with RMIB (A. Delcloo)



• National project CASTOAR with ULB (P.F. Coheur, C. Wespes) and RMIB (R. Van Malderen)



- Characterise & understand differences between satellite tropospheric O<sub>3</sub> using ground-based comparisons (ozonesondes, NDACC FTIR)
  - Tropospheric content
  - Vertical sensitivity & smoothing
  - Long-term stability
  - Trends
- Assessment of known geophysical signatures

## Other activities/groups welcome

• IAGOS aircraft data ?

# Requirement: Identification of tropospheric ozone column datasets CE 695



## Identification via GoogleDoc registration sheet Example: S5P TROPOMI tropical tropospheric ozone

- Convective Cloud Differential (CCD) technique using
  - TROPOMI Level-2 total ozone column data (GODFIT v4)
  - TROPOMI Level-2 cloud data (OCRA + ROCINN\_CRB)
- Represents
  - O3 column between surface and 270 hPa
  - daily Level-3 product, 0.5° lat. x1° long., latitude range 20°S-20°N
  - 3-day moving average of cloud-free data
  - Associated vertical sensitivity/smoothing estimate: ...
  - Associated uncertainty estimates: ...
- Processed at DLR with L2\_O3\_TCL OFFL processor v01.01.05-08
- Available operationally since 30 Apr 2018 on the Copernicus data hub: <u>https://scihub.copernicus.eu</u>



CEOS AC-VC-16 teleconference, June 8-12, 2020

J.-C. Lambert et al. - Tropospheric Ozone Validation Plan



CEOS VC-20-01 Tropospheric Ozone Activity

# **Geophysical Validation Goals and Plans**



- VC-20-01: 'Tropospheric O3 dataset validation and harmonization' due by end of 2022
- Initial results to be presented next year in AC-VC-17
- Agreed two reference years for global and regional distributions: 2017-2018
- Agree on ground-based stations & regions for trend & drift studies
- Register and give access to satellite data with requested identification and guidelines (QA filters etc.) ⇒ Request *GoogleDocs* link to <u>Arno.Keppens</u> and <u>Daan.Hubert</u> both at <u>@aeronomie.be</u>
- Coordination with TOAR-II plans and needs

| €  | → C' û                      | 0 🔒                                      | https://docs.google.com                  | m/spreadsheets/d/1MLSk                                                        | u2D3RZLgY   | 5YT6vfnjd0LAosjsxD                                                                                 | d0qDxG9YoZK0/edit#g                                                                                        | 90% 🖾                            | ☆ Q Search                              |                     |                                                 |                                                   |                                  | lii\ C               | ) 🗾 🕲       | =     |
|----|-----------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|---------------------|-------------------------------------------------|---------------------------------------------------|----------------------------------|----------------------|-------------|-------|
| в  | CEOS ACC to<br>Bestand Bewe | ropo O3 data shee<br>rken Weergeven Invo | t 🐵<br>begen Opmaak Gegev                | ens Extra Add-ons He                                                          | lp.         |                                                                                                    |                                                                                                            |                                  |                                         |                     |                                                 |                                                   | •                                | Delen                | Inlogg      | ən    |
| *  |                             |                                          |                                          |                                                                               |             |                                                                                                    |                                                                                                            |                                  |                                         |                     |                                                 |                                                   |                                  |                      |             |       |
| fx | OFFL 05 01 01 08            |                                          | c                                        | D                                                                             | E           |                                                                                                    | 0                                                                                                          | н                                | 1                                       | J                   | к                                               | L                                                 | м                                | N                    | 0           |       |
| 1  | TROPO O3                    | Data vertice                             | Contact / Di                             | Download location                                                             | Data policy | Important                                                                                          | Sensor(s) /                                                                                                | Tropo O3                         | Tropo O3                                | Ozone & diagnostics |                                                 |                                                   | Time                             | 1                    |             | rizon |
| 2  | DATA RECORD                 | Data version                             | Contact/Pi                               | Downoad location                                                              | bata poincy | documentation                                                                                      | Input data version                                                                                         | te chnique                       | merging                                 | Unit                | & meaning                                       | Sampling                                          | Resolution                       | Coverage             | Sampling    | Re    |
| 3  | S5P/CCD MPC                 | OFFL<br>01.01.05-01.01.08                | Diego Loyola &<br>Klaus-Peter Heue (DLR) | https://s5phub.copernicus.e<br>u/dhus/#/home                                  | open access | https://sentinel.esa.int<br>/web/sentinel/technica<br>l-quides/sentinel-5p/pr<br>oducts-algorithms | S5p/TROPOMI OFFL                                                                                           | Convective Cloud<br>Differential | N/A                                     | mol m-2             | stddev of<br>computed<br>tropo O3<br>within bin | daily @<br>13:30 LT                               | centered<br>3-day<br>moving mean | 5/2018 -<br>5/2020   | 0.5 x 1.0   | 0.    |
| 4  | S5P/BASCOE DLR              |                                          | Diego Loyola &<br>Klaus-Peter Heue (DLR) |                                                                               |             |                                                                                                    | S5p/TROPOMI OFFL,<br>assimilated Aura/MLS<br>(BA SCOE)                                                     | Residual using model<br>data     | N/A                                     |                     |                                                 | daily?                                            | 6-day mean?                      | 5/2018 ?             |             |       |
| 5  | GOME-type<br>CCD merged     |                                          | Diego Loyola &<br>Klaus-Peter Heue (DLR) |                                                                               |             | Heue et al, AMT 2016                                                                               | ERS-2/GOME,<br>Envisat/SCIAMACHY,<br>Aura/OMI,<br>Metop-A/GOME-2,<br>Metop-B/GOME-2<br>(all GODFIT v4 TO3) | Convective Cloud<br>Differential | bias & drift corrected<br>wrt SCIAMACHY |                     |                                                 | monthly @<br>(9:30, 10:00,<br>10:30, 13:00<br>LT} |                                  | 7/1995 -<br>12/2018? | 1.25 x 2.50 |       |
| 6  | OMI/MLS NASA                |                                          | J.R. Ziemke (NASA)                       | https://acd-ext.gsfc.nasa.go<br>v/Data_services/cloud_slice/<br>new_data.html | open access | Ziemke, JGR 2006                                                                                   | Aura/OMI v8.5,<br>Aura/MLS v3.3 (?)                                                                        | Limb-Nadir Matching              | N/A                                     |                     |                                                 | (monthly,<br>seasonal) @<br>13:45 LT              | month?                           | 10/2004 -<br>12/2019 | 1.00 x 1.25 |       |
|    | OMPS/MERRA2                 |                                          | J.R. Ziemke, G. Labow                    |                                                                               |             |                                                                                                    | OMPS-NP,                                                                                                   | Residual using model             |                                         |                     |                                                 |                                                   |                                  |                      |             |       |





