Aerosol Monitoring by Assimilation of AOD and Radiances

Part1:

Evaluation of satellite AOD within the Copernicus Atmospheric Monitoring Service (CAMS)

Sebastien Garrigues (ECMWF)

Part 2: Aerosol Radiance Assimilation Study (ARAS)

Samuel Quesada-Ruiz (ECMWF)

Atmosphere Monitoring

Satellite Aerosol Optical Depth (AOD) Monitoring within the Copernicus Atmospheric Monitoring Service (CAMS) Data Assimilation System

RAR

Atmosphere Monitoring

<u>Garrigues S.,</u> Engelen R., Quesada S., Benedetti A., Ades M., Kipling Z., Flemming, J., Inness A., Ribas R., Barre, J., Augusti-Panareda, A., Parrington, M., Peuch V-H.,

CAMS AEROSOL DATA ASSIMILATION SCHEME

Atmosphere Monitoring

Satellite AOD MODIS (AQUA, TERRA) PMAp (METOP A,B,C)

4D VAR data assimilation

IFS-AER: Integrated Forecasting Sytem -aerosol scheme AER

IFS (ECMWF NWP model):

- Semi-Lagrangian advection model
- 137 atm levels
- 40 km horizontal resolution

AER:

- Bulk-bin scheme
- Species: sea salt, dust, organic matter, black carbon, sulfate, nitrate, amomium
- Emission sources: biomass burning (GFAS), CAMS_GLOB dataset

5 day forecast, reanalysis

AOD, aerosol concentration, PM2.5, PM10

European

opernicus

INTRODUCTION

Atmosphere Monitoring

- Needs for new observational data streams:
 - more accurate observations,
 - enhanced spatial and temporal coverage,
 - increased resilience to instrument failure.
- Use of the IFS data assimilation system to monitor and evaluate new aerosol satellite products

EVALUATION OF SATELLITE AOD VERSION

PMAp-B: v2.2c versus 2.2b

Impact of cloud contamination

EVALUATION OF AOD PRODUCT UNDER DEVELOPMENT

Atmosphere Monitoring

SENTINEL-3/SLSTR (S3a) over Ocean

Impact of radiance calibration in the SWIR

opernicus

European Commission

Feb-March 2019 average over ocean

FEVALUATION OF MULTI-SATELLITE AOD CONSISTENCY

Atmosphere Monitoring

S3 vs TERRA, AQUA, PMAp over ocean

Large departure between S3 and other products in Southern oceans

TAKE HOME MESSAGES(1/2)

Monitoring

Contribution of aerosol data assimilation system to CEOS

- Consistent intercomparison of satellite products by comparing model equivalent of satellite AOD
- Identify deficiencies in satellite products. .
- Development of future products (3MI, MAIA...).
- Feedbacks for the design of future missions.

TAKE HOME MESSAGES (2/2)

Atmosphere Monitoring

Needs for operational NRT aerosol forecast system

- Exchange of AOD algorithm expertise
- AOD product intercomparison
- Uncertainty and bias quantification

Aerosol Radiance Assimilation Study (ARAS)

Funded by ESA

CEOS AC-VC-16

11 June 2020

Samuel Quesada-Ruiz

samuel.quesada@ecmwf.int

Acknowledgements:

Rossana Dragani, Philippe Lopez, Peter Lean, Gabor Radnoti, Marcin Chrust, Tomas Wilhelmsson, Alan Geer, Zak Kipling, Niels Bormann, Luke Jones, ...

Angela Benedetti Julie Letertre-Danczak Marco Matricardi

Gareth Thomas

Ben Veihelmann (ESA project officer)

European Space Agency

Scientific motivation of ARAS

(image from Tony McNallys's PreSAC 2018)

Technical challenges, data and tools

Direct assimilation of aerosol-sensitive radiances in an **online 4D-Var system** has <u>never before</u> been successfully implemented

A radiative transfer model is needed to convert the model state into top-of-atmosphere radiance IFS uses RTTOV for thermal-IR radiance generation, which does *not yet* have visible capabilities

Evaluation of the analyses against AERONET AOD

summer 2017 (JJA) @ 870 nm

Model 12hr mean against L2.0 Aeronet AOT at 870nm. Used 389 sites globally. Voronoi-weighted with r_{max}=1276km. Jun - Aug 2017. 00/12Z FCs from T+3 to T+12. ○ CTRL □ ODA Ocean wBC ◇ RFA Ocean wBC

ARAS is an <u>exploratory</u> project to assess the benefits of the assimilation of aerosol-sensitive radiances

Results:

The	reflectance	assimilation	performance	is
comparable to that of the AOD				

Conclusions:

Extremely successful project

Remarkable performance for being a new development

More development is still necessary

Expectations:

Reflectance assimilation will become as mainstream as AOD assimilation (with some investment)

Total

Weight

 \bigcirc 1000

○ 800

600

O

O 400

o 200

Paving the way towards visible radiances assimilation

0.413

Observations

0.206

MODIS – 1 March 2017

0.619 0.825

Assimilation of level-2 aerosol visible radiances improves representation of dust outflow from the Sahara desert

ARAS developments could be adapted for cloud assimilation and open the way towards a fuller exploitation of visible radiances to improve NWP

Total AOD at 550 nm

Web article @ <u>https://www.ecmwf.int/en/about/media-centre/news/2020/progress-towards-using-visible-light-satellite-data-weather</u> ECMWF Newsletter N162 Winter 2020 @ <u>https://www.ecmwf.int/en/newsletter/162/news/progress-towards-assimilating-visible-radiances</u>