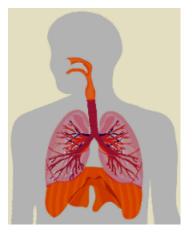
Satellite aerosol products and PM2.5 current state of the art

David J. Diner Yang Liu

Jet Propulsion Laboratory California Institute of Technology EMORY | ROLLINS SCHOOL OF PUBLIC HEALTH

CEOS Atmospheric Composition – Virtual Constellation June 2020

Airborne particulate matter (PM): a major risk to human health



1

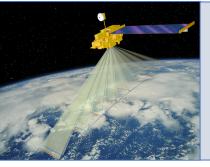
Airborne PM has been associated with

- premature deaths (>4 million per year globally)
- cardiovascular and respiratory disease
- pregnancy complications and low birth weight
- o lung cancer
- o many other adverse health outcomes

 $PM_{2.5}$ = near-surface mass concentration of airborne particles < 2.5 µm in aerodynamic diameter

Surface monitors

- PM_{2.5} determined in situ
- o high accuracy
- sparsely distributed



Satellites

- PM_{2.5} inferred indirectly
- o moderate accuracy
- o enable mapping

Relationship of aerosol parameters to PM

Satellite aerosol optical depth (AOD)

- Column-averaged (passive sensors)
- Dimensionless
- Observed at time of overpass only (low Earth orbit)
- Corresponds to ambient conditions

PM concentration

- Surface level
- \circ Reported in µg m⁻³
- Sampled frequently and typically daily-averaged for health studies
- Corresponds to dry mass

 $PM_{2.5} \approx \frac{4\rho r_{eff}}{3HQ_{ext,drv}f(RH)} \cdot AOD_{satellite}$

- $\circ \rho$ = particle density
- \circ r_{eff} = effective particle radius
- \circ H = height of the aerosol layer
- Q_{ext,dry} = extinction efficiency under dry conditions
- \circ f(RH) = conversion factor from dry to ambient

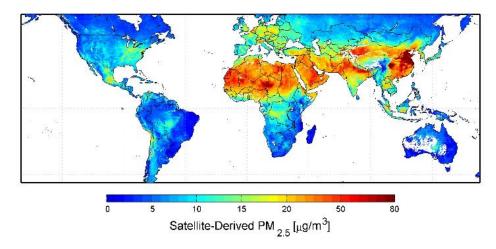
 Aerosol parameters are particle type dependent

Koelemeijer et al., AE (2006), Gupta and Christopher, JGR (2009)

Transformation of satellite aerosol to PM: Scaling with chemical transport models (CTMs)

$$PM_{2.5} = \eta \times AOD_{satellite} = \frac{PM_{2.5,CTM}}{AOD_{CTM}} \times AOD_{satellite}$$

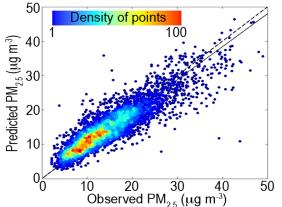
- o Used in the US by Liu et al., JGR (2004) using MISR, GEOS-Chem, GOCART
- Extended globally by van Donkelaar et al., JGR (2006), EHP (2010, 2015) using MODIS, MISR, SeaWiFs and GEOS-Chem



 Applied to many health impact studies including the Global Burden of Disease (Brauer et al., ES&T, 2016; Gakidou et al., Lancet, 2017)

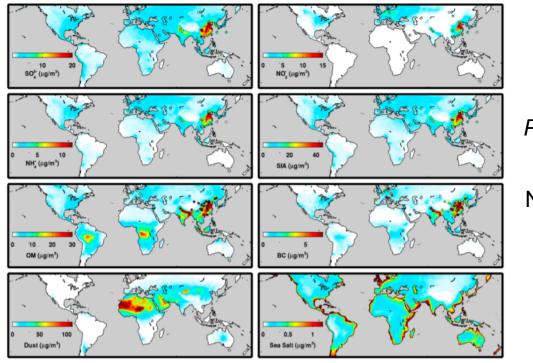
Transformation of satellite aerosol to PM: Regression models

- $PM_{2.5} = \alpha$ (Spatiotemporal offsets) + β · AOD_{satellite}
 - + γ Geospatial predictors (road density, population, land use)
 - + δ · Spatiotemporal predictors (e.g., meteorological variables)
- Coefficients calibrated using surface monitor measurements
- Bayesian statistical formulation (e.g., *Shaddick et al., Appl. Stat., 2018*)
- Linear (Lee et al., ACP, 2011), nonlinear (Sorek-Hamer et al., Environ. Poll., 2013), and machine learning approaches used (e.g., Gupta and Christopher, JGR, 2009; Hu et al., ER, 2017)
- Applied to many health impact studies, e.g., birth outcomes (*Kloog et al., EH, 2012*) and pediatric respiratory infections (*Strickland et al., EHP, 2016*)



Transformation of satellite aerosol to *speciated* PM: CTM scaling approach

- \circ Extension to speciated PM_{2.5} (e.g., SO₄, NO₃, OC, EC/BC, dust)
 - Species-specific values of η derived from GEOS-Chem (*Philip et al., ES&T, 2014*)

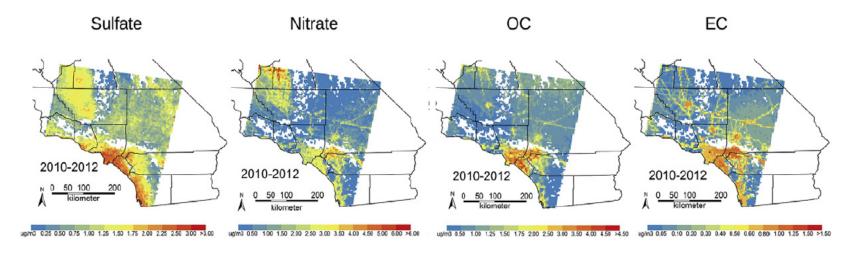


Philip et al., ES&T (2014)

No ground observation involved

Transformation of satellite aerosol to *speciated* PM: Regression approach

- \circ Extension to speciated PM_{2.5} (e.g., SO₄, NO₃, OC, EC/BC, dust)
 - Fractional AODs of different particle types from MISR (*Franklin et al., RSE, 2017; Meng et al., AE, 2018*), calibrated using speciated PM_{2.5} from CSN/IMPROVE (*Solomon et al., JAWMA, 2014*), SPARTAN (*Snider et al., AMT 2015*)



Meng et al., AE (2018)

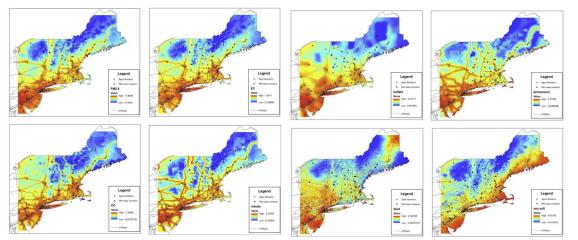
Requires ground PM_{2.5} speciation measurements

Transformation of satellite aerosol to PM: Advanced models

 $_{\odot}\,$ Integration of CTM and regression approaches

7

- CTM-based scaling terms used as spatiotemporal predictors in regression models and bias-corrected using surface monitors (*Dey et al., RSE, 2012*)
- $_{\odot}$ Parameters other than total or fractional AOD as predictors
 - Particle effective radius, phase function asymmetry from AERONET inversion products show good skill (*Sorek-Hamer et al., AGU, 2019*)

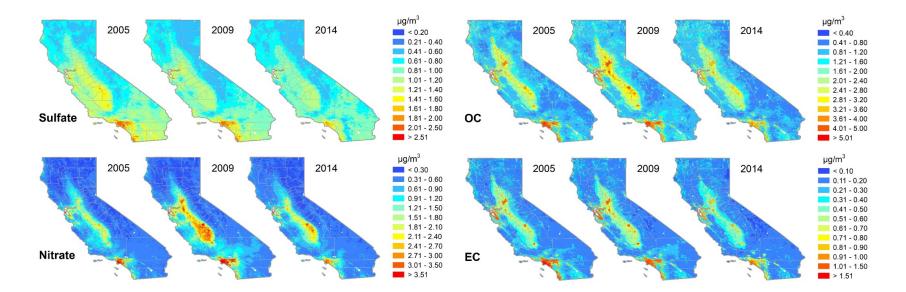


Di et al., AE (2016)

Land use regression using GEOS-Chem simulation results, no AOD involved

MISR aerosol microphysical properties as predictors in machine learning models

- ML models often make more accurate predictions than statistical models, but they require a large training dataset, difficult to collect
- High quality model simulations, meteorological fields, and land use variables are important predictors in addition to satellite retrievals



Geng et al., ERL (2020)