## Global Estimates of Long-Term Fine Particulate Matter Concentrations Derived from Multiple Data Sources

### **Randall Martin**

with contributions from

Melanie Hammer, Emmie Le Roy, Chi Li, Jun Meng, Jacob McNeil, Brenna Walsh, Crystal Weagle, Aaron van Donkelaar



Josh Apte (Berkeley), Michael Brauer (UBC), Bonne Ford (CSU), Michael Garay (JPL), Daven Henze (Boulder), Christina Hsu (NASA), Ralph Kahn (NASA), Olga Kalashnikova (JPL), Robert Levy (NASA), Alexei Lyapustin (NASA), Vanderlei Martins (UMBC), Jeff Pierce (CSU), Yinon Rudich (Weizmann), Andrew Sayer (NASA), Qiang Zhang (Tsinghua)

> CEOS Virtual Meeting 11 June 2020

## Vast Regions Have Insufficient PM<sub>2.5</sub> Measurements for Exposure Assessment

No One Knows Where is the City with the Highest PM<sub>2.5</sub> Concentrations



Density of Long-Term PM<sub>2.5</sub> Monitoring Sites

Number of PM<sub>2.5</sub> monitors per million inhabitants by country for any of the years 2010-2016.

Many countries have no PM<sub>2.5</sub> monitoring

Global population-weighted distance to monitor = 220 km

Martin et al., AE, 2019

## Long-Term (1998-2018) Aerosol Optical Depth (AOD) Use AERONET AOD to Assess Relative Accuracy & Combine



### Hammer, van Donkelaar, et al., ES&T, 2020

## Apply Chemical Transport Model (GEOS-Chem) to Calculate Solution to $PM_{2.5} = f(x,y,t,AOD)$



Simulate suite of processes relating AOD&PM<sub>2.5</sub>: e.g. aerosol vertical profile, mass scattering efficiency, hygroscopicity, relative humidity, chemical composition, diurnal variation, irregular sampling

**Coincident sampling with observations** 

www.geos-chem.org

## **Geophysical Satellite-Derived PM<sub>2.5</sub> for 2015**



### If GEOS-Chem AOD/PM<sub>2.5</sub> excluded: $R^2 \rightarrow 0.73$ If only single satellite AOD retrieval: $R^2 \rightarrow 0.5$ -0.7

### Information source for:

Global Burden of Disease OECD Regional Well Being Index World Health Organization World Bank HEI State of Global Air UNICEF Energy Policy Institute

Hammer, van Donkelaar, et al., ES&T, 2020

# Similarity Between Annual Mean AOD and PM<sub>2.5</sub> Encouraging for Satellite-Derived PM<sub>2.5</sub>



#### Hammer, van Donkelaar, et al., ES&T, 2020

### $R^2 = 0.83$

## Satellite-Derived PM<sub>2.5</sub> Timeseries (1998-2018)



## Statistical Fusion with Ground-Based Monitors Further Improves Consistency; Still Room for Improvement



## Statistical fusion explains ~10% of variance

Error likely driven by modeled relation between AOD and PM<sub>2.5</sub>

Hammer, van Donkelaar, et al., ES&T, 2020

Complex Relation of "Dry" PM<sub>2.5</sub> with AOD Affected by aerosol properties, vertical structure, elevation Dry (35% RH) vs ambient relative humidity (RH) Ground-level vs column aerosol Elevated topography

GEOS-Chem Simulation of PM<sub>2.5</sub> / AOD for 1998-2018



 $η = PM_{2.5} / AOD (μg m<sup>-3</sup>)$ 

Model sampled coincidently with satellite observations PM<sub>2.5</sub> calculated at 35% RH

Hammer et al., ES&T, 2020

## Surface Particulate Matter Network (SPARTAN): Measures PM<sub>2.5</sub> Mass & Composition at Sites Measuring AOD



b<sub>sp</sub> = nephelometer measurements of aerosol scatter overpass = satellite overpass time

www.spartan-network.org

Snider, Weagle, et al., AMT, 2015

## Conclusions

- Growing interest in global estimates of PM<sub>2.5</sub>
- Increasing consistency of global annual satellitederived PM<sub>2.5</sub> concentrations with ground-based measurements
- Need for dedicated measurements of the relationship of AOD with PM<sub>2.5</sub> mass, scatter, and chemical composition to evaluate and improve simulations of the AOD to PM<sub>2.5</sub> relationship & to better understand relationships at shorter timescales