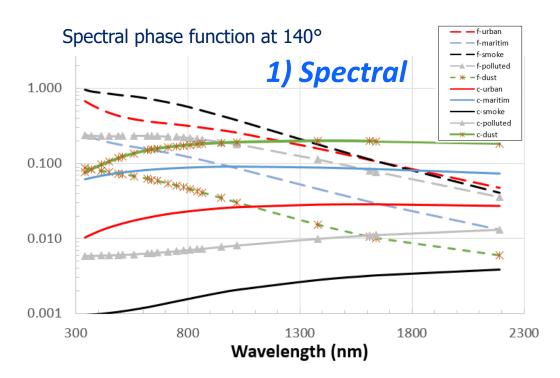


Aerosol Information from the 3MI polarimeter

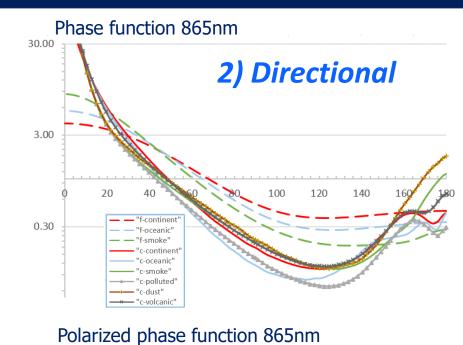
and EPS-SG sensors

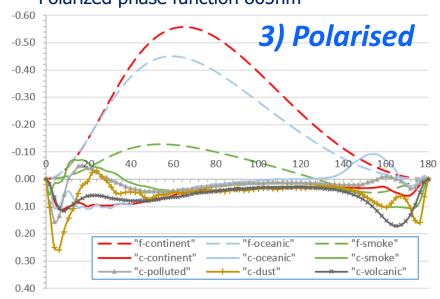
Bertrand Fougnie


for the Cloud & Aerosol Team

Remote Sensing & Products Division

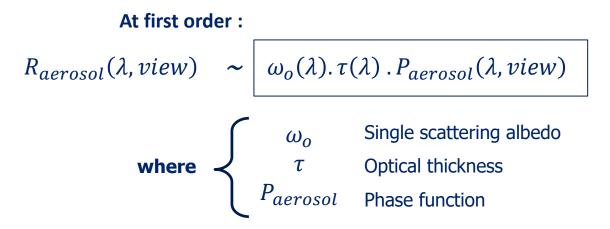
What's the challenge ?


The aerosol optical properties



\rightarrow all depend on :

- Aerosol model (type f/c, microphysics, size distribution, shape, absorption...)
 - Aerosol load (optical thickness)



What's the challenge ?

The measurement

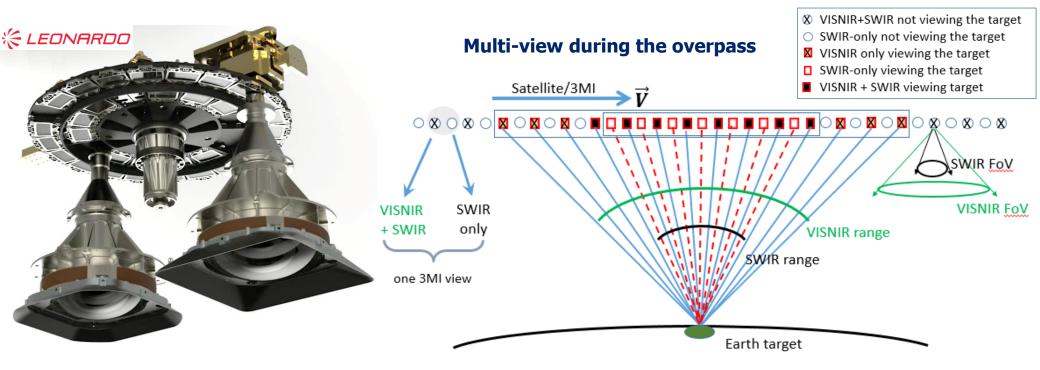
\rightarrow all signatures are mixed in the observed signal

Challenge = disentangle the contributors to retrieve aerosol parameters

→ The analysis of the information content is a prerequisite
→ This includes how the sensor/system is able to sample the spectral, the geometrical, and polarisation information
→ The larger, the better... but not only !

Introduction

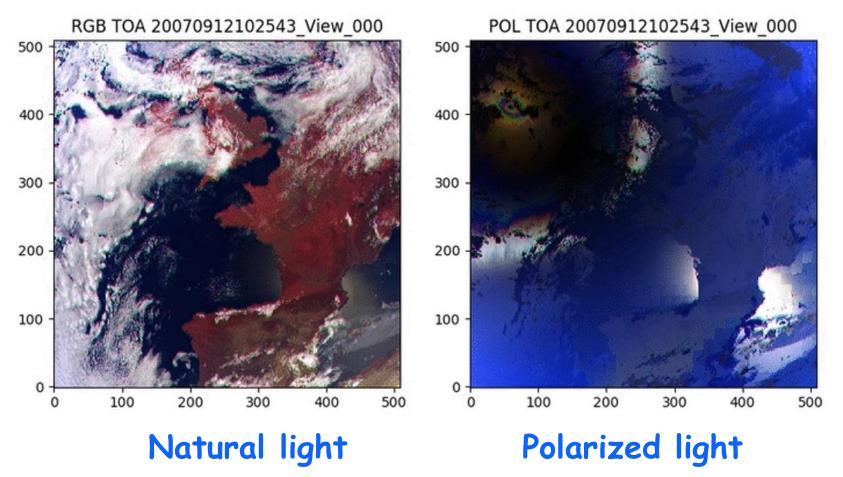
- The observed TOA signal is a combination of various terms:
 - The spectral variation
 - The bidirectional variation
 - The polarized contribution
- All are influenced by the aerosol type (nature, microphysics, size distribution...) and aerosol load (optical thickness)
- A proper aerosol retrieval includes:
 - The analysis of the information content
 - The associated identification of the constraints to be added on the retrieval (if and where needed)
 - The identification of the aerosol parameters to be retrieved and their expected validity range
- The information content analysis is crucial:
 - 3MI provides:
 - 12 bands, 3 polarisations, and 14 views
 - EPS-SG provides in addition:
 - the full spectral range (reflective and thermal) with high-resolution bands
 - a sub-pixel information
- 3MI and EPS-SG sensors are key-elements for the aerosol retrieval


EUMETSAT Polar System - Second Generation

EUMETSAT

3MI on an nutshell

- The instrument relies on a very simple concept
 - 2 wide field-of-view optics (VISNIR + SWIR)
 - 2D detectors at focal planes (CCD for VISNIR, and CMOS for SWIR)
 - 1 filter wheel inc. polarizer (12 bands from 410 to 2130nm with I/Q/U)



See Fougnie et al., 2018 in JQSRT APOLO'17

Why polarisation is a key-element for the observation of atmospheric scatterers ?

Level 1 TOA reflectance

First overflight (simulated 3MI data)

Aerosol retrieval from 3MI

- Large information content:
 - 14 views : from -50° backward to 50° forward
 - 12 spectral bands: from 410 to 2130nm
 - 3 polarisations providing I, Q, and U (except for absorption bands)
 - \rightarrow Potentially 420 information per pixel to feed the retrieval
- The aerosol retrieval will be based on an optimal simultaneous retrieval of the surface and aerosol
 - GRASP was adopted to be the best solver for this specific information
 - Configured to an Operational processor (product available 1:30 after sensing)
 - The simultaneous retrieval will be adjusted to optimise the performance of the aerosol retrieval

Aerosol retrieval from 3MI

- It is potentially possible to address the following aerosol properties:
 - Aerosol optical thickness
 - Angstrom coefficient
 - Fine/coarse fraction
 - Single scattering albedo
 - Absorbing aerosol optical thickness
 - Refractive indexes
 - Sphericity fraction
 - Aerosol height
- But it is unrealistic to retrieve all of them and everywhere
 - The geometry of acquisition and/or the surface type strongly influence the performance of the retrieval
- With respect to our user needs, the retrieval will be optimised to derive properly
 - AOD
 - Aerosol model
- Other parameters will be retrieved when/if possible

Aerosol characterization from EPS-SG sensors

- Information content = incredible collection of measurements from the same single platform
- Creating an hyper-instrument with many key-elements for a 4-km aerosol product: MAP (Multi-sensor Aerosol Product)
 - Extended spectral content: UV/VIS/NIR/SWIR/TIR
 - Improved spectral content: highly resolved in absorption lines
 - Sub-pixel radiometric characterisation
 - Multi-view and polarisation

Sensor	Spatial resolution	Swath	Spectral type	Spectral bands	Spectral range	Additional capabilities
3MI	4x4 km²	2200 x	VIS/NIR/SWIR	12 bands	410 to 2130nm	14 views
		2200 km²				Polarisation (I/Q/U)
METimage	0.5x0.5 km²	2670 km	VIS/NIR/SWIR	11 bands	443 to 2250nm	
			TIR	9 bands	3.3 to 13.3µm	
S5-UVN	7.5x7.5 km²	2670 km	UV/VIS/NIR/SWIR	1669 bands	270-300nm	
	50x50 km² (<300nm)			(0.25nm in SWIR	300-370-500nm	
				to 1nm in UV)	685-710nm	
					755-773nm	
					1590-1675nm	
					2305-2385nm	
IASI-NG	12km spot	2000 km	TIR	16921 bands	645 to 2760cm-1	
				(0.25cm-1)		

Aerosol characterization from EPS-SG sensors

The MAP measurements will allow

- A clear consolidation and improvement of the 3MI retrieval (the core aerosol mission)
- An extension of the aerosol parameters to be retrieved

Characterisation		3MI	METimage	S5-UVN	IASI-NG
Cloud identification	CM	х	0		
Cloud decontamination			0		
Ash/Dust detection		Х	0		0
Aerosol height	ALH	0	Х	0	
Aerosol over clouds		0	Х		0
Aerosol model		0	Х	х	
Aerosol fine fraction	FMF	0			
Aerosol Optical Depth	AOD	0	Х	х	
Aerosol absorption	AAI/SSA	0		0	

 The development will consider feedbacks from POLDER/PARASOL, MODIS, and EPS/PMAp (GOME, AVHRR, IASI)

• The polarimeter 3MI will provide spectral, bidirectional and polarised measurements allowing the provision of aerosol characterisation in a long-term operational framework

 Combining the sensors from the EPS-SG platform, the MAP synergistic product will also greatly contribute to the aerosol characterisation by extending the performance and the number of retrieved parameters

Thank you for your attention

