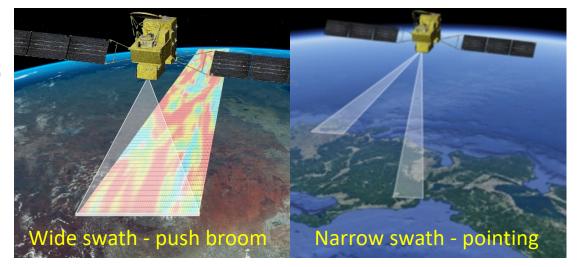
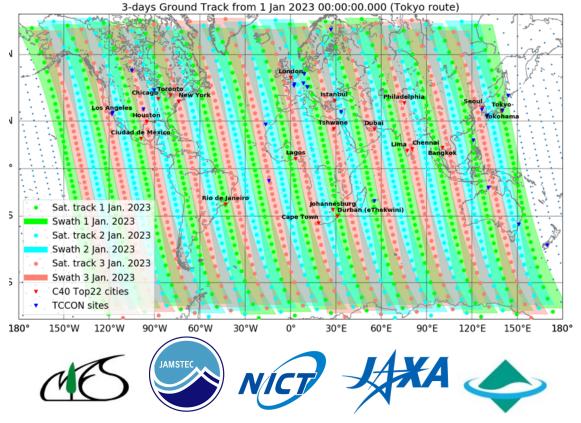
GOSAT-GW (Global Observing SATellite for Greenhouse gases and Water cycle)

TANSO-3 (Total Anthropogenic and Natural emissions mapping SpectrOmeter-3)

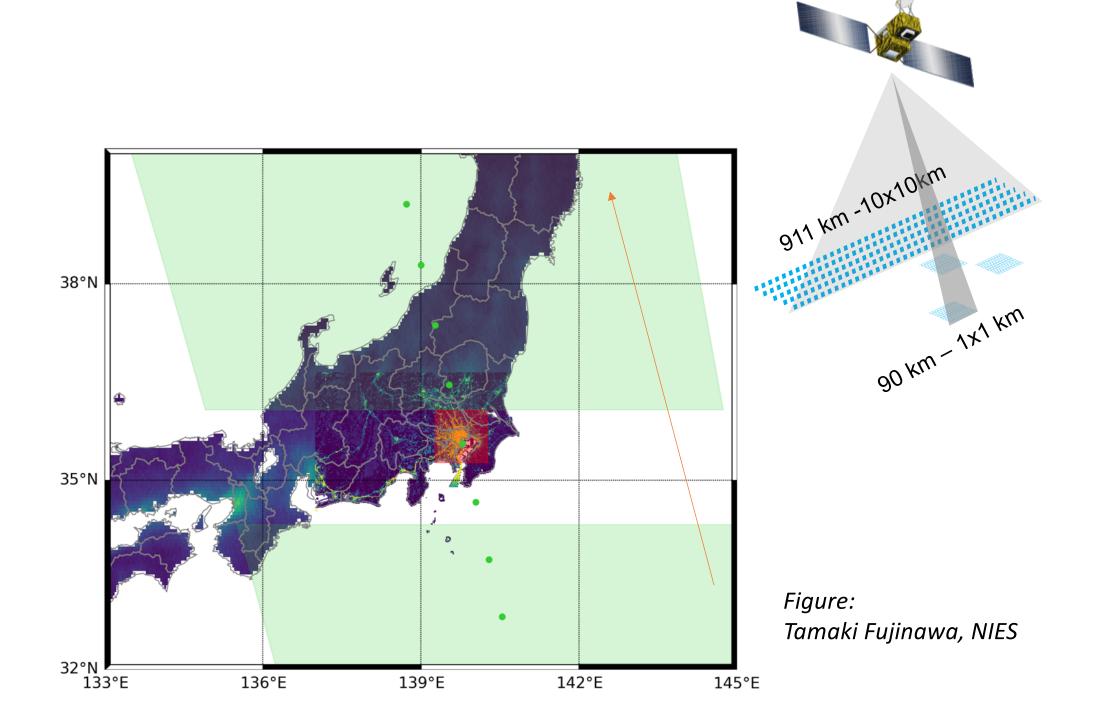

Project: NIES, funded by MoE-Japan Development: JAXA, Mitsubishi Expected Launch: FY2023 (Apr 2023 – Mar 2024) Lifetime: 7 yrs Orbital altitude: 666 km Sensor: grating imaging spectrometer Band: VIS, NIR 0.7, SWIR 1.6 um Species: CO₂, CH₄, NO₂ Swath: 911 km/90 km Spatial resolution: 10 km/1-3 km Global coverage: 3 days Local time: 13:30

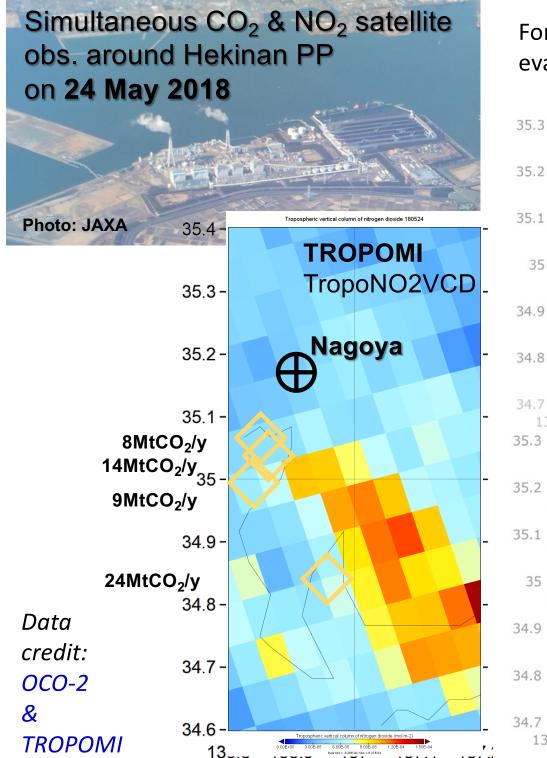

Toward Global Stocktake 2023/2028:

- Monitoring of global-mean atmospheric column of GHGs, on monthly basis
- Evaluation of national inventories of anthropogenic emissions of GHGs
- Identification of large point sources

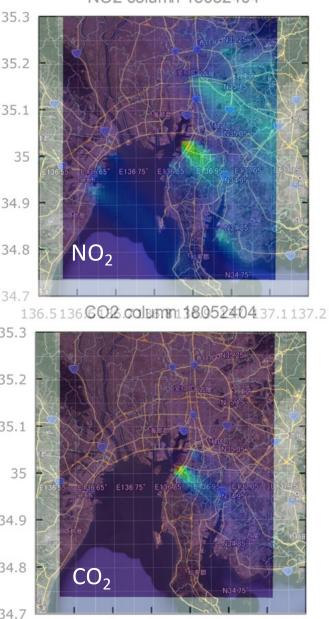
NO₂ Team:

- Joint NIES-JAMSTEC-NICT project (NIESalgorithm, JAMSTEC-validation, NICT-data processing) – H. Tanimoto, Y. Kanaya, Y. Kasai
- NIES-JAMSTEC-JAXA collaboration on aircraft obs., power plants, modeling, etc. – A. Kuze
- NIES's CC-AQ program for 2021-2025




GOSAT-GW (Global Observing SATellite for Greenhouse gases and Water cycle)

GOSAT-GW (Global Observing SATellite for Greenhouse gases and Water cycle)



JAXA: H. Suto, A. Kuze, K. Shiomi (2018)		14 Feb. 13:00-16:30 16 10:30-12:30 20 10:30-13:30
CCCCC	JABBZE		1) 0.45 μm for NO ₂ 2) 0.76 μm for O ₂ 3) 1.6 μm for CO ₂ /CH ₄
Hekinan PP: 24 MtCO ₂ /y, bi			
Airborne DOAS – NO ₂ & CO ₂	Airborne – gridde	d NO ₂ 35°№	TROPOMINO ₂
11:52-12:25 Anticlockwise 34.86*N 34.86*N 34.84*N 34.94*N 34.	34.9°N 34.8°N	5 4 5 34.9°N 3050 2 34.8°N 2 1 34.7°N	 1.75 1.50 1.25 1.00 0.75 0.50 0.25
Retrieval: Tamaki Fujinawa, Takahiro Kawa	136.9°E 137°E 137. ashima	130	6.9°E 137°E 137.1°E Data: Henk Eskes

Forward CTM simulation on the same day, to evaluate CO_2/NOx emissions

NO2 column 18052404

136.5136.6136.7136.8136.9 137 137.1137.2

ADMER-PRO (developed by K. Inoue, AIST)

RAMS+CB-IV_99, 1 x 1km mesh (nested from 4x4 km), CO₂: modeled as CO proxy

Run & Draw: Y. Kanaya (JAMSTEC)

Current status, next steps, perspectives, etc

- Mission planning is ongoing, PI TBD
- Science plan is being discussed
- Focus on Tokyo, C40 cities, Asia
- Coordination with surface/aircraft/ship observations is being discussed
- Algorithm development started, ATBD has been drafted (for NO₂)
- High-res. model development is ongoing
- Validation plan is to be started
- Cross-comparison to other LEOs
- Complementary role to GEMS in Asia
- Collaboration with EU, US, Korea/China is very welcome

Jet Propulsion Laboratory California Institute of Technology

Universität Bremen

Conversations are going on with: Kazuya Inoue Kazu Miyazaki John Burrows Henk Eskes Pepijn Veefkind Pieternel Levelt Andreas Petzold

Image credit: Mitsubishi Electric