Operational products and Cal/Val for the Copernicus anthropogenic CO2 Monitoring (CO2M) mission

CEOS AC-VC 19
17 October 2023

The CO2M greenhouse-gas monitoring constellation

Up to three satellite missions each with >250 km swath:

- Providing greenhouse-gas data for the UNFCCC 2nd global stocktake (GST) in 2028

Three instruments per platform:
- CO2/NO2 push-broom grating spectrometer (CO2I/NO2I)
- Multi-Angle Polarimeter (MAP)
- Cloud Imager (CLIM)

Orbit:
- Sun-synchronous orbit 14 5/11
- 159 orbits repeat cycle (~11 days)
- 735 km altitude
- 11:30 LT
- Platforms in same orbital plane

<table>
<thead>
<tr>
<th>Product</th>
<th>Spatial resolution</th>
<th>Precision</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>4 km²</td>
<td>0.7 ppm</td>
<td><0.5 ppm</td>
</tr>
<tr>
<td>CH₄</td>
<td>4 km²</td>
<td>10 ppb</td>
<td><5 ppb</td>
</tr>
<tr>
<td>NO₂</td>
<td>4 km²</td>
<td>1.5x10⁻¹⁵ molec/cm²</td>
<td><3.5x10⁻¹⁵ molec/cm²</td>
</tr>
<tr>
<td>SIF*</td>
<td>4 km²</td>
<td>0.7 mW m⁻² sr⁻¹ nm⁻¹</td>
<td><0.2 mW m⁻² sr⁻¹ nm⁻¹</td>
</tr>
<tr>
<td>Aerosols</td>
<td>6 km²</td>
<td>0.05 AOD, 500 m LH</td>
<td><0.05 AOD, 500 m LH</td>
</tr>
<tr>
<td>Clouds</td>
<td>4 km²</td>
<td><1% of FOV</td>
<td></td>
</tr>
</tbody>
</table>
Copernicus CO2M System Development

ESA is responsible of the Space Segment development and its commissioning.

EUMETSAT is responsible of the development of the operational ground segment (with contributions from ESA) and the CO2M system operations in system commissioning and routine phase.

For payload data (PDGS):
- **MDPS** (Mission Data Processing Sub-Segments, including: L0/L/L2 Operational Processors; Archival Dissemination) provided by EUMETSAT;
- **MDAS** (Mission Data Acquisition Sub-Segment) provided by ESA as a service.

For Flight Operations (FOS):
- **MCOS** (Mission Control and Operations sub-segment, including Mission Planning Facility) provided by EUMETSAT;
- **TT&C** (Telemetry, Tracking and Command) provided by ESA as a service.
EUMETSAT CO2M MDPS scientific processing tasks

CO2M Mission Data Processing System

Make one “hyper-GHG/NO2-instrument” out of three!

Below this level: everything is co-registered or provided at the CO2I/NO2I spectrometer footprint
CO2I/NO2I observation statistics

Estimated amount of data (per dayside orbit, per satellite):
- Number of measurements (CO2I/NO2I): ~1.1 million
- Number of clear sky GHG retrievals: ~200,000
- Level-1 / Level-2 GHG/NO2 product sizes: ~35 / 5 GB
- All CO2M products: ~280 GB

Estimated number of possible XCO2/XCH4 L2 retrievals:

Worst case (max land) Scenario

<table>
<thead>
<tr>
<th>Orbit type</th>
<th>Worst case (max land) Scenario</th>
<th>Number of observations with surface albedo > 0.03</th>
<th>20 % of total (land/water) used for GHG retrieval due to cloud (<1%) and AOD<0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nadir</td>
<td>Land</td>
<td>630105</td>
<td>131215</td>
</tr>
<tr>
<td></td>
<td>Water (glint>0.03 albedo)</td>
<td>25971</td>
<td></td>
</tr>
<tr>
<td>Pitched</td>
<td>Land</td>
<td>722035</td>
<td>201586</td>
</tr>
<tr>
<td></td>
<td>Water (glint>0.03 albedo)</td>
<td>285895</td>
<td></td>
</tr>
</tbody>
</table>

Average (full day) Scenario

<table>
<thead>
<tr>
<th>Orbit type</th>
<th>Average (full day) Scenario*</th>
<th>Number of observations with surface albedo > 0.03</th>
<th>20 % of total (land/water) used for GHG retrieval due to cloud (<1%) and AOD<0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nadir</td>
<td>Land</td>
<td>250530</td>
<td>98065</td>
</tr>
<tr>
<td></td>
<td>Water (glint>0.03 albedo)</td>
<td>249827</td>
<td></td>
</tr>
<tr>
<td>Pitched</td>
<td>Land</td>
<td>239793</td>
<td>200222</td>
</tr>
<tr>
<td></td>
<td>Water (glint>0.03 albedo)</td>
<td>720592</td>
<td></td>
</tr>
</tbody>
</table>

*These figures are per Satellite per orbit.

“Nadir orbit” configuration

“Pitched orbit” configuration
Multiple GHG algorithm approach – FOCAL, RemoTAP, FUSIONAL-P

Complementarity, resilience and performance:

- Different physical retrieval approaches - Full-physics (RemoTAP/FUSIONAL-P), scattering approximation (FOCAL);
- Different heritage lines (SCIAMACHY, OCO-2, GOSAT, Sentinel5p/5, 3MI, SPEXOne, POLDER);
- Complementary exploitation of information content of CO2M payload information (CO2I/MAP/CLIM);
- Complementary processing cost (cheap, medium, heavy).

<table>
<thead>
<tr>
<th>CO2M platform information content usage:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing step</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>RemoTAP UoL-FP-FUSIONAL-P FOCAL</td>
</tr>
<tr>
<td>Pre</td>
</tr>
<tr>
<td>Main</td>
</tr>
<tr>
<td>Post</td>
</tr>
</tbody>
</table>

Prelim. processing cost estimates:
GHG L2:
(3 algorithms)
< 3700 cpus / platform

Full system processing:
(including all instruments level-1 and 2)
< 4300 cpus / platform

\(^1\) Multiple platforms will require less per platform on average because of cpu re-use
Early results from synthetic data (GHG level-2 XCO2)

EUMETSAT CO2M GHG science study:

Three GHG algorithms for CO2M
“Four+-pillar” CO2M validation

On-board Cal:

<table>
<thead>
<tr>
<th>Source</th>
<th>CO2I</th>
<th>MAP</th>
<th>CLIM</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>daily</td>
</tr>
<tr>
<td>Moon</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Irreg.</td>
</tr>
<tr>
<td>WLS</td>
<td>X</td>
<td></td>
<td></td>
<td>weekly</td>
</tr>
<tr>
<td>Tuneable LED</td>
<td>X (ISRF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>orbit</td>
</tr>
</tbody>
</table>

Vicarious Cal “as needed”

- SNOs
- Ref. Targets
- etc.

Microwave, OCO-x, GOSAT-x, S5, etc.

~0.05 nm (@1.6 μm)

“Four-pillar” CO2M operational product validation and monitoring space-to-ground and space-to-space approach

+ NDACC/Aeronet for NO₂ and AOD
"Four+-pillar" CO2M validation

On-board Cal:

<table>
<thead>
<tr>
<th>Source</th>
<th>CO2I</th>
<th>MAP</th>
<th>CLIM</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>daily</td>
</tr>
<tr>
<td>Moon</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Irreg.</td>
</tr>
<tr>
<td>WLS</td>
<td>X</td>
<td></td>
<td></td>
<td>weekly</td>
</tr>
<tr>
<td>Tuneable LED</td>
<td>X</td>
<td>ISRF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>orbit</td>
</tr>
</tbody>
</table>

Vicarious Cal

- SNOs
- Ref. Targets
- etc.

"as needed"

CO2M Ground-based network products central processing hub (ITT: Q 2024)

Scientific support study on ground-based product requirements (LMU)
Scientific support study on ground-based network product processing (KIT)

MicroCarb, OCO-x, GOSAT-x, S5, etc.

~0.05 nm (@1.6 μm)

CO2M 0.3 nm (@1.6 μm)

Product Cal/Val

- Cross-Cal

PANDONIA

5 nm (@1.6 μm)

Product Cal/Val

- Cross-Cal

COCCON

0.14 nm (@1.6 μm)

Product Cal/Val

- Cross-Cal

TCCON

0.001 nm (@1.6 μm)

Product Cal/Val

- Cross-Cal

Scientific feasibility study for PaNIR

"Four-pillar" CO2M operational product validation and monitoring space-to-ground and space-to-space approach

+ NDACC/Aeronet for NO₂ and AOD

Spectrally oversampled reference

Similar spectral resolution

GSICS

GSICS

EUMETSAT CO2M Cal/Val study:

Started 1st July 2021

Support definition and metric of product validation (in particular the use of ground-based network product data TCCON, COCCON, NDACC, PaNIR, AirCore, …) for CO2M operational monitoring of anthropogenic emissions.

- Operational provision of network data (timeliness and availability!)
- Overpass statistics, station environment and co-location criteria for use of ground-based total column measurements of XCO2, XCH4, NO2 and aerosol close to the sources
- Contributing requirements to ground based network products defined for CO2M

Database: http://co2m.aeronomie.be
EUMETSAT CO2M ground-based network product study:

Started: 1st August 2023 (Karlsruhe Institute for Technology)

Support definition of ground-based network data product processing dedicated to the need of operational CO2M continuous validation and monitoring

- Define ground-based network product (GBP) processing for CO2M: complement existing network products (level-2) with CO2M tailored network products (CO2M-GBP L2)
 - Processing of CO2M tailored products (CO2M-GBP L2) (e.g. from TCCON, COCON, ...)
 - Reduced spectral resolution (increase SNR), use of common auxiliary information (a priori model data, cross-sections, etc.) as used by CO2M GHG processors, etc.
 - Evaluate/monitor/trace network to network and station to station biases (TBC)
 - Compare performance of CO2M-GBP L2 to network standard products (NS-GBP L2)
 - Make network provided and CO2M tailored products available to CO2M validation and continuous monitoring
 - Make input (auxiliary data, cross sections etc) fused in CO2M tailored products available to ground-based network product producers

- Support engineering of operational ground-based network data processing system
Grating technology based measurement system for ground-based GHG

- **Modified Pandora-2S** with NIR & Visible channel for columnar measurements of CO₂, CH₄ and H₂O

- **Wider resolution (compared to FTIR)** allows:
 - High frequency **direct sun** measurements
 - **Sky observations** to retrieve information on the spatial inhomogeneity and vertical distribution of the GHG

- **Developed for producing real time data**

- **Low acquisition and operation costs**
 - No problems during unattended operations at Innsbruck (Nov 2022 to Mar 2023) and Izaña (Mar 2023 to present)

EUM CO2M study with:

Sun & Sky Viewing

![Graph showing TYPICAL OPTICAL DEPTHS FOR 2.50nm RESOLUTION](image)

- **CO₂ [ppm]**
- **CH₄ [ppb]**
- **H₂O [mol/m²]**

Scientific feasibility study for PaNIR
CO2M product Cal/Val preparation

- **CO2M Cal/Val plan version** available (version 2 due by System CDR);
- **EUMETSAT** is developing a dedicated document for ground-based (network) product requirements for future CO2M product validation and continuous monitoring;
- **EUMETSAT** is developing a dedicated facility for provision and central processing of ground-based network data for CO2M product validation and monitoring;
- **EUMETSAT** is working with the ground-based networks (TCCON, COCCON, NDACC, Pandonia, Aeronet) on the central routine provision of level-1 data for CO2M operations.
Thank you!

Questions welcome.
CO2M INSTRUMENTS

CO2I/NO2I push-broom grating spectrometer
- Target species: CO2, CH4 & NO2
- Spatial resolution: 4 km²

<table>
<thead>
<tr>
<th>Band</th>
<th>Spectral range</th>
<th>Spectral resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIS</td>
<td>405–490 nm</td>
<td>0.3 nm</td>
</tr>
<tr>
<td>NIR</td>
<td>747–773 nm</td>
<td>0.2 nm</td>
</tr>
<tr>
<td>SWIR-1</td>
<td>1590–1675 nm</td>
<td>0.3 nm</td>
</tr>
<tr>
<td>SWIR-2</td>
<td>1990–2095 nm</td>
<td>0.35 nm</td>
</tr>
</tbody>
</table>

Multi-angle polarimeter
- Target species: Aerosol
- Spatial resolution (native): 1 km²
- 43 views (0 > OZA < 60°) (out of 48 native)
- Spatial resolution (aerosol product): 4 km²

Cloud imager
- Target species: Clouds
- Spatial resolution: 100 / 200 m

MAP Band	Wavelength
VNIR-1 | 410 nm |
VNIR-2 | 443 nm |
VNIR-3 | 490 nm |
VNIR-4 | 555 nm |
VNIR-5 | 670 nm |
VNIR-6* | 753 nm |
VNIR-7 | 865 nm |

* Channel used for cross calibration purposes with less views

CLIM Band	Wavelength
CLIM-1 | 670 nm |
CLIM-2 | 753 nm |
CLIM-3 | 1370 nm |

See presentation by Gregory Bazalgette Courreges-Lacoste
CO2M CO2I spectrometer false colour radiance image (VIS/NIR/SWIR)

CO2M 6-orbits test-data set of top-of-atmosphere radiances for a constellation of 3 platforms

“West” platform continuously pointing towards the sun-glint spot

3rd July 2025 (205)
1. EU west (pitch on)
2. EU cent (pitch: off)
3. EU east (pitch: off)

9th Sep 2025 (205)
1. Asia cent (pitch: off)
2. Asia west (pitch: on)
3. Asia east (pitch: off)