

Inverse modeling contribution to U.S. Greenhouse Gas Center

Kevin Bowman¹, Lesley Ott², John Worden¹, Sourish Basu³, Brendan Byrne¹, Brad Weir², Junjie Liu¹, Ben Poulter², Anthony Bloom¹, Dimitris Menemenlis¹, Dustin Carroll⁴, Kazayuki Miyazaki¹, Hannah Nesser¹

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA ²NASA Goddard Space Flight Center, Greenbelt, MD, USA ³University of Maryland, College Park, MD, USA ⁴Moss Landing Marine Laboratories, San José State University, Moss Landing, CA, USA

GHG Center DEMONSTRATION AREAS: Local to Global

IWG GHG Formation Use Case Development

Demonstration Area: Human emissions, cyberinfrastructure		Demonstration Area : Natural sources/sinks, modeling and data assimilation		Demonstration Area: Large emission events, Advancing measurement technology and cal/val			
NASA-EPA Use Case 1. Improve access and latency to, gridding of anthropogenic CH ₄ inventory	NASA, NOAA, NIST opportunities. Collaboration on low latency GHG, AQ emissions through GRA ² PES	NASA-EPA Use Case 2. Complement anthropogenic GHG emissions with natural GHG emissions and fluxes	NASA, NOAA, NIST opportunities. Collaboration on quasi-operational modeling, development of consensus GHG products	NASA-E Identify emissio CH₄ lea Ieverag satellite	EPA Use Case 3. <i>y</i> , quantify ons from, large k events ing aircraft and e data	NASA, NOAA, opportunities Collaboration standards, coo measurement deployments	NIST on cal/val ordinated
International. Make gridding tools open source, support capacity building in other countries, collaborating with State Department.		International. Contribute to CEOS Strategy to Support the Global Stocktake and WMO IG3IS and Greenhouse Gas Monitoring Infrastructure initiatives.		Interna IMEO, of sate large/t compa with er	International. Explore contributions to UNEP IMEO, MARS initiatives to enable timely access of satellite plume mapping data for large/transient emissions detection and inter- comparison of plume mapping instruments with emissions release.		
REGIONAL		GLOBAL			LO	LOCAL	

JPL Inverse Modeling Contribution to GHG Center

GHG Observations

OCO-2/3 Solar Induced Florescence

AIRS Carbon Monoxide

SMAP/Aquarius Salinity

NISAR Biomass

GHG inverse Modeling

Decision Support

Each **model** is a state-of-the-art Earth System component model with data assimilation capabilities for fusing known physics with available in-situ and satellite observations.

Global Stocktake Byrne et al, 2023

Bełchatów Power Station CO2 Emissions, Poland

CH4 Plume Open Data Portal

Tatat Ferenate Anticipate Corregion Linking Corr

model with data ass physics with availab

NASA GSFC contribution to GHG Center Inverse Modeling

Technical details:

Model: TM5-4DVAR

<u>Resolution</u>: Currently $3^{\circ} \times 2^{\circ}$ with optional $1^{\circ} \times 1^{\circ}$ nested domains, working towards $1^{\circ} \times 1^{\circ}$ global **<u>Species</u>**: CO₂, CH₄

Datasets assimilated: GOSAT (CO₂, CH₄),

OCO-2 (CO₂), in situ observations (CO₂, CH₄, δ^{13} CH₄), TROPOMI (CH₄)

<u>Meteorology</u>: ECMWF IFS currently, GEOS in the future

Cadence: Annual updates, year Y fluxes available a few months into year Y+1 **Evaluation**: Against withheld in situ data and validation data such as TCCON and AirCore **Error estimation**: Statistical error estimates based on prior inventory errors and measurement errors, and systematic error estimates based on

GHG Center Inverse Model Framework

Greenhouse Gas Inventory Evaluation

2019 IPCC refinement: "An ideal condition for verification is the use of fully independent data as a basis for comparison. Measurements of atmospheric concentrations provide such datasets, and recent scientific advances allow using such data as a basis for emission modeling."

New methods can be used to compare against GHGI.

Worden et al, AGU Adv., 2023

We use $\delta^{13}CH_4$ to distinguish between methane source types

CH₄ from different formation mechanisms have different ¹³C:¹²C ratio, and in situ measurements of that ratio tell us that ~85% of the post-2006 CH₄ growth is from microbial sources

We will use available δ^{13} CH₄ data for our CH₄ flux estimation, and our CH₄ priors for TROPOMI+GEOS state estimation are informed by δ^{13} CH₄ data as well

Basu et al (2022), ACP