

Outstanding Issues in Satellite-based CO₂ (and CH₄) retrievals

Chris O'Dell (Colorado State University)

With contributions from the OCO-2/3 teams
CEOS AC-VC-19/ACSG Joint Meeting
October 24, 2023

The XCO₂ Goal

We have a goal (my own interpretation):

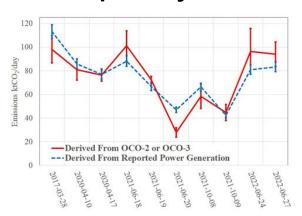
To deduce accurate, science- and policy-relevant surface fluxes of CO2 at nation-state (or better) & monthly scales using top-down inversion systems driven by in-situ and satellite CO2 data.

To achieve this goal, we require:

Extremely well-calibrated reflected sunlight spectra

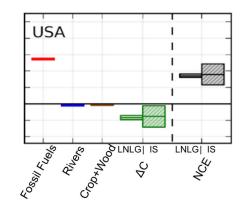
OCO-2 Has Largely Achieved this! Gold standard for future sensors!

- Highly accurate retrieved XCO2 from those spectra
- Robust top-down carbon source/sink inversion systems (with accurate transport and well-specified priors)


< 0.5 ppm (0.12%) (CO2M MRD) < 0.2 ppm (0.05%) (Common Opinion)

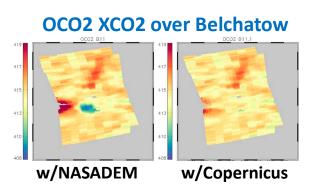
The Current XCO₂ Situation

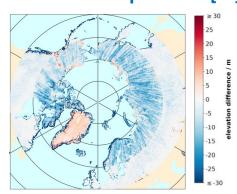
Useful science with policy relevant information is starting.


Nassar et al., 2022 OCO 2/3 Measurements of Belchatow power plant

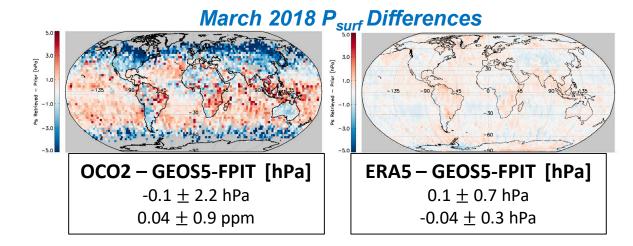
LOCAL SCALES

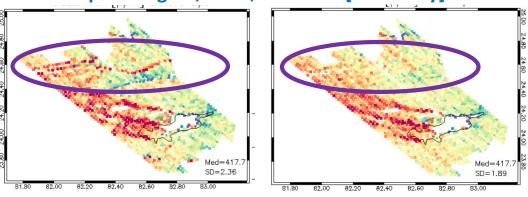
Byrne et al., 2022 OCO-2 contributions to Global Stock-Take

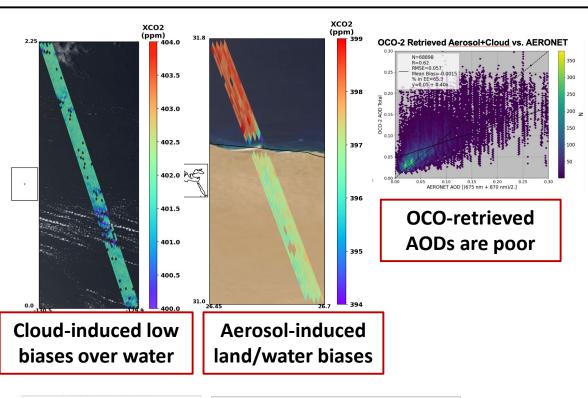

REGIONAL/GLOBAL SCALES


- Systematic errors in XCO2 are larger than 0.5 ppm.
 - Theory: Inst+Met+Spec+Aerosols, 1σ
 0.6 ppm Ocean, 0.8 ppm land (Connor et al, 2016; McGarragh et al, 2023)
 - Actual (OCO-2 v11.1, 1σ):
 0.5 ppm Ocean, 0.7 ppm land
- What is dominating these systematic errors?

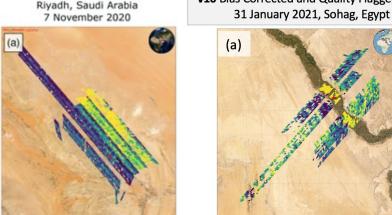
Surface Pressure Information


- Column gas columns are 1st -order sensitive to surface pressure.
- Retrieved surface pressure is not sufficiently accurate
- Prior surface pressure accuracy depends on:
 - Accuracy of Meteorological Reanalysis (ERA-5, GEOS5, JRA, etc)
 - Accuracy of target surface altitude (DEM)
 - Geolocation Accuracy


NASADEM - Copernicus [m]


$$X_{CO2} = \frac{Column CO_2}{Column Dry Air} \propto \frac{Column CO_2}{P_{surf}}$$

OCO-3 SAM over Sasan Ultra Mega power plant region, India, Feb 2022 [S. Pandey]

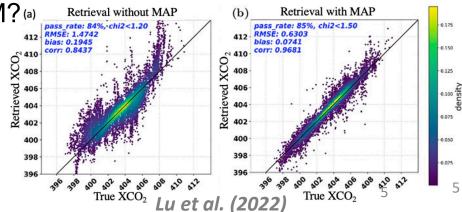

Aerosol-induced errors

- Cloud-induced errors over land and water; even 3Deffects in otherwise clear pixels. (Massie et al., 2023)
- Simulations show that aerosols main cause of geometryand albedo-correlated biases in OCO-3 SAMs (Bell et al., 2023). Also affects CH4 (Somkuti et al, 2023)!
- Can we find a 1-size-fits-all aerosol parameterization?

Retrieval	Aerosol Scheme	#Params	Reference
ACOS	5 fixed types, AODs+heights	9	O'Dell et al., 2018
UoL-FP	2 Aerosols + Cirrus: full profiles	60	Cogan et al., 2012
RemoTeC	1 variable type:	3	Butz et al., 2011
	AOD, Height, Size		
NIES	2 Aerosols: profiles; Cirrus:	14	Yoshida et al., 2013;
	AOD+Height		Someya et al., 2023
FOCAL	1 type: AOD, Height, Angstrom	3	Reuter et al. (2017),
	Exponent		Noel et al. (2021)

• Do we need accurate a priori aerosols, such as from MAP on CO2M?(a)

OCO-3 SAM XCO2


v10 Bias Corrected and Quality Flagged XCO₂ 31 January 2021, Sohag, Egypt

415.2

415.0

414.8

Aerosol-induced biases correlated with geometry (left) and albedo (right)

Take-home messages

- We've greatly improved in ability to measure XCO₂ with satellites over the last ~15 years.
- Systematic XCO₂ errors still limit both science and policy uses of our data.
- Aerosol-induced errors are the largest contributor to systematic errors in ACOS retrievals, with only limited improvements over the last decade+.
 Can we improve without dedicated aerosol sensors?
- The dry air column (= surface pressure) is also critical, but the current method of using the prior can be subject to important uncertainty sources.
 Can we improve, and do we need to?
- These same types of errors affect XCH₄ retrievals as well!
- Local/Urban systematic errors need less stringent requirements.