Tropospheric Emissions: Monitoring of Pollution

Status of TEMPO (Tropospheric Emissions: Monitoring of pollution)

Xiong Liu¹, Kelly Chance, Raid Suleiman, John Houck, John Davis, Kevin Daugherty, David Flittner, David Rosenbaum, Gonzalo Gonzalez Abad, Crystal Fenn, Caroline Nowlan, Huiqun Wang, Heesung Chong, Weizhen Hou, Junsung Park, Christopher Chan Miller, Juseon Bak, Jim Carr, James Szykman, Mike Newchurch, Aaron Naeger, Ronald Cohen, Zolal Ayazpour, Christopher Brown, Zachary Fasnacht, Marcellin Feasson, Jean Fitzmaurice, Jeffrey Geddes, David Haffner, Jay Herman, Joanna Joiner, Laura Judd, Emma Knowland, Xuming Lei, Nischal Mishra, Robert Neece, Ewan O'Sullivan, Brad Pierce, Wenhan Qin, Eric Roback, Justin Strickland, Robert Spurr, Luke Valin, Alexander Vasilkov, Eun-Su Yang, and the TEMPO Team

¹SAO, CfA | Harvard & Smithsonian

CEOS AC-VC-19 / ACSG Joint Meeting 2023 Brussels, Belgium (Virtual), Oct. 24-27, 2023

60 minutes

www.nasa.gov

Outline

- > TEMPO Science Overview
- TEMPO Commissioning
- TEMPO Instrument and Operation
- TEMPO Data Products and Science Algorithms
- Commissioning Results

Hourly Daytime Atmospheric Pollution over North America from the GEO

NASA's first Earth Venture Instrument (EVI) selected in 2012 & first hosted payload

PI: Kelly Chance, Smithsonian Astrophysical Observatory (SAO): Science team, ground systems, science data processing center
Instrument Project Management: Kevin Daugherty, NASA LaRC
Instrument Development: Ball Aerospace
Other Institutions: NASA GSFC, NOAA, EPA, NCAR, Harvard, UC Berkeley, St.
Louis U, UAH, U Iowa, Sitting Bull College, RT Solutions, Carr Astronautics
International collaboration: Mexico, Canada, Cuba, Korea, U.K., ESA, Spain

Mission Project Management: Kevin Daugherty, NASA LaRC Host Satellite Provider: Maxar Technologies Satellite Host: Intelsat (IS-40e) Launch: SpaceX

Aligned with NRC Earth Science 2007 Decadal Survey recommendations

✓ Makes many of the GEO-CAPE atmospheric measurements

TEMPO Commissioning

> TEMPO commissioning: SAO + LaRC + Intelsat + Maxar + Ball + Carr Astronautics

- ✓ TEMPO power on 6/7
- ✓ Dry out (6/9-7/9) and cool down (7/10-7/12)
- ✓ Additional activation: scan mirror tuning, command load testing, etc.
- ✓ First light (7/31-8/2): working/reference diffuser solar & Earth imaging
- ✓ Instrument Characterization and Analysis (ICA) activities
- Coordinate with AGES+ campaigns in Aug. and Coastal Texas Air Quality Field Campaign in Sep. (no Earth imaging only on 6 days, special observations over LA and Texas)

Start nominal operation on 10/19 after Post Launch Acceptance Review (PLAR) on 10/18-19

Imaging spectrometer measuring solar irradiance and solar backscattered Earth radiance

TEMPO Operation

NASA

Operate on geostationary communications satellite Intelsat 40e (IS-40e) at 91° W

- Field of regard is optimized to cover both Puerto Rico and Canadian tar sands.
- S5p-TROPOMI NO₂ product oversampled by Kang Sun.

- Nominal: Scan Field of Regard (FOR) in 1 hour
 - ~ 2K N/S pixels × 1200 steps/hr, ~ 2.4 M pixels/hr, daily # spatial pixels ~TROPOMI
 - $2 \times 4.75 \text{ km}^2$ @center of FOR, from 8 km² at Mexico City to 21 km² at Canadian Tar Sands
- **Optimized scan**: in the early morning and late afternoon, daylight portion of FOR, higher temporal resolution
- High-time scan (up to 25%): selected portion of FOR at higher temporal resolution (e.g., <= 10 mins), can oversample to effectively increase spatial resolution

Baseline and Threshold

Measurements Requirements

Species/Products	Required Precision	Temporal Revisit*
0-2 km O ₃ (Selected Scenes) Baseline only	10 ppbv	2 hour
Tropospheric O ₃	10 ppbv	1 hour
Total O ₃	3%	1 hour
Tropospheric NO ₂	1.0 × 10 ¹⁵ molecules cm ⁻²	1 hour
Tropospheric H ₂ CO	1.0 × 10 ¹⁶ molecules cm ⁻²	3 hour
Tropospheric SO ₂	1.0 × 10 ¹⁶ molecules cm ⁻²	3 hour
Tropospheric C ₂ H ₂ O ₂	4.0 × 10 ¹⁴ molecules cm ⁻²	3 hour
Aerosol Optical Depth	0.10	1 hour

- * # of hourly measurements to be averaged to achieve required precision
- Mission duration: 20 months for baseline, 12 months for threshold
- Spatial resolution: < 60 km² for baseline (4 native pixels coadded), < 300 km² for threshold
- \blacktriangleright Aerosols, SO₂, C₂H₂O₂ were removed from baseline products during KDPC
- > Cloud product (cloud fraction, cloud pressure): used in trace gas/aerosol retrievals

TEMPO Data Products Baseline + SNWG TEMPO NRT

Level	Product	Algorithm	Major Outputs	A Priori (L2)	Res km ² *	Freq/Size
LO	Digital counts	Raw to L0	Reconstructed/reformatted digital counts		2.0 x 4.75	Daily/hourly
L1-b	Irradiance ^{NRT}	SAO LO-1	Calibrated & quality flags			daily
	Radiance ^{NRT}	SAO LO-1	Geolocated, calibrated, viewing, geolocation & quality flags		2.0 x 4.75	Hourly, granule
L2	Cloud ^{NRT}	OMI O ₂ -O ₂	Cloud fraction, cloud pressure	GEOS-CF	2.0 x 4.75	Hourly, granule
	O ₃ profile	SAO O ₃ profile	O ₃ profile, total/strat/trop/0-2 km O ₃ column, errors, a priori, AKs	Climatology+ GEOS-CF	>= 8.0 x 4.75**	Hourly, granule
	Total O ₃	TOMS V8.5	Total O_3 , AI, cloud fraction	Climatology	2.0 x 4.75	Hourly, granule
	NO ₂ ^{NRT}	SAO trace gas, BU strat./trop. sep.	SCD, strat./trop. VCD, error, shape factor, scattering weights	GEOS-CF	2.0 x 4.75	Hourly, granule
		SAO trace gas	SCD, VCD, error, shape factor, scattering weights	GEOS-CF	2.0 x 4.75	Hourly, granule
L3	Gridded L2	SAO L2-3	Same as L2		2 x 2 (?)	Hourly, scan

* Spatial resolution at center of FOR. ** Might be at $8 \times 9.5 \text{ km}^2$

Satellite Needs Working Group (SNWG) will fund TEMPO NRT products (L2 products < 3 hours from observation time): 11/1/2023-10/30/2025, NOAA to produce NRT aerosol products

Science Algorithms

- Launch-ready Science Data Processing Center (SDPC) V4 software completed in Mar 2023
- Algorithm mostly based on OMI heritage algorithms except for new L0-1b processor including Imaging Navigation and Registration (INR) using GOES-R by Carr Astronautics
- SAO trace gas algorithm (HCHO, NO₂): spectral fitting to derive Slant Column Densities (SCDs), calculate air mass factor (AMFs) and derive Vertical Column Densities (VCDs)
 NO₂ requires stratospheric/tropospheric separation based on spatial filtering method (Geddes et al., 2018)
- > Cloud algorithm: SAO $O_2 O_2$ fitting + NASA GSFC's $O_2 O_2$ cloud at ~477/466 nm
- Total ozone algorithm: heritage TOMS V8.5, using ozone absorbing and non ozone absorbing pairs to derive total ozone column
- > Ozone profile algorithm: heritage SAO OMI O₃ profile, using 290-340, 540-650 nm, retrieve O_3 profile at 24 layers, including total, stratospheric, tropospheric, and 0-2 km O_3
- Main L1-2 algorithms updates include:
 - ✓ NASA GMAO's GEOS-CF trace gas profiles and meteorology
 - ✓ Hourly resolved monthly mean Geometry-dependent Lambertian Equivalent Reflectivity (GLER) climatology

First Light NO₂ Images Release

- Planning and Coordination:
 - ✓ NASA LaRC+HQ+ESD, SAO/CfA/Smithsonian, Ball, Intelsat, Maxar
 - ✓ NASA Science Visualization Studio

Algorithm Updates for First Light Release:

- ✓ No radiance wavelength calibration
- Large wavelength shift of ~0.4-0.6 nm, use initial wavelength grid for radiance from calibrated first working solar
- ✓ No straylight correction and polarization correction
- ✓ Specialized Image Navigation and Registration (INR)
- ✓ Optimization in clouds
- ✓ Optimization in NO₂

28 August 2023: Full Field of Regard

TEMPO tropospheric NO₂ column 28 August 2023 S001 11:07:28 UTC

28 August 2023: Chicago

TEMPO tropospheric NO₂ column 28 August 2023 S001 06:32 LT

TEMPO and TROPOMI NO₂ CA/NV/AZ/UT, 29 August 2023

TEMPO tropospheric NO₂ column 29 August 2023 S012 20:24:00 UTC

Cloud fraction < 0.5

TROPOMI Level 3 tropospheric NO₂

- TEMPO vs TROPOMI shows spatial agreement in tropospheric NO₂. Differences are not unexpected:
 - ✓ [Lorente et al., 2019]: Differences in air mass factor (AMF) inputs (e.g. model profiles, surface reflectance) can cause differences of up to 42% in polluted NO₂ retrievals
 - ✓ Verhoelst et al. [2021]: lower TROPOMI NO₂ by 51% in polluted areas.

NO₂ Tropospheric Column Uncertainties 29 August – 1 September

NO₂ tropospheric vertical column uncertainty; N ~1.454321e+07

NO₂ uncertainty requirement = 1×10¹⁵ molecules/cm² (with 4 pixels coadded)

Median uncertainty = 0.46 × 10¹⁵ molecules/cm² (SZA < 70°, all cloud fractions)</p>

> 95% of measurements have uncertainties < 1×10^{15} molecules/cm² for cloud-free conditions (f_c \leq 0.1)

TEMPO NO₂ meets the requirement for 95% of cloud-free scenes with **no pixel coadding**!

First Light HCHO (2 August 2023)

20230802T151249Z

Switched to use radiance reference after first light images releases (due to systematic positive biases in the southern edge)

17

TEMPO and TROPOM HCHO (29-30 August 2023)

D15941_S007: 2023-08-29 14:15:28 to 2023-08-29 15:11:25

vertical column

TEMPO HCHO 0829-0830 (scans close to S5P overpass)

TEMPO vs TROPOMI shows spatial agreement in HCHO columns. Systematic biases are expected associated with AMF, radiance reference and background corrections.

HCHO Column Uncertainties 29-30 August 2023

> HCHO uncertainty requirement = 1×10^{16} molecules/cm² (with 12 observations)

- Median uncertainty = 5.5 x 10¹⁵ molecules/cm² (SZA < 70°, all cloud conditions)</p>
- ▶ 93% of observations have uncertainties < 1×10^{16} molecules/cm² (SZA < 70°, $f_c \le 0.1$)

TEMPO HCHO meets the requirement for 93% of cloud-free scenes with **no pixel coadding**!

Saturation causes no retrieval under very cloudy conditions.

- Similar spatial distribution with OMPS total ozone
- Total ozone will be further improved with improved radiometric calibration (e.g., image processing, straylight correction)

TEMPO Total Ozone from Ozone Profile Product: UV (8/28) vs. UV/VIS (8/29)

- Large total ozone bias due to large positive biases (~20-30%) in radiance below ~305 nm, and the fitting of a first-order wavelength dependent surface albedo. Necessary to improve UV radiometric calibration (e.g., solar diffuser BTDF, image processing, straylight correction) and derive soft calibration
- Less stable with UV/VIS retrievals than UV only retrievals. In addition, need to improve VIS spectral dependence of surface albedo and UV/VIS radiometric calibration consistency.

Ozone profile algorithm has been tested and we know how to improve the data product!

INR (Image Navigation and Registration) Status

> INR Requirements are Met

- Navigation error limits exceeded <
 0.27% (3s) of evaluations (Pass)
- Optimized scanning performs worse at start of day due to low illumination, which is improved with GPS enabled (since 9/9)
- Consistent NS biases observed in UV/VIS, which will be corrected in the next release
- Special observation still requires a separate INR configuration to reduce geolocation errors.

Optimized Scanning (GPSR): September 16 Next INR Release

Algorithm Status and Outlook

- ✓ INR: working well for hourly/optimized scans
- ✓ L0-1b: gain/nonlinearity, bad pixel map, improved saturation flagging, Octant phase (odd/even)
- ✓ Further optimization in cloud and NO₂
- Major changes to HCHO: radiance reference, and background correction
- ✓ All the data products have been sent to ASDC since Oct. 17
- ✓ In the process of sharing with the TEMPO validation & science team from ASDC

Forward work toward public release

- ✓ INR: correct UV/VIS bias, use a special configuration for special observation
- ✓ L0-1: BTDF correction, reference BTDF, improved wavelength calibration, improved CCD image processing steps, straylight correction
- ✓ Optimizations to cloud, NO₂ and HCHO
- ✓ Updates to Ozone Profile Retrieval (first UV only, then UV/VIS)

Rlan for Nominal Operation & Public Release

Data Product	Description	Time beyond On- Orbit Checkout (OOC) to deliver initial data	Maximum data latency after first release for ≥ 80% of products
Level 0	Reconstructed, Unprocessed Instrument Data	2 months	Within 2 hours of receipt at SAO
Level 1b	Calibrated, Geolocated Radiances	4 months	Within 3 hours of Level 0 and ancillary data receipt at SAO
Level 2	Derived Geophysical Data Products	6 months	Within 24 hours of production of Level 1 at SAO
Level 3	Derived Gridded Geophysical Data Products	6 months	1 month after completion of data accumulation required for individual geophysical products

 Baseline mission (Phase E, 20 months, 10/2023-6/2025), NASA senior/extension review

Data products sent to ASDC for archival and distribution

 Working on providing earlier access to TEMPO validation/science team

 Plan for initial public release of baseline products at ASDC after algorithm verification, product validation, algorithm optimization/improvement:
 ~2/2024 for L1b, ~4/2024 for L2/L3

October 18-19, 2023

NA SA

Summary

- Started nominal operation on Oct. 19 after a successful TEMPO commissioning phase and Post Launch Acceptance Review (PLAR)
- TEMPO is providing revolutionary hourly daytime atmospheric pollution measurements at high spatial resolution over North America
- Most data products (L1b, cloud, NO₂, HCHO, total O₃) are in good quality at this early stage, showing that the TEMPO instrument and science algorithms are working very well
- We have a good understanding about the improvements needed for the ozone profile product before the public release.

TEMPO Commissioning

Instrument Characterization activities

- ✓ Dark current measurements vs. integration time, take dark current after every hourly scans
- Solar measurements at solar angle 30 vs. time, different boresight angles, repeated solar measurements, working vs reference
- ✓ Saturation (different integration times, 50 ms, 100 ms, 178 ms)
- Spatial performance (61.5/62.5/63.6/64.6 urad, 10%, 20%, 40%, 50%, 60%, 80% step size over NY, Western Gulf, LA)
- ✓ Field of regard (full E/W extent at dy=0 on 9/1, full E/W extent at max/min dy on 9/15)
- ✓ Side slither (fix dx, move N/S only over NY, western Gulf and LA)
- ✓ City lights
- Scanning: CONOPS scanning (hourly), optimized scanning, special observations (~10 mins, interleaved 10 mins + hourly scans), nominal operation
- Coordinate with AGES+ campaign in Aug. and Coastal Texas Air Quality Field Campaign in Sep. (no Earth imaging only on 8/3, 8/10, 8/13, 8/14, 8/24, 9/8, 10 mins special observation on 8/23, 10 mins+1hr FOR on 8/27, twilight on 8/30 for supermoon, 2 hours of special observations over Texas on 9/11, 9/17-19)

Operational Algorithm	Personnel		
Instrument Operation Center (IOC) including Raw-L0	John Davis		
L0-1b	Heesung Chong , John Houck, Weizhen Hou, Xiong Liu, Dave Flittner, Jim Carr, Chris Chan Miller		
Ozone profile	Xiong Liu, Junsung Park, Juseon Bak		
Total ozone	Dave Haffner, Joanna Joiner		
Nitrogen dioxide	Caroline Nowlan, Gonzalo González Abad, Jeff Geddes, Chris Chan Miller		
Formaldehyde	Gonzalo González Abad, Caroline Nowlan, Chris Chan Miller		
Clouds	Huiqun (Helen) Wang, Alexander Vasilkov, Eun-Su Yang, Joanna Joiner		
Science Data Processing Center Operational Implementation & Processing Pipeline	Joh Houck		

NA SA

TEMPO Instrument and Measurement Characteristics

Volume, Mass, Average Power	1.4 m x 1.1 m x 1.2 m, 137kg, 138W	
Detector size	Two 2048 (spatial) x 1028 (spectral)	19mile transforme and
Wavelength range	UV band: ~293 - 494 nm, Visible band: 538 - 741 nm	UV/visible co-alignment are
Spectral resolution	~0.6 nm @FWHM(0.54-0.63 nm)	within 0.1 pixel.
Spectral sampling	~0.2 nm or ~3 pixels /FWHM (2.7-3.2)	² Assume 123µrad E/W
Spectral co-registration ¹	< 0.1 pixel (for UV, visible, UV/visible)	mirror step size (6.2 μ rad overlap) & 1226 steps as in
Orbit	GEO (35786 km), 91.0°W above equator	left Fig.
Instantaneous FOV	41.49 µrad (N/S) x 129.20 µrad (E/W)	³ Nominal mode.
MTF @Nyquist	0.31-0.41 N/S x 0.38-0.49 E/W	⁴ 2035 out of 2048 spatial pixels are valid: 1016 out of
Field of view ²	4.92° N/S x 8.64° E/W	spectral 1028 pixels are
Spatial resolution	2.0 km (N/S) x 4.75 km (E/W) km @center of FOR	valid.
Temporal resolution ³	~1 hour, ~3s snapshot / mirror step	⁵ For the nominal radiance.
Spectra per hour ^{2,3,4}	2035 N/S (cross-track) x 1226 E/W (mirror step)	
Maximum SNR ⁵	1350 @ 330 - 340 nm, EOL	

TEMPO Instrument

- Calibration Mechanism Assembly
- Telescope Assembly
- Scan Mechanism Assembly
- Spectrometer Assembly
- Sensor heat sink

Focal Plane Electronics

Focal Plane Assembly

Instrument Control Electronics

Instrument Support Assembly

TEMPO Data Products Distribution

Slides from Jeff Walters, Tim Larson at TEMPO STM 2020 & EAWNov2021

earthdata Search

OPeNDAP

n python

jupyter

ASDC Data Archival & Distribution: Tools and

Services A Earthdata Search CMR Search • Metadata

✓ NASA WorldView

GIBS API • visualization

Harmony and OPeNDAP
 transform • subsetting

reformatting

 distribution

✓ HTTPS data access

datapool

- permanent URL/direct access
- enables scripts/workflow

✓ Geospatial Web Services

• WCS • WMS • ArcGIS Image Service

✓ Example scripts

- Python/Jupyter Notebook
- R scripts
- contributed tutorials/scripts

User Support and Other Resources

Earthdata Login <u>https://urs.earthdata.nasa.gov</u> Earthdata Forum <u>https://forum.earthdata.nasa.gov/</u> ASDC User Support support-asdc@earthdata.nasa.gov

EPA RSIG3D Gateway

TEMPO data can be served directly through the EPA RSIG. <u>https://www.epa.gov/hesc/remote-sensing-information-</u>

- Adapted from OMI (Liu et al., 2010): Spectral fitting + VLIDORT + Optimal Estimation (OE) from Fitting windows: 293-345 nm, 540-650 nm
- Retrieve partial O₃ columns at ~24 layers (bottom layer is 0-2 km above the surface) as well as total, stratospheric, and tropospheric O₃ columns, other trace gases, and auxiliary parameters.
- A priori: a combination of tropopause-based climatology (Bak et al., 2013) with diurnally-resolved GEOS-CF data

August 2, 2023

12:14 PM

Credit: NASA Scientific Visualization Studio

August 2, 2023

11:14 AM

3:24 PM

Credit: NASA Scientific Visualization Studio

August 2, 2023

9:14 AM

Credit: NASA Scientific Visualization Studio

28 August 2023: Toronto

TEMPO tropospheric NO₂ column 28 August 2023 S001 07:26 LT

28 August 2023: Caribbean

TEMPO tropospheric NO₂ column 28 August 2023 S001 07:07 LT

40

1e16

Mexico City, 29 August 2023

TROPOMI Level 3 tropospheric NO₂

TEMPO tropospheric NO₂ column 29 August 2023 S011 18:25:32 - 19:21:29 UTC

First Light: Cloud Products

First Light comm3 S001-S006

• Saturation causes some retrieval failure under cloudy conditions.

- Large total ozone bias due to large positive biases (~20-30%) in radiance below ~305 nm, and the fitting of a first-order wavelength dependent surface albedo
- It is necessary to improve LO-1b radiometric calibration (e.g., solar diffuser BTDF, image processing, straylight correction) and derive soft calibration
 Total areas column (DU)

October 18-19, 2023

TEMPO PLAR

L1b Requirements

- L1b products: Spectral Radiance, Irradiance and Uncertainty, Spectral Scale, Geo-location (lat/lon)
- > PLRA: no requirement for radiance or irradiance, geolocation accuracy < 4km
- Instrument design & performance requirements were derived from L2 precision req.
- Signal to Noise Ratio (SNR) was the dominate factor for radiance performance
- Radiometric Uncertainty: < 4% (1-sigma) for both irradiance & radiance
- Albedo uncertainty: wavelength independent < 2%, dependent < 1%</p>
- Long-term (20 months) radiometric drift detection: < 0.9%</p>
- Nonlinearity: <2% of 98% well response, and knowledge (after corr.) < 0.5% from 2-98% of well response</p>
- Pre-launch Wavelength mapping uncertainty: < 0.02 nm</p>
- Spectral stability (within 24 hours): < 0.1 nm for radiance
 & irradiance
- Spectral co-registration error: < 0.7 pixel between 2 bands, < 0.4 pixel within UV or visible bands</p>

Table of SNR req. and with Beginning of Life (BOL) as-built performance (4 Pixels coadded)

Req Number	Requirement			BOL SNR		EOL SNR	
	Atmospheric Constituent	Wavelength	SNK Requirement	As- Measured	Margin	Predicted EOL SNR	Margin
	constituent	(nm)	e- / e-	SNR		1010111	
	03	290	19.6	N/A	N/A	N/A	N/A
	03	300	46.1	49	5.4%	45	-2.4%
	03	305	161.9	191	17.8%	178	10.1%
	<mark>03</mark>	310	377	471	24.9%	447	18.5%
IRD-320 TSS-59	O3	320	1220	1664	36.4%	1621	32.8%
	O3, H2CO	330	2003	2829	41.2%	2779	38.7%
	O3, H2CO, Cloud	340	2013	2867	42.4%	2827	40.4%
	H2CO, Cloud	350	1414	2717	92.1%	2685	89.9%
	NO2	420	836	2138	155.8%	2127	154.4%
	NO2	430	675	1681	149.0%	1670	147.4%
	NO2	450	733	1875	155.8%	1865	154.4%
	Cloud	<u>490</u>	1176	1886	60.4%	1879	<mark>59.8</mark> %
	03	540	1109	1813	63.5%	1806	62.9%
	O3	600	987	1577	59.8%	1571	59.1%
	03	650	898	1383	54.0%	1376	53.2%
	Cloud	690	820	1195	45.8%	1188	44.9%

44

Calibration and L1b Validation

- Verify and update image correction steps in the LO-1 processing during Commissioning Phase (~L+1~L+3 months, ~90 days)
 - System linearity, zero-input, relative gains, saturation blooming, dark current variation and temperature-dependent correction, check quality flags, evolution of solar diffuser, noise calculation, straylight
- Assess wavelength calibration and its performance
 - Will assess performance of routine processing (wavelength calibration in both L0-1b & L1-2 via high-resolution solar reference and atmospheric absorption)
 - Pre-launch measured instrument line shape will be compared with that derived from solar irradiance
- Assess radiometric calibration using a multi-pronged approach
 - Internal assessment of images, Assess performance of routine processing
 - Comparison solar irradiance with solar reference and correlative contemporaneous sensors (e.g., OMPS, TROPOMI, GOME-2, EPIC, MODIS, VIIRS)
 - Comparison with radiative transfer simulation
- Assess geo-location methodology with Image Navigation and Registration (INR) during commissioning phase, accuracy and uncertainty
 - Imagery: assess registration offset of fiducial points not used in INR, using other reference imagery
 - L2: assess bias and variance in registration offset of known point sources of NO₂

TEMPO L2 Science Validation Plan

- > TEMPO PLRA has a bare minimum validation requirements (3 Pandoras, 1 month per season)
- > Jim Szykman has led the development of best-efforts basis validation plan: beta, provisional, full
- Use satellite observations (i.e., LEO and EPIC/DSCOVR) for cross validations
- Pandora & Pandonia Global Network (PGN): validate NO₂, HCHO, total O₃ and diurnal variation
- \succ TOLNet: 8 LIDAR instruments by time of launch to validate tropospheric O₃ & 0-2 km O₃ and diurnal variation

- Airborne instruments: GEO-TASO, GCAS, HSRL-2, IAGOS, SeaRey UAV
- > Other instruments: ozonesonde, Dobson/Brewer, MAXDOAS, FTIR, AERONET, ...
- Planned flight campaigns AGES+ (e.g., STAQS, AEROMMA+CUPIDS, GOTHAAM) during June-Aug 2003, provide integrated approaches linking TEMPO science, applications, and validation
- > Evaluation with chemistry transport models and data assimilation.