Update on the Multi-Angle Imager for Aerosols (MAIA) Mission

David J. Diner Sina Hasheminassab

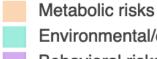
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA

Jet Propulsion Laboratory California Institute of Technology

© 2023 California Institute of Technology. Government sponsorship acknowledged. CEOS Atmospheric Composition – Virtual Constellation 25 October 2023

The MAIA mission is a joint partnership between NASA and Agenzia Spaziale Italiana (ASI)

NASA and ASI signed an Implementing Arrangement (IA) in January 2023



NASA contributions	ASI contributions
MAIA satellite instrument	PLATiNO-2 spacecraft
Near Space Network (uplink/downlink)	Launch (2025)
Instrument Operations Center	Mission Operations Center
Data processing and archive center for NASA data products (ASDC)	ASI data center for data product distribution and archive
Science Team for NASA's Earth Venture Instrument (EVI) investigation	Science Team for additional Italian science applications

Motivation

Ambient airborne particulate matter (PM) is the top environmental health risk worldwide (2019 Global Burden of Disease)

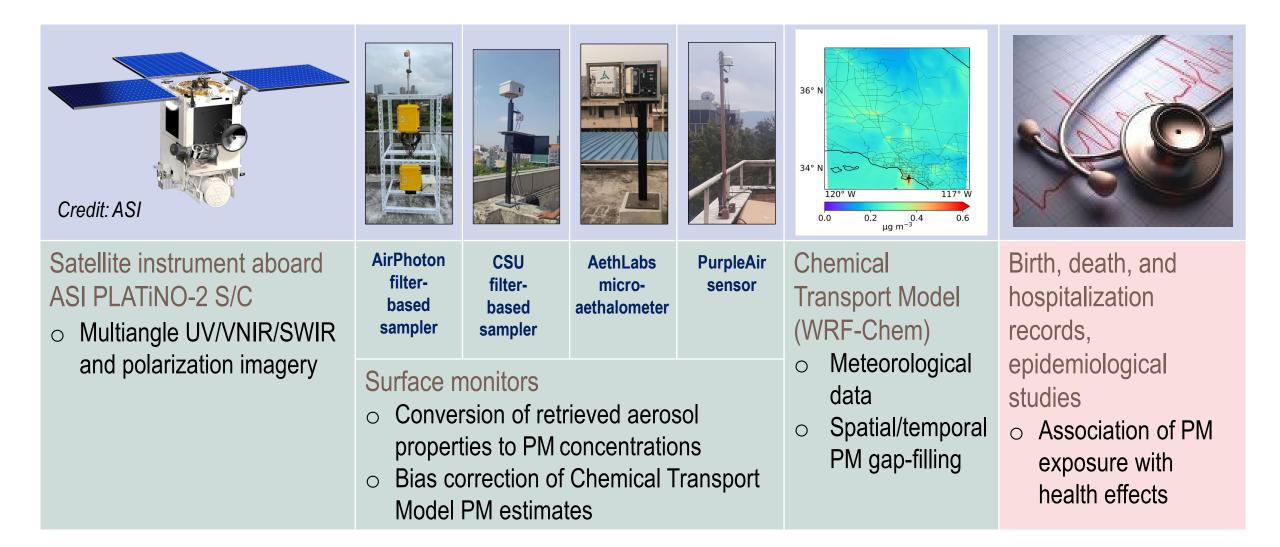
- High systolic blood pressure
 Smoking
 High fasting plasma glucose
 High body-mass index
- 5 High LDL cholesterol
- 6 Ambient particulate matter pollution
- 7 Kidney dysfunction
- 8 Alcohol use

Environmental/occupational risks

Behavioral risks

The toxicity of different **PM types**—mixtures of particles with different sizes, shapes, and compositions—is not well understood.

"[T]here is not enough evidence to identify differences in the effects of particles with different chemical compositions..." *(WHO, 2013)*

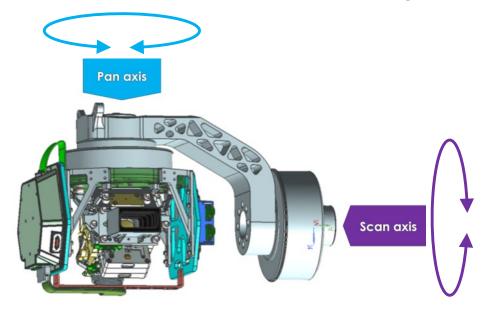

Dust

MAIA will explore linkages between exposure to different types of PM and human health.

 $\circ~$ Daily-averaged total $PM_{10},$ total $PM_{2.5},$ and speciated $PM_{2.5}$ will be mapped in selected areas on a 1-km grid

Elements of the MAIA investigation

Fabrication and environmental testing of the MAIA satellite instrument were completed in October 2022

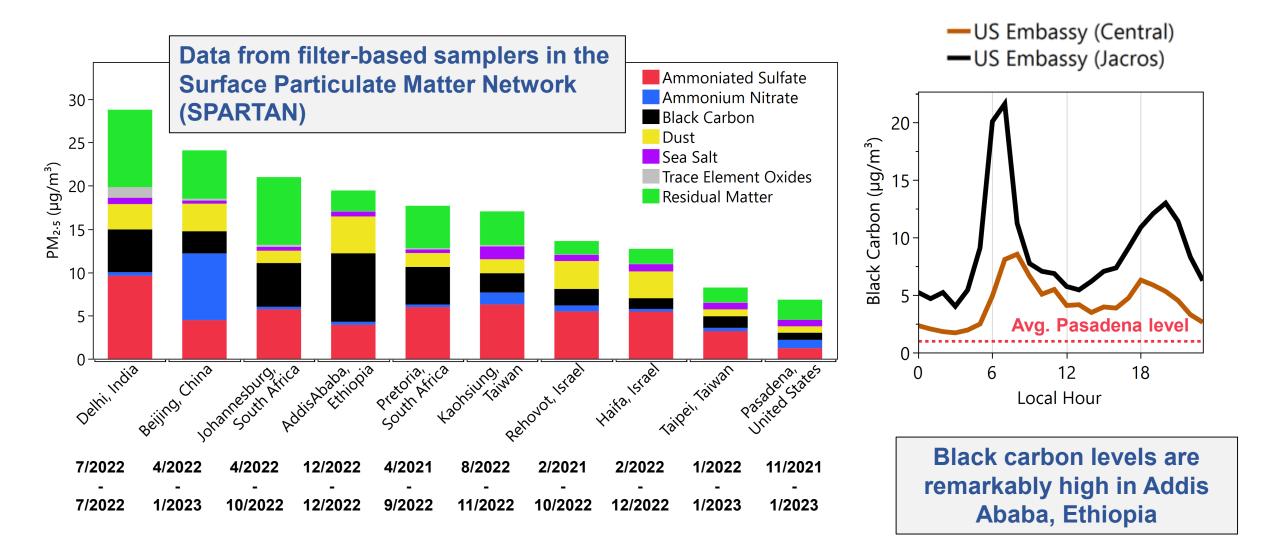

4

Assembled instrument contains a pointable spectropolarimetric camera

Band (nm)	General purpose	Special attribute
364		
388	aerosol absorption	
414		
440	fine particles	polarimetric
551		
646		polarimetric
749		
762.5		O ₂ absorption
865		
943		water vapor
1044	coarso particlos	polarimetric
1608		
1882	coarse particles	cirrus screening
2124		land surface

MAIA observation sites consist of a globally distributed set of target areas

Biaxial gimbal provides along-track multi-angle views and a wide cross-track field of regard


Pan (cross-track) axis provides ±49° field of regard, enabling frequent target revisits

Scan (along-track) axis enables multiangle imagery (±60° at instrument) over the selected target areas

- Primary Target Areas (PTAs): Surface monitor data collections, epidemiological studies
- 3 4 satellite observations/week
- Secondary Target Areas (STAs): Air quality and climate studies
- Typically 1 3 satellite observations/week
- Calibration/Validation Target Areas (CVTAs)
- Instrument and algorithm performance maintenance

Prelaunch surface monitoring data show diverse PM_{2.5} levels and composition across PTAs

Surface monitor data calibrate the Geostatistical Regression Models used for PM mapping

Regressions of MAIA aerosol properties against surface monitor measurements calibrate the transformation from aerosol parameters to near-surface ambient PM

Regressions of Chemical Transport Model (CTM) PM against surface monitor data correct for model biases

PM concentrations

7

• Training: surface measurements

+

+

 Mapping: estimates from the calibrated data model

- a (Spatiotemporal offsets)
- + β x Aerosol optical depth (L2) or
 CTM PM (L4)
 - γ x Geospatial predictors
 (elevation, urban density, population, green space)
 - δ x Spatiotemporal predictors
 (e.g., meteorological variables, aerosol parameters, CTM PM)

Satellite- and CTM-based PM maps are combined using Bayesian ensemble averaging.

Planned MAIA EVI standard data products (NetCDF format)

Data Product	Contents	Spatial Grid	Temporal Info
L1 Georectified Imagery	Map-projected radiance and polarization data	250 m	Time/days of target overpass
L2 Cloud Mask	Cloud confidence and quality indicators	1 km	Time/days of target overpass
L2 Aerosol Product	AOD, fractional AOD by size/shape/absorption, size distribution, refractive index	1 km	Time/days of target overpass
L2 PM Product	PM ₁₀ , PM _{2.5} , speciated PM _{2.5} (sulfate, nitrate, OC, EC, dust)	1 km	24-hr averaged/ days of target overpass
L4 PM Product	Gap-filled PM ₁₀ , PM _{2.5} , speciated PM _{2.5} (sulfate, nitrate, OC, EC, dust)	1 km	24-hr averaged/ daily
Ancillary Geographic Product	Land use information	125 m - 1 km	Static
Surface Monitor Product	Measured surface-based PM data monitor sites	Point data	Various sampling frequencies

Concluding remarks

- MAIA surface monitor operations are currently underway
 - Facilitated by many international collaborators with support from NASA, USAID, the US Department of State, and regional/national environmental agencies.
- Launch of the MAIA mission into sunsynchronous low-Earth orbit with 10:30 am equator crossing is expected in 2025.

https://maia.jpl.nasa.gov David.J.Diner@jpl.nasa.gov