

Surface PM2.5 and AOD Data assimilation Status update from the Global CAMS system

Johannes Flemming, Melanie Ades, Antje Inness, Enza Di Tomaso, Sebastien Garigues, Samuel Remy (HYGEOS)

WHAT IS THE SCOPE OF CAMS?

Atmosphere Monitoring CAMS provides consistent and quality-controlled information related to air pollution and health, solar energy, greenhouse gases and climate forcing, everywhere in the world.

Air quality

Ozone layer and UV radiation

http://atmosphere.copernicus.eu

Policy tools

Emissions and surface Fluxes

Solar energy

Climate forcing

Global CAMS operational forecast system

Atmosphere Monitoring

- ECWMF's Integrated Forecasting System (IFS) with modules for data assimilation and simulation of aerosols and reactive gases
 - 00 and 12 UTC forecast over 5 days at 40 km resolution (TL511l137)
 - Data assimilation of satellite retrievals for AOD, CO, Ozone and NO₂
 - Anthropogenic and biogenic emissions inventories (CAMS-GLOB)
 - NRT fire emissions from GFAS
- 48r1 update of CAMS o-suite (27th of June 2023)
 - Full stratospheric chemistry (BASCOE)
 - New secondary organic aerosols (biogenic and anthropogenic)
- Control forecast (00 only) without DA of atmospheric condition
 - AC IC are taken from the previous day
- CAMS aerosol model has 16 aerosol variables :
 - sea-salt (3 bin), desert dust (3 bin), OM (2), BC (2), SO4, NO3(2 bins), NH3, SOA (2)
 - Coupled to the CB05/BASCOE chemistry scheme

Aerosol Data assimilation

Atmosphere Monitoring

- Assimilated observations of AOD at 550 nm
 - MODIS &VIIRS over ocean and land
 - PMAp (Metop-BC) over ocean only
 - SLSTR from Sentinel 3A/B passively monitored
- 4D-VAR with prescribed background error statistics (NMC)
- Variational Bias Correction (VarBC) for MODIS, VIIRS(SNPP) and PMAp VIIRS (NOAA-20) is anchor
- Control variable is formulated in terms of the total aerosol and fractional contribution of each aerosol type is maintained in analysis increments
- Challenges of AOD DA:
 - Lack of vertical information in AOD retrieval
 - Lack of aerosol speciation information in AOD retrieval
 - Multi-instrument biases
 - Precision and accuracy of AOD retrieval (clouds, surface albedo, optical porperties ...)

Analysis departures (an-obs) 202309

https://atmosphere.copernicus.eu/charts/packages/cams monitoring

Atmosphere Monitoring MODIS/AQUA

PMAP/B

VIIRS/NOAA22

PMAP/C

0.14 0.11 0.10 0.08 0.06 0.05 0.03 0.02 0.00 0.02 0.05 -0.06 -0.08 0.10 -0.11

VIIRS/SNPP

30 day Mean

Assimilated observations only Note the different colour ranges, esp. for PMAP

AOD retrievals show significant inter-instrument biases

PROGRAMME OF THE EUROPEAN UNION

0.13

0.11 0.10

0.08

0.05 0.03 0.00 0.00 0.05 -0.07

-0.10 -0.11

AOD evaluation against AERONET (JJA 2023)

Size

100

40

RMSE

Atmosphere

Monitoring

RMS Error. Model (oper) vs L1.5 Aeronet AOT @ 500nm. Jun - Aug 2023. Daily means using 00Z, T+3 to 24. Ver0D 12.3.5.

RMS Error. Model (operfc) vs L1.5 Aeronet AOT @ 500nm. Jun - Aug 2023. Daily means using 00Z, T+3 to 24. Ver0D 12.3.5.

CAMS forecast (AOD DA)

Control (no AC DA)

RMS error. Model against L1.5 Aeronet AOT at 500nm. 432 Voronoi-weighted sites globally (r____=1276km). Jun - Aug 2023. 00Z. Ver0D 12.3.5.

Long term performance AOD CAMS

https://atmosphere.copernicus.eu/node/1058 **CAMS Evaluation report**

opernicus

THE EUROPEAN UNION

AOD - ALL - 2013-2023

AeronetL1.5-d - monthly data (statistics computed from daily values)

Atmosphe Monitori

Area mean AOD-PM2.5 temporal corelation

Atmosphere

01/06 05/06

09/06

13/06 17/06 21/06

time

25/06

pm2p5

21/06 25/06 29/061/07

0.20

Large scale AOD and PM2.5 variability is often well correlated

29/0**6**1/07

01/06 05/06

09/06 13/06

surppes ever on earth

time

0.43

0.42

0.41

0.40

0.39

0.38

0.37

0.36

0.35

0.38

0.36

0.34

0.32

0.30

17/06 21/06 25/06 29/061/07

pm2p5

June 23

time

01/06 05/06 09/06 13/06 17/06

and550

AOD PM2.5 correlation - pixel by pixel

Atmosphere

PM evaluation with AQ Obs. (7-9/2023)

Atmosphere

CAMS forecast (AOD DA) Control (no AC DA)

Observations from National/Regional AQ networks

PROGRAMME OF THE EUROPEAN UNION

Operational AQF intercomparisons

Atmosphere Monitoring

20

CMA- AQF Asia Intercomparison

ECCC- AQF North America Intercomparison

Multi Model Air Quality Performance Indices (AQPI)

 $\textbf{AQPI}[\mathrm{O}_3, \mathrm{NO}_2, \mathrm{PM}_{2.5}] = 100 \cdot \textit{avg}[\textbf{FAC2}, \textbf{R}, 1 - |\textbf{MFB}/2|]$

- GAW-WMO GAFIS aims to promote best practices of air quality forecasting
- GAFIS AQF inter-comparison efforts for Asia and North-America
- Comparing different system with and without AOD DA

https://community.wmo.int/en/activityareas/gaw/science-for-services/gafis

Bihui Zhang - CMA

Hours

Patrick Manseau - ECCC

Speciation and AOD DA

Summary

Atmosphere Monitoring

- PM2.5 and AOD are often (temporally) well correlated at the large scale but there is considerable spread in a pixel-by-pixel comparison.
- Positive impact of DA AOD on analysis and forecast of AOD in CAMS
- Mixed impact of AOD DA on surface PM2.5 (and PM10) in CAMS (beneficial during BB events in North-America in JJA 23)
- Improvements by AOD DA have been reduced over time because of advances in aerosol modelling in CAMS
- GAW-WMO AQF intercomparisons show that modelling differences are main cause for performance differences of regional and global AQF systems
- Way forward:
 - Combined total and dust AOD assimilation is beneficial for aerosol speciation in analysis
 - Experimentation with vertical structure of background error statistics in 4D-VAR
 - Assimilation of AOD and other aerosol retrievals (AE, SSA, AIH) specifically adopted to CAMS aerosols (EU CAMEO project)
 - Preparation for DA for new aerosol satellite retrievals from 3MI and GEMS/TEMPO/S4 (EU CAMEO project) and aerosol lidar backscatter from the upcoming EarthCARE

