Best practice protocol for validation of aerosol, cloud, and precipitation profiles

CEOS WGCV Action CV-22-01

Status update for WGCV#52

Rob Koopman, Stephanie Rusli, Jonas von Bismarck, Eleni Marinou, Holger Baars, Philippe Goryl
Validation challenges unique to aerosol, cloud profiling

- Extremely narrow sampling volume
- Small correlation length of Target features
- Need for in-situ Measurements of microphysical properties

Synergistic validation
Product Diversity
Gaps in spaceborne data records
Common challenges: aerosol, cloud/precipitation, radiation

Scope of the best practice

- Aeolus
- CALIPSO
- CloudSat
- GPM
- CERES
- GERB
- EarthCARE
- ACDL?
- Aeolus 2
- AOS
- Libera

Time
AOS and EarthCARE scientists highlighted validation synergies:

ACCP (now AOS) 2nd Sub-orbital Workshop, April 2021

2nd ESA EarthCARE Cal/Val Workshop
Report
EC-REP-ESA-SYS-1229

Online Event
24-28 May 2021

Lessons Learned
Methods and Approaches
In-orbit validation ↔
pre-launch validation/verification
Airborne campaigns & Networks

Many of 2nd ESA workshop recommendations involved COMMON PRACTICE CONVERGENCE
Best practice protocols for validation of...

- Aerosol, Cloud, and Precipitation Profiles
- Soil Moisture
- Albedo
- Biomass
- Oceanographic
- LAI
- LST
Objectives

Capture Lessons Learned

Community Converge on Approaches
- Study open issues
- Deliverable 1: Document
- Deliverable 2: Tools

Evolution: Update Process

Descriptive, not directive
- Several methods can co-exist, distinctions should be unambiguous
- ‘Baseline’ methods serve as reference for alternative approaches

Publicly available - Open Source
- Sub-orbital to orbital signal conversion

CEOS WGCV
- no dedicated subgroup today
- endorses initiative
- monitors its progress under action item CV-22-01
Primary benefit

Improved data quality from upcoming EO missions

- Knowledge transfer and exchange:
 - Between successive missions ("pensioner to postdoc")
 - Between correlative instrument providers and validation teams
 - Between algorithm developers and validation teams
- Optimised/harmonised (super)site equipment (serving multiple missions)
- Global network of networks, in terms of correlative data QA/QC
- Disambiguation of validation results/interpretation from different teams
- Improving data record continuity (e.g. handling of wavelength differences)
- Python code for broader community, easily adaptable to multiple missions, under permissive open source licence (compliant with NASA-ESA Multi-Mission Algorithm and Analysis Platform)
Organisation

• Broad community-led effort: participation of scientists from AOS Sub-Orbital Working Group and past and present missions, Aeolus and EarthCARE Validation Teams, and further scientists through JAXA and EUMETSAT

• Involvement of space agencies: ESA, NASA, JAXA, EUMETSAT

• 83+ contributors at present

• Each chapter is co-lead by at least one scientist from NASA missions and one from ESA missions

• Monthly video conferences of co-leads and agencies

• ESA supports some key scientists from EarthCARE and Aeolus through
 • Scientists involved in coordination and convergence process (lead: Vassilis Amiridis, NOA)
 • Developers of open-source tools for sub-orbital to orbital transformation (Lidar, Radar, Imager)
 • Studies on open issues
 • Experts from related contracts (algorithm development, assimilation)
Top-level topics

Table of Content:

1. Introduction
2. Validation needs for space profilers
3. Survey of validation measurements
4. Correlative metadata and data format
5. Guidance for validation analysis
6. Near-real time validation through data assimilation
7. Knowledge and data gaps
Status

- 7 chapters: contributions nearing completion for first draft
- The interaction between the chapters ongoing to eliminate overlaps between the chapters.
- A special issue has been agreed, in AMT journal, with an overview paper to be submitted to BAMS. Editors of AMT have agreed and wait for the list of papers.
- Dedicated session proposed for IGARSS’24
- Three studies identified and underway:
 - spatiotemporal variabilities that should be tackled in common homogenized ways for aerosol and clouds.
 - Sensitivity study on validation of level 1 Lidar data
 - Wavelength conversion for aerosol mixtures including depolarization ratio, extinction and backscatter coefficient
Schedule

Q1'22

Brainstorming meetings

Q2'22

Formation phase

Q3'22

Ramp up

Q4'22

Implementation monitoring meetings

1st draft

Q1'23

CEOS ready

Q2'23

Studies start

Q3'23

Collocation at EC Cal/Val meeting

Q4'23

Maintenance and evolution

Q1'24

Study results

Q2'22

Q3'22

Q4'22

Q1'23

Q2'23

Q3'23

Q4'23

Q1'24
Summary

• High-resolution profile validation of aerosol, cloud, and precipitation is challenging
• A need for intense community exchange on methods and approaches has been identified at EarthCARE and AOS workshops
• Implementation approach (reported at CEOS-WGCV) is a self-organised community model, with involvement of space agencies (thus far ESA, NASA, JAXA, EUMETSAT).
• Although the bulk of the work remains voluntary, ESA supports some key scientists from EarthCARE and Aeolus that are engaging the broader community, and developers of the open-source tools implementing suborbital-to-orbital transformation best practices.
• The contributors are working towards a target release of the first draft by November ’23 with final document contributed to CEOS by April ’24.