GOME-Type tropical tropospheric ozone and S5P-BASCOE tropospheric ozone

- Klaus-Peter Heue, Diego Loyola, Melanie Coldewey-Egbers, Martin Dameris, Christophe Lerot, Michel van Roozendael, Daan Hubert, Simon Chabrillat, Quentin Errera
- 15 Sept. 2023

CEOS AC-VC 2023

Overview

- Motivation
- CCD (convective cloud Differential) tropics only
 - Principle
 - Harmonisation
 - Trends
 - Comparison to EMAC simulations
- S5p-BASCOE global
 - Principle
 - Comparison to OMPS-MERRA2
 - Application to GOME-Type Ozone -ECV

https://doi.org/10.1038/s43016-021-00422-6

ARTICIES

Published Jan. 2022

Ozone pollution threatens the production of major staple crops in East Asia

Zhaozhong Feng^{® 1,10} [⊠], Yansen Xu^{® 1,10}, Kazuhiko Kobayashi^{® 2,10} [⊠], Lulu Dai^{1,3}, Tianyi Zhang⁴, Evgenios Agathokleous^{® 1}, Vicent Calatayud⁵, Elena Paoletti⁶, Arideep Mukherjee^{1,7}, Madhoolika Agrawal⁷, Rokjin J. Park⁸, Yujin J. Oak^{® 8} and Xu Yue^{® 9} [⊠]

nature

food

East Asia is a hotspot of surface ozone (O_3) pollution, which hinders crop growth and reduces yields. Here, we assess the relative yield loss in rice, wheat and maize due to O_3 by combining O_3 elevation experiments across Asia and air monitoring at about 3,000 locations in China, Japan and Korea. China shows the highest relative yield loss at 33%, 23% and 9% for wheat, rice and maize, respectively. The relative yield loss is much greater in hybrid than inbred rice, being close to that for wheat. Total O_3 -induced annual loss of crop production is estimated at US\$63 billion. The large impact of O_3 on crop production urges us to take mitigation action for O_3 emission control and adaptive agronomic measures against the rising surface O_3 levels across East Asia.

ropospheric ozone (O_3) is a secondary air pollutant produced assess the yield losses induced by ambient O_3 . Estimates of yield loss

Haitong Zhe Sun et al., 2022: Cohort-based long-term ozone exposure-associated mortality risks with adjusted metrics: A systematic review and meta-analysis https://doi.org/10.1016/j.xinn.2022.100246

https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC AR6 WGI Chapt er07.pdf

Change in effective radiative forcing from 1750 to 2019

details CCD Specifications

- definition tropospheric column, close to the top of deep convective clouds
- Two data sets:
 - 270 hPa operational S5P RPRO data
 - 200 hPa S5P internally processed
- Stratospheric column is averaged over 70°E to 190 °E (=170°W)
- CCD files also contain averaged VMR
- spatial & temporal sampling, 1°x1° x 1month
- S5P data are averaged to the spatial and temporal resolution (op. 0.5° x 1°x 3 days)

Harmonisation 200 hPa

Harmonisation

Trend Results

- Fit Trends from 1995 to 2008
- And from 2008 to 2022
- For the trends the percentile trends are recommended

Trend between 1995 and 2007

Trend between 2008 and 2022

Decrease

~ 0.71 DU/decade ~ 2.7 Tg/decade

Trends 1995-2023

The same fit was applied for each grid point, the median slope is shown here, the dots indicate significant trends trend in tropospheric column ozone

Mean map and temporal change

average tropospheric ozone mixingratio mean 1995-2023

Data Min = 21.2, Max = 55.9

Summary and outlook CCD

- Harmonized CCD tropical tropospheric data set from 1995-2022
- Mean tropical trend
 - up to 2007 +1.2 DU/decade or 4.5 Tg/decade
 - between 2008 and 2022 -0.67 DU/decade or -2.5 Tg/decade

• Update publication from 2016

- Drift between the instruments old S5P Level-1
- Good agreement in the tropics
- Reduced tropospheric ozone in summer 2020 due to Corona lockdown
- North south development in time is tilted

2004-2019 mean climatology

Data Min = 12.8, Max = Infinity, Mean = 33.7

GTO-ECV internal comparisons

Summary S5p-BASCOE

- Global tropospheric ozone columns are retrieved from S5P-BASCOE data
- Same algorithm is currently applied to GTO-ECV

Harmonisation

- The mean difference (given in the figures) and the mean annual cycle relative OMI is subtracted/added to the measurements
- For GOME_1 the harmonized data set (SCIAMACHY) is used as reference. Due to short period of tropical overlap (one year) we use the mean difference between GOME-1 and SCIAMACHY here.

Trends 1995-2008

Beside the linear function a set of harmonic functions and the indices for ENSO (MEI), QBO and Solar flux were fitted.

Trends 2008-2022

Beside the linear function a set of harmonic functions and the indices for ENSO (MEI), QBO and Solar flux were fitted.

Harmonisation 270 hPa

TTOC relative to OMI [DU]

Harmonisation 200 hPa

Validation Kuala Lumpur

Date

Kuala Lumpur 2.73°N 101.7°E Deviation by month over Kuala Lumpur sonde satellite 50 Ozone [DU] tropospheric ozone [DU] 00 00 05 50 40 30 Tropospheric 우 우 수 20 10 10 40 Deviation [DU] 20 50 tropospheric columns 40 0 30 -20 delta ozone [DU] 20 2 З Month 10 -10-20 -30

The sonde data are integrated up to 270/200 hPa and averaged over one month before comparing to the grid cell (1°x1°) that contains the sounding station

₽₽ ₽₽

12

10 11

Validation Natal

Natal -5.4°N -35.4°E

very good agreement for May Larger deviation for higher columns (Aug.-Sep.)

Validation overview

Except for the east Asian stations (Kuala Lumpur and Java) we observe a positive bias (~20%) relative to the sondes.

This finding is independent of the CCD top level (200/270 hPa)

