

NASA tropospheric ozone from EPIC, OMI, and OMPS satellite measurements: Current status and science results

J. R. Ziemke, N. A. Kramarova, L. K. Huang, J. R. Herman

NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

Tropospheric Column Ozone Satellite Products from NASA GSFC Code 614

Online products (<u>https://asdc.larc.nasa.gov</u>, and <u>https://acp-ext.gsfc.nasa.gov/Data_services/cloud_slice</u>):

- TOMS CCD: 1979-2005, monthly, 30S-30N, 5°×5°
- OMI/MLS: October 2004-recent, monthly, 60S-60N, 1°×1.25° and 5°×5°
- EPIC/MERRA2: June 2015-recent, hourly-to-monthly, 90S-90N, 1°×1°
- OMPS/MERRA2: January 2015-recent, daily-to-monthly, 90S-90N, 1°×1°

Research Products:

- OMI CCD: October 2004-recent, monthly, 30S-30N, 5°×5°
- OMI/MLS Cloud Ozone: October 2004-recent, monthly, 30S-30N, 1°×1°
- OMPS NM-LP: January 2012 recent, monthly, 40S-40N, 1°×1°

General Residual Method to Derive Tropospheric Column Ozone

Hourly and daily maps: Collocated MERRA-2 SCO and PV-θ (2.5 PVU, 380K) tropopause pressure

EPIC Hourly Maps of Tropospheric Ozone

EPIC tropospheric ozone maps (every 1-2 hours for June 2015 – present)

Available from Langley ASDC: https://asdc.larc.nasa.gov/

EPIC Hourly Maps of Tropospheric Ozone

EPIC tropospheric ozone maps (every 1-2 hours for June 2015 – present)

Available from Langley ASDC: https://asdc.larc.nasa.gov/

EPIC Global Tropospheric Ozone Maps

EPIC and OMPS TCO

<u>Trends</u>: OMI/MLS for 60S-60N (includes a new drift correction)

<u>Trends</u>: OMI/MLS for 60S-60N (includes a new drift correction)

<u>Trends</u>: Long Record of TOMS+OMI CCD Tropospheric Ozone for 30S-30N

<u>Trends</u>: 43-Year Record Changes in TOMS+OMI CCD Tropospheric Ozone for 30S-30N

- Total change (in DU) = TOMS trend (DU/decade) · 2.6 decades + Trend_OMIMLS (DU/decade) · 1.6 decades
- Total change variance = $2.6^2 \cdot \text{var}(\text{Trend}_\text{TOMS}) + 1.6^2 \cdot \text{var}(\text{Trend}_\text{OMIMLS})$

To Investigate TCO Anomalies During the COVID Period We Derive a "Merged" Tropospheric Column Ozone Dataset from Combining EPIC with OMI and OMPS nadir mappers

All three use co-located MERRA-2 SCO with PV-θ tropopause (2.5 PVU, 380 K) to derive tropospheric column ozone

EPIC+OMPS+OMI "Merged" long record: Global-scale reductions in NH TOR in 2020, 2021, 2022

(Ziemke et al., 2022, GRL)

- Drops in TCO in spring-summer of ~3 DU each year 2020-2022
- May be driven largely by decrease in NH pollution during and after COVID-19 (OMI NO₂ also shows anomalous drops in springsummer 2020-2022)

Anomalous Drops in NH Tropospheric Ozone and NO2 in 2020, 2021, and 2022 (More Than Just COVID-Related?)

Anomalous Reductions in Tropospheric Ozone in 2020, 2021, 2022

(Anomalies based on 2016-2019 average seasonal cycles)

Spring and Summer Anomalies For Tropospheric Ozone and NO2 during 2020-2022

Seasonal anomalies based on 2016-2019 average seasonal cycles

Conclusions

Several online products available from NASA GSFC Code 614:

- EPIC/M2: Every 1-2 hours 2015-recent (data download from ASDC)
- OMI/MLS: Monthly 2004-recent
- TOMS: Monthly for 1979-2005 (limited to tropics)
- OMPS/M2: Daily 2012-recent

Science:

- Tropospheric ozone trends show overall increases for both OMI/MLS and TOMS with some regional negative trends and largest positive trends about SE Asia (~+7-8 DU increase for 1979-recent, ~+1.9 DU/decade avg)
- Ozone in free troposphere shows reductions of ~3 DU (~8%) in NH in spring-summer 2020-2022 (three-year drop also appears in OMI tropospheric NO2)

Extra Plots

45-Year record of TOMS+OMI CCD Tropospheric Ozone for 30S-30N

"Convective-Cloud Differential" (CCD) Method for deriving gridded tropical tropospheric column ozone

<u>Step 1</u>: Determine SCO in the tropical Pacific using ozone columns measured over deep convective clouds

Convective Cloud Differential (CCD) Method

Very Low BL O₃ ~ 5-10 ppbv Over Remote Ocean

Step 2: Apply natural zonal invariance of SCO in the tropics in 5-degree latitude bands to derive gridded SCO throughout the tropics

(Ziemke, J. R., J. Joiner, S. Chandra, et al., ACP, 2009)

Validation: EPIC vs Ozonesonde Daily TOR

(Kramarova, et al., Front. Remote Sens., 2021)

Agreement within ± 2.5 DU (or ~ $\pm 10\%$) after applying -3 DU global offset correction

- Page 4 -

TCO foor 2023 Remains Low by ~3 DU Compared to Previous Years

EPIC Retrieved Spectral Bands

Wavelength (nm)	Full Width (nm)	Primary Application
317.5 ± 0.1	1 ± 0.2	Ozone, SO ₂
325 ± 0.1	2 ± 0.2	Ozone
340 ± 0.3	3 ± 0.6	Ozone, Aerosols
388 ± 0.3	3 ± 0.6	Aerosols, Clouds
443 ± 1.0	3 ± 0.6	Aerosols
551 ± 1.0	3 ± 0.6	Aerosols, Vegetation
680 ± 0.2	2 ± 0.4	Aerosols, Vegetation, Clouds
687.75 ± 0.2	0.8 ± 0.2	Clouds
764 ± 0.2	1.0 ± 0.2	Clouds
779.5 ± 0.3	2.0 ± 0.4	Clouds, Vegetation