

Speaker: Patricia Castellanos<sup>1</sup>

Contributors: Virginie Buchard<sup>2</sup>, Arlindo da Silva<sup>1</sup>, Rob Levy, Christina Hsu<sup>1</sup>, Andy Sayer<sup>2</sup>

<sup>1</sup>NASA Goddard Space Flight Center <sup>2</sup>University of Maryland Baltimore County





# **GEOS ESM Architecture Overview**



#### GEOS is a hierarchy of ESMF components

An infrastructure for building GEOS applications:

- Standardized component interfaces
- Low level data containers for data sharing
- Grid classes for the physical domain .
- Parallel communication .
- Others: Regridding, Logging, Calendar •

#### The MAPL layer interface to ESMF

Provides an abstraction of software issues including:

- Generic Initialize/Finalize/Run .
- Simplified hierarchy (creation of child components) .
- IO Layers (Asynchronous file server output) .
- Regridding transforms (grids and tiles) .
- Profiling (Performance and Memory) .
- Input (ExtData) / Output (History)

#### Architecture permits flexibility

- NWP configuration
- S2S configuration (seasonal, w/coupled ocean) .
- CCM configuration (advanced chemistry) .
- CF configuration (full chemistry NRT forecasting) .
- NR configuration (high resolution for OSSEs)
- CTM configuration (offline met fields)

All these use the same core model components









# **GEOS Main Systems**

| GEOS<br>Products | Purpose                                                                                                       | Nominal<br>Res. | Aerosol<br>DRE | Aerosol<br>DA |
|------------------|---------------------------------------------------------------------------------------------------------------|-----------------|----------------|---------------|
| GEOS-IT          | N.R.T. analysis system for<br>Instrument Teams                                                                | 50 km           | $\checkmark$   | $\checkmark$  |
| GEOS-FP          | Wx/Aerosols 5-20 Forecasts (in ICAP MME)                                                                      | 12 km           | $\checkmark$   |               |
| GEOS-<br>S2S     | Coupled system for S2S predictions                                                                            | 50 km           | $\checkmark$   | (√)           |
| GEOS-CF          | Composition Forecast, full<br>reactive gas chemistry<br>(GEOSchem mechanisms)<br>▷ Being coupled to<br>GOCART | 50 km           | $\checkmark$   | (√)           |
| MERRA-2          | Current reanalysis                                                                                            | 50 km           | $\checkmark$   | $\checkmark$  |



# **Timeline for GEOS Systems**





## Recent Updates to GEOS Aerosol Scheme: GOCART-2G

- Separation of organic aerosol into "white" (anthropogenic) and "brown" (biomass burning) components with distinct optical properties
- Increase OA:OC ratio in line with recent airborne measurements
- Inclusion of an ACHEM-driven SOA scheme for anthropogenic and biomass burning sources
- Inclusion of a HEMCO/MEGAN-driven biogenic SOA scheme
- Introduction of "point wise" source emissions for pyroCb inputs
- Update anthropogenic emissions to downscaled-CEDS emission inventory and input oxidant fields to MERRA-2 GMI (valid range of both is 1980 - 2019; padding outside years with endpoints











## **Impact of Brown Carbon**





- Brown carbon optical properties are assigned to organic aerosol from biomass burning sources
- Increasing aerosol absorption toward shorter wavelengths results in a more favorable comparison to OMI absorbing aerosol products
- Shown are the simulated (top) and observed (bottom right) UV Aerosol Index for September 2016







# GEOS Aerosol Observing System

MODIS Terra & Aqua observations of 550 nm AOD have been, by far, the main sources of aerosol observations for the GEOS aerosol DA system



GIOBAL Modeling and Assimilation Office gmao.gsfc.nasa.gov





# **Aerosol Constellation Beyond the EOS Era**







# Aerosol DA Requires Bias Correction of AOD Observations

- The aerosol DA problem requires a homogenized AOD observing system across many different platforms
- Biases between datasets can propagate in the model forecast and lead to artificial variability





# **MODIS AOD Retrieval Algorithms**







**Global Modeling and Assimilation Office** 

## Homogenization of AOD Observations with Machine Learning







# **Homogenized MODIS AOD**





# MODIS Algorithms Ported to VIIRS & GEO Imagers

- NASA ROSES has funded the Dark Target and Deep Blue Teams to implement their MODIS algorithms on VIIRS and the constellation of GEO imagers
- For VIIRS-SNPP, which has a long timeseries, this allows us to readily replicate the NNR approach



# NNR Implemented on VIIRS-SNPP

MODIS Aqua NNR 550 nm AOD 20130802



VIIRS SNPP NNR 550 nm AOD 20130802





Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

GMAO



NASA



# **Satellite Visible Angstrom Exponent**

- Spectral AOD can help distinguish different aerosol types
- Large aerosol (dust, sea salt) have low spectral AOD variability (low AE), while fine aerosol (smoke, sulfate) have high variability





- Standard AOD retrievals depend on a limited number of assumed aerosol optical models
- As the NNR is based on simulated aerosol types, more variability in the aerosol optical model is possible



## **NNR Algorithm Modified to Predict Visible Angstrom Exponent**





Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

## **NNR Algorithm Modified to Predict Visible Angstrom Exponent**



#### VIIRS Land Surface

0.5

NNR AE440-870

-1.0 -0.5 0.0

AERONET

1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0 2.5

AERONET

VIIRS Ocean



-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 AERONET



National Aeronautics and Space Administration



## Validation: Comparison to Maritime Aerosol Network

Handheld sun photometers are deployed during research cruises



#### MAN Cruise Tracks







Global Modeling and Assimilation Offic gmao.gsfc.nasa.gov

# **Comparison to 4STAR Airborne Observations of AE**

#### Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)



- Airborne sun-sky spectrophotometer measuring direct beam transmittance
- Measures column above aircraft
  - Extensive AOD will be biased, but intensive AE is a more robust comparison
- MODIS underpasses where the aircraft was below 1000 m were considered:
  - KORUS-AQ NAAMES
  - TCAP SEAC4RS

•



- As 4STAR measures the partial column, errors are to be expected in comparisons to total column observations
- Here we look at the contextual bias:
  - The NNR AE predictions has a similar error PDF as AERONET



## JEDI Updates to Support Multi-Spectral AOD Assimilation

# Current System: 2D-PSAS aerosol analysis with local displacement ensembles

- **Control Variable:** single-wavelength 2D AOD
- **Observable:** AOD observation at 550nm (NNR)
  - Single-wavelength AOD measurements primarily constrain the amount of aerosol in a column, with the vertical structure and speciation primarily determined by the specified emissions and the vertical (and horizontal) transport provided by the model.

### New System: JCSDA–JEDI hybrid ensemblevariational scheme

- Control Variable: vertically resolved aerosol extinction
- **Observable:** multi-wavelength AOD (NNR)
  - Open doors to future observables: lidar observables, radiances

This new scheme brings flow-dependence into the background error specification inherent in ensemble methods but retains some of the flexibility of variational methods, permitting assimilation of multi-spectral passive and active aerosol measurements.



Aerosol extinction increments at 470 nm (for one model layer) after one analysis cycle at C90: Observing system: multi-wavelengths NNR AOD at 470 & 870 nm



National Aeronautics and Space Administration

# Future Direction: Geostationary Assimilation

- NASA has funded the Dark Target and Deep Blue teams to implement their algorithms on the GEO constellation
- These data will be the focus of our next developments, and we will use transfer learning techniques to propagate the AOD homogenization to new sensors









### Assimilation of GEO 550 nm AOD Over Ocean





GEO+MODIS exp - MODIS only exp





Global Modeling and Assimilation Offic gmao.gsfc.nasa.gov

# **QFED: Quick Fire Emission Dataset**

- Top-down algorithm based on MODIS
  Fire Radiative Power (AQUA/TERRA)
- FRP Emission factors tuned by means of inverse calculation based on MODIS AOD data.
- Daily mean emissions, NRT
- Prescribed diurnal cycle
- VIIRS FRP being evaluated, to eventually include estimates of Modified Combustion Efficiency
- Geostationary FRP for adaptive diurnal cycle estimation







# **Summary & Outlook**

- EOS-era constellation is coming to an end transitioning to a new observing system
- NASA has funded the Dark Target and Deep Blue teams to implement their MODIS algorithms on VIIRS enabling continuity
  - Without TERRA, there will no longer be a LEO morning orbit
  - MetOP-SG can fill the morning gap, but there is no NASA funding for aerosol algorithm development
- Aerosol DA transition to JEDI is progressing
  - New control variable and flow dependent background errors open the door to assimilating more observables (e.g. multispectral AOD, lidar profiles)
- The geostationary constellation provides substantial temporal and spatial coverage
  - 3 years (2019-2022) of DT & DB retrievals on GEOS and HIMAWARI have been recently released
  - These data will be the focus of our next developments, and we will use transfer learning techniques from the LEO sensors to propagate the AERONET calibration to GEO sensors
  - However, other than TEMPO, there is no future NASA support for GEO constellation aerosol retrieval development

