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Climate Forcing — Aerosol Effects Produce the Biggest Prediction Uncertainties

— Aerosol-Cloud Interaction and Particle Microphysical Property
Assumption Uncertainties Dominate; Trace-gas Distributions also matter

Forcing uncertainty translates into prediction uncertainty
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Aerosol-related forcing uncertainties need to be reduced
to enable climate predictions
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Wildfire Smolke Injection Heights & Source Strengths

[These are the two key parameters representing aerosol sources in climate models]

% of Plumes injected above boundary layer
stratified by vegetation type & year
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MODIS Smoke Plume Image & Aerosol Amount Snapshots

mod 1-GLC-GOCART GFED3d MCD45~-CCi-GOCART

Diftferent Techniques for Assuming Model Source Strength
Overestimaie or Underestimate Observation
Systematically in Different Regions
Petrenko, Kahn, et al., JGR 2012; 2017; 2023 in prep.

GoCART Model-Simulated Aerosol Amount Snapshots
for Different Assumed Source Strengths



Global Climatology of Smoke-Plume Injection Heights

Boreal Eyrasia

South America

Australia

1 0 Water 6 Closed Shrublands 112 Croplands
I 1 Evergreen Needleleaf Forest hrublands and Built-Up
Savannas [ 14 Cropland/Natural Vegetation Mosaic
115 Snow and Ice
2 arsely Vegetated
[ 5 Mixed Forests 11 Permanent Wetlands I 254 Unclassified

» About 23,000 smoke plumes digitized 2008-2010 (~13,000 for 2008); overpass ~10:30 AM local time
« Each plume 1s Operator-Processed using MINXv4.0, and Quality Controlled

* Available on-line: htips://misr.jpl.nasa.gov/eetData/accessData/MisrMinxPlumes2/

) Val Martin, Kahn & Tosca; Remt. Sens. 2018
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e Individual Heights at 1.1 i Florizonial res., ~250-500 rr) Vzrijcal res.

e Both Pizl-wezignizdand AOD-vwzignizd profiles derived

e Fire emissions are Siraiifizel oy Aliituclz, Region, Ecosysizm, & Szdson

e The cases in each stratum are Avzragzdto produce a statistical summary

e Inter-annual and/or sub-seasonal izrmporal resoluiion might be needed
in some cases; requires detailed, regional study (e.g., Amazon)
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Based on MERRA-2 Hourly PBL 10:00-13:00 LT

Accounting for
uncertainty
FT =PBL+ 500 m

[PBL from MERRA-2]

Percentage in FT

2 km threshold
avoids dependence
on PBL height
estimate
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Val Martin, Kahn & Tosca; Remt. Sens. 2018



Constraining Source Strength Using Satellite AOD and Forward Modeling

447 satellite snapshots provide instantaneous constraint  GFED-based Biomass Bu rning regions
on a source strength

! ¢ group A
30 A group B

_ * group C
O group D
—6‘,0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S S S S S
: -135
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Fire cases for Petrenko et al. Source_strength studies The 13 regions with the BB cases in each region. BONA = Boreal North
1 1 . h 1 1 d . f 100 America, TENA = Temperate North America, CEAM = Central America, NHSA
( ) plumes with at least one linear dimension o = Northern Hemisphere South America, SHSA = Southern Hemisphere
km, to be useful for global modeling studies with falrly South America, NHAF = Northern Hemisphere Africa, SHAF = Southern

luti f1° 1 Hemisphere Africa, BOAS_W = Boreal Asia West, BOAS_E = Boreal Asia East,
coarse resolution o Or larger CEAS_W = Central Asia West, CEAS_E = Central Asia East, SEAS = Southeast

(2) a coordinated pattern of elevated AOD, Asia, AUST = Australia
(3) a visible smoke plume in the satellite imagery, and
(4) a fire signal in the MODIS thermal anomalies

product (MOD14)
Petrenko, Kahn, Chin et al. 2023



GISS-MATRIX

» Models are ranked from highest
to lowest overall model BB AOD

» Generally consistent model
performance within individual
BB regions

» In some regions, models all
under- (USA, SEAsia) or
overestimate (NCAfrica) BB AOD

» But there are also significant
inter-model differences

<0.1 0.1 0.2 0.5 0.67 1.5 2.0 5.0 10.0 >10.0

Ratio of model-simulated BB AOD (AOD_BB1 — AOD_BBO) to the
BB AOD derived from MODIS for all individual fire cases. Petrento. Kaln. Chin et al. 2023



Grouping BB regions for source-strength estimation

» BB regions can be divided into four groups w.r.t. source-strength
estimation method applicability:

»A: High AOD, low background, high BB AOD fraction, high confidence:
boreal NH, woodlands of SH

Yes . é\gogeg N\ Yes MODIS  Yes MIODIS >B.. Med AOD, low BG, medium confidence, possibly missing emissions:
5= 615 fBBZ05 AOD>0.3 cultivated lands

»C: High AOD, high & complex background, low confidence: NH Africa, SE
Asia, China

»D, Low total AOD, sporadic burning events, low confidence: Europe
Australia, LAmerica

Y

Group C

NHAF, SEAS,
CEAS_E

Group D

CEAS_W,
NHSA, AUST

Group A Group B

BONA, SHAF, BOAS_W,
SHSA, BOAS_E CEAM, TENA

»>Several factors in addition to emissions input affect AOD calculations
in the model (all of which require their own constraints, and the required
measurements are currently lacking):

Using satellite observations to constrain BB »O0A/OC ratio

. . . . » Aerosol removal rates (hence loads)
aerosol simulations work best in regions : : ; o :
» Hygroscopic properties and chemical and physical interactions

«  With relatively high total MODIS AOD » Optical properties (e.g., mass extinction efficiency)

« Low/uncomplicated background aerosol (BB » Additional measurements and methodology development needed to

. separate BB signal in satellite data
aerosol dominates)

Petrenko, Kahn, Chin et al. 2023



e e = e S— | N

Regional Context

Model Validation

« Parameterizations
* Underlying Mechanisms

Kahn et al., Rev. Geophys. 2023



MISR ANG, AAOD Results
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Shenshen Li, R. Kahn, et al. AMT 2015

AN G Four years of data (2006-2009) A AOD

Seasonally averaged

oo | | . Diffasop = |Fractionyisr_aaop
Diffang = [omisr — @GocarT| < €aNG

—FractionGocART AA0D| < €AA0D
We rank the g,ng, €440p and select the common or the lowest mixtures

Fractiony;gg saopis the absorbing fraction of total AOD

Where remote-sensing data are ambiguous, can use a model to weight the options
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SAM-CAAM

[Systematic Aircraft Measurements to Characterize Aerosol Air

Suborbital

Prima ry Goal: .[This is currently a concept-development effort not yet a proj ect]

» Characterize statistically particle properiies for major aerosol types globally,

to provide detail unobtainable from space, adding value to models & satellite aerosol
data, offering

improved aerosol property assumptions for:

-- Modlzling aerosol direct forcing and aerosol-cloud interactions
-- Sarellite retrieval algorithrn climatology options or priors

Plus: More robust iranslation between satellite-retrieved aerosol optical properties aned

s ecies-specific aerosol mass and size tracked In agrosol trapsgort, clirmafke, & air ¢ ud//r'
)IJ_?! }gndl// recdluce model uncertainty & enhance the value of 23+ years or satellite derosc

=) V7 C c/yc
retrieval producis Kahn et al., BAMS 2017



Suborbital Required for PDFs of Particle Microphysical Properties

required for key aerosol science objectives,
but cannot be retrieved adequately or are

- Hygroscopicity” — Ambient particle hydration, aerosol-cloud interactions

)

F nr

> Muass Extinciion Efficiency — Translate between retrieved optical properties
from remote sensing & aerosol mass book-kept in models

> Spectral Lighi-Absorption — Aerosol direct & semi-direct forcing,
atmospheric stability structure & circulation

CCN Properties™ — At least part of the CCN size spectrum 1s too small to be retrieved
by remote-sensing

Acquiring such data is feasible because:
Unlike aerosol amount,

from year to year, for a given source in a given season
Kahn et al., BAMS 2017

Under special conditions, hygroscopicity (Dawson et al. 2020) and CCN # (Rosenfeld et al. 2016) can be derived from remote sensing; however: (Stier, ACP 2016)
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