

GEMS validation campaign

<u>Satellite Integrated Joint Monitoring for Air Quality study (SIJAQ)</u> <u>Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ)</u>

National Institute of Environmental Research Environmental Satellite Center, SIJAQ team

GMAP & SIJAQ overview

SIJAQ : Satellite Integrated Joint monitoring (Studies) of Air Quality **Pre-SIJAQ(GMAP)**: GEMS Map of Air Pollution

Background

•Succession of KORUS-AQ (2016.5~6)

•In depth analysis on high PM pollution in winterValidaiton of Geostationary Environment Monitoring Spectrometer (GEMS), the world's first Geostationary Earth Orbit (GEO) environmental satellite

Time schedule for SIJAQ and GMAP							
Pre-GMAP	1 st GMAP	2 nd GMAP	Main campaign SIJAQ				
2020. 4~5	2020.10.12~11.27	2021.10~11	2022.10~2023.06 → 2022.5~8, 2024.2~3				

Satellite Integrated Joint Monitoring for Air Quality study (SIJAQ)

Purpose

- Characterizing hot spots in East Asia
- Urban pollution, industrial complex, coal-fire power plant, biomass burning, volcanic eruption, wild fire, etc.
- Investigating processes controlling high PM2.5 events in winter
 - Unidentified aerosol formation mechanism (heterogeneous reaction, nighttime chemistry, meidum-range transport, etc.
- Analyzing the impact of emission change
- Recent change in energy-related and agricultural emissions in East Asia
- Validating GEMS performance beyond Korea

GMAP2020 (November 2020~January 2021) @ Seosan

37°N

36°N

35°I

34°I

33°N

Kim et al., AMT, 2023

SIJAQ 2021 @ Seoul Metropolitan Area and Ulsan/Busan

Lange et al., EGUsphere, 2024

The GEMS L2 and ground-based tropospheric NO2 VCDs are correlated with a Pearson correlation coefficient of r = 0.75, with a slope of 1.27, a median relative bias of +64 %, and an offset of 2.73 × 10¹⁵ molec cm⁻². With a slope of 0.81 and a median bias of -1 % for the GEMS IUP-UB and a slope of 0.79 and a median bias of -14 % for the TROPOMI product,

• Period: October 2021~up to December 2022

 The ground-based observations are considered co-located if they are taken within ± 20 min around the satellite observation. Measurements within this period are averaged and matched to the closest satellite observation within a radius of 5 km around the station site.

SIJAQ 2021

Results

Spatial distribution of NO₂ Total VCD over SMA region

- Slightly different spatial distribution pattern of NO₂ Total VCD between TROPOMI and GEMS, due to different sampling time.
- Time-matched GEMS NO₂ Total VCD > TROPOMI NO₂ Total VCD

SIJAQ/ASIA-AQ 1900D flight

Instrument	Measuring item		
	Organics, Nitrate, Sulfate, Ammonium,		
HR-IOF-AWIS	Chloride		
SP2	rBC, Black carbon (50-500nm)		
PCASP	Number concentration		
PTR-ToF-MS	VOCs		
CIMS	SO ₂	i man	
LGR NH ₃	NH ₃		
LGR CO	CO, CO ₂ , CH ₄		
Teledyne NO ₂	NO ₂	ALL.	
Teledyne O ₃	O ₃		
TILDAS	нсно		
AIMMS-30	GPS, Temp. Hum., Pres. Widn		
	Del		

the state of the s

Instrument

Teledyne T500U

HUFS

BrechtelTAP

Thermo43iQTL

Thermo49iQ

LGR EAA-911

LGR

MCEA1-911

OPC

AIMMS 30

TOLIN

ARTH SCIENCE

Measuring item

NO₂

NO₂ (fast)

Black carbon

 SO_2

03

NH₃

 CO, CO_2, CH_4

PM_{2.5}

3-D wind

Instrument	Measuring item		
Picarro/CRDS-2401m	CO_2 , CH_4 , CO , H_2O		
Flask sampling	δ ¹³ C-CO ₂ , δ ¹⁴ C-CO ₂ , δ ¹³ C-CH ₄		

Instrument	Measuring item
EMSA	Trace gas column densities of NO2 and CH2O

SIJAQ/ASIA-AQ ground remote sensing

Instrument	Location	Latitude	Longitude	Azimuth angle
P191	Suwon-W	37.26	126.99	0°, 180°
P201	Suwon-E	37.23	126.99	90°, 270°
P229	Anseong	36.99	127.28	221°, 340°
P231	Suwon-USW	37.21	126.98	0°, 180°
P235	Osan	37.09	127.05	28°, 160°
P241	Jinchoen	36.85	127.44	23 [°]
AQP-Circ	CBNU	36.63	127.46	42°, 327°
AQP-Rect	Suwon-Mega	37.25	127.08	100°, 260°

Validation of GEMS AOD against ground-based remote sensing AOD

Jeong et al., NIER report, 2024

AERONET

PANDORA

Volume particle size distribution

Validation of GEMS O , against ground-based remote sensing O 3

PAN #231

PAN #229

PAN #235

PAN #241

GEMS ×

Jeong et al., NIER report, 2024

Temporal pattern of the ozone concentration between GEMS and ground-based remote sensing total column ozone are well matched

- The average data of 10 minutes before and after every 45 minutes, which is the observation time of GEMS, was compared.
- There are few data that match the U340 filter observation time and GEMS observation time for ozone production in the ground equipment observation schedule compared to GEMS data.

GEMS O₃ profile validation

Jeong et al., NIER report, 2024

GEMS NO, VCD validation

- Period: 2024. 02. 13 ~ 2024. 03. 24
- QA/QC
 - Residual < 1e-3, SCD fitting error < 10%
 - SZA < 75°

- GEMS: total VCD
 - SZA < 70°, VZA < 70°
 - cloud fraction < 0.3

- TROPOMI: Tropospheric VCD
 - quality flag > 0.75
- PGN L2 (quality flag \leq 10)

Jeong et al., NIER report, 2024

Validation of Pandora NO 2 profile

Sensitivity test on elevation angle was conducted using Pandora 191 (Extended)

Jeong et al., NIER report, 2024

Validation of Pandora NO , profile against surface NO , concentration

Jeong et al., NIER report, 2024

GEMS surface NO_2 followed the in-situ trend well. The sensitivity test improved the tendency to under-simulate the surface concentration, but it was still slightly lower than the in-situ.

Validation of GEMS O 3 profile against sonde NO 3

Jeong et al., NIER report, 2024

Korea

- at Kongju National University
- Total 11 ozone profiles generated (one at 3 PM)

GEMS a priori shows a high positive correlation of 0.97 with the sonde. However, GEMS ozone output showed a relatively lower correlation with the sonde, with a correlation coefficient of 0.51, which may be due to overestimation of ozone entrainment occurring in the upper troposphere and lower stratosphere

Comparison between GEOS-CHEM and TM5

: Each profile, Ocean

Jeong et al., NIER report, 2024

GEOS-CHEM TM5

- Similar patterns in June and December, UTC 00:00 and 12:00-16:00.
- Differences occur from 800 to 600 hPa, and the minimum values of each model are significantly different above the GEOSchem tropopause.

- SIJAQ data is being thoroughly validated and is expected to be released this year.
- In-depth analysis of ground/airborne/remote/modeling data is being conducted for winter PM formation and GEMS validation.
- All RSSR teams are scheduled to meet in Kuala Lumpur in January next year.

