TROPOMI NO2, 5-year mean

Error characterisation and super-observations Henk Eskes, Pieter Rijsdijk

TROPOMI NO2 retrieval: Error estimate

MI Royal Netherlands Meteorological Institute Ministry of Infrastructure & the Environment

Contributions to uncertainty from:

- Measurement noise and slant column uncertainty
- Stratosphere/troposphere split
- Surface albedo (UV-Vis, NIR)
- Cloud fraction (aerosol)
- Cloud pressure (aerosol)

But no information provided on error correlations between (nearby) observations

Superobservations: mitigate resolution mismatches

Construct one effective observation from all individual satellite pixels overlapping a model grid cell

(Instead of comparing with individual obs)

Advantages:

- Computationally very efficient
- Use all satellite information at model scale
- Avoid biases (sat error scaling with column)
- Allow (partial) treatment of
 - Spatial error correlations between obs
 - Representativity errors

4.9°S

0.5 x 0.5 degree model

Superobservations: mitigate resolution mismatches

TROPOMI NO2, full resolution

Royal Netherlands Meteorological Institute Ministry of Infrastructure & the Environment

0.5 x 0.5 degree model

Constructing superobservations

Tiling principle

Weight equal to the **overlap** between satellite footprint and model grid cell

Averaging kernel is averaged with same weights

KNMI Royal Netherlands Meteorological Institute Ministry of Infrastructure & the Environment

Superobservation error: Inter-pixel error correlations

Superobservation error as sum of uncorrelated and correlated part, modelled with single correlation factor "c"

$$\sigma_{obs}^2 = (1-c)\sum_{i=1}^N \tilde{w}_i^2 \sigma_i^2 + c \left(\sum_{i=1}^N \tilde{w}_i \sigma_i\right)^2$$

MI Royal Netherlands Meteorological Institute Ministry of Infrastructure & the Environment

Inter-pixel error correlations

Error contribution	Correlation
Stratosphere-troposphere separation	
Air-mass factor (cloud fraction, pressure, albedo, aerosol)	
Slant column	

KNMI Royal Netherlands Meteorological Institute Ministry of Infrastructure & the Environment

Stratospheric error update

Derived from O-F statistics

4.	0	m^{-2}
3.	5	Imol
3.	0	re [µ
2.	5	sphe
2.	0	rato
1.	5	1S st
1.	0	d RN
0.	5	inne
0.	0	0

Air-mass factor error correlations

TROPOMI v2.4 and 2.3 differ by the albedo dataset used, influencing cloud fraction, pressure and direct AMF calculation.

Assumption: spatial correlation v2.4 - v2.3 representative of spatial error correlation length scale

Representation error

Detailed study of effect of partial cloud cover

- Random cloud cover vs cloud field (latter implemented)
- Polluted regions show larger relative error than unpolluted regions
- Representation error = variability within gridcell * coverage-dependent factor

Unpolluted regions

Representation error

Especially important / large at the edges of the cloud fields

KNMI Royal Netherlands Meteorological Institute Ministry of Infrastructure & the Environment

Combined error

Superobservations: Relative importance stratospheric error large!

250 200 ^{.4}] Ē 150 [µmol² σ^2 50

VMI Royal Netherlands Meteorological Institute Ministry of Infrastructure & the Environment

Superobservations: Tests with JAMSTEC assimilation system

MI Royal Netherlands Meteorological Institute Ministry of Infrastructure & the Environment

Thinning: random selection of 1 observation

Assuming errors are fully correlated

Superobservations: Tests with JAMSTEC assimilation system

60°N 30°N 0° 30°S 60°S 180° 150°W120°W 90°W 60°W 30°W 30°E 25 15 10 20 5 30 relative impact [%]

(a) Impact superobservations

(c) difference uncorrelated - superobservations

Un-30°N correlated ° bigger

 Δ relative impact [%]

MI Royal Netherlands Meteorological Institute Ministry of Infrastructure & the Environment

Superobservations: Tests with JAMSTEC assimilation system

Forecast performance

(a) RMSE superobservations

MI Royal Netherlands Meteorological Institute Ministry of Infrastructure & the Environment

(b) difference thinning - superobservations

Thinning much worse

(d) difference fully correlated - superobservations

Application: global-scale data assimilation

Chaser-4/LETKF; MOMO-Chem; TCR-3 Instruments: TROPOMI, OMI, GOME-2, SCIAMACHY Period: 2003-2023 Species: NO2, SO2, HCHO, CO Filtering: Cloud-free and cloud-covered

ECMWF-CAMS forecasts

Experiments comparing NO2 superobservations with in-house superobbing approach (ongoing work) CAMEO project

L3 gridded fields

Climate records using multiple instruments, OMI-TROPOMI ESA CCI+

Application: NOx emissions with DECSO-CHIMERE (Europe)

Also for regional applications the superobbing can be beneficial,

up to resolutions of 0.2 (0.1) degree

DECSO NOx emissie, 2019

Ronald van der A, et al., ACP 2024

MI Royal Netherlands Meteorological Institute Ministry of Infrastructure & the Environment

Thanks for your attention!

Paper: Pieter Rijsdijk et al., Egusphere preprint 2024 https://doi.org/10.5194/egusphere-2024-632

Superobbing code: Available (Python)

Contact: henk.eskes@knmi.nl

KNMI Royal Netherlands Meteorological Institute Ministry of Infrastructure & the Environment

