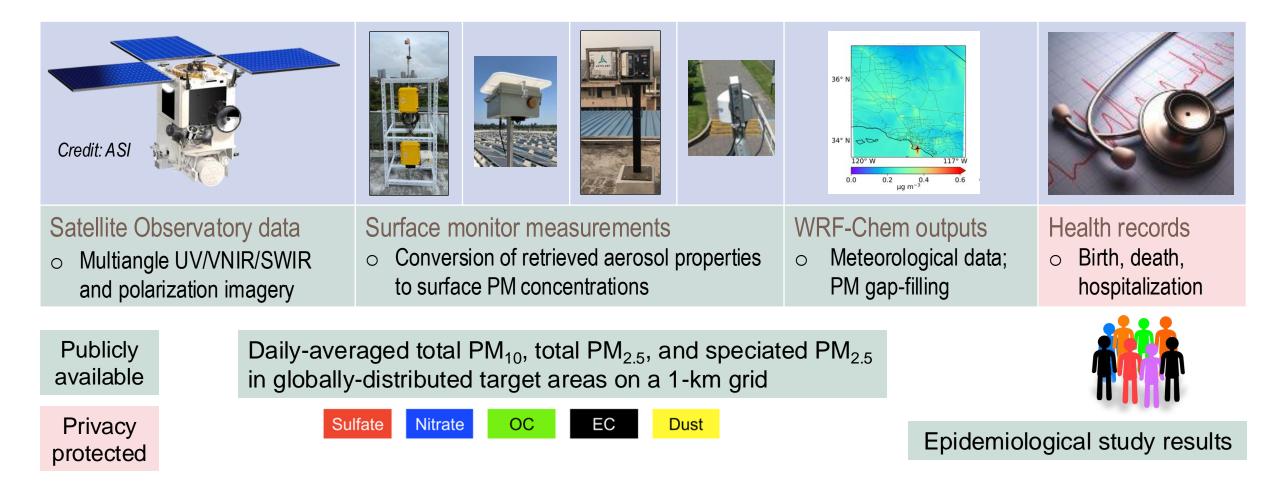
Update on the Multi-Angle Imager for Aerosols (MAIA) Mission

David J. Diner¹ Sina Hasheminassab¹ Feng Xu²

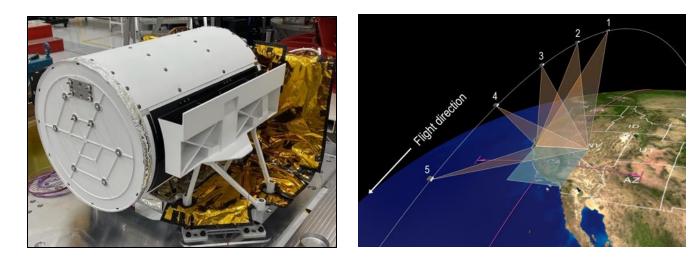
¹Jet Propulsion Laboratory, California Institute of Technology ²School of Meteorology, University of Oklahoma

CEOS Atmospheric Composition – Virtual Constellation 16 October 2024

Jet Propulsion Laboratory California Institute of Technology



Reviewed and determined not to contain export-controlled CUI


© 2024 California Institute of Technology. Government sponsorship acknowledged.

The MAIA mission is a partnership between NASA and Agenzia Spaziale Italiana (ASI)

MAIA will explore linkages between exposure to different types of ambient particulate matter (PM) – mixtures of particles with different sizes, shapes, and compositions – and human health.

Fabrication of the MAIA satellite instrument was completed in October 2022

The instrument contains a 14-band spectro-polarimetric camera that is pointable in two axes:

o along-track for multi-angle viewing of targets

2

• cross-track to enable frequent target observations

Band (nm)	Aerosol bands			
364				
388	absorbing particles			
414				
440*				
551	fine particles			
646*				
749				
865				
1044*	coarse particles			
1608				
	Specialty bands			
762.5	O ₂ absorption			
943	water vapor			
1882	cirrus screening			
2124	land surface			

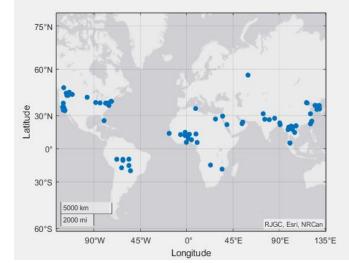
Spacecraft and launch update

- Integration of the MAIA instrument onto the PLATiNO-2 host spacecraft is expected to begin in 2025.
- ASI's plan is for MAIA/PLATiNO-2 to be launched on a Vega-C launch vehicle in 2026.
- The PLATINO-2 spacecraft is being built by an industrial consortium (known as a Raggrupamento Temporaneo di Impresa, or RTI) consisting of SITAEL, Thales Alenia Space Italia, Airbus, and Leonardo.

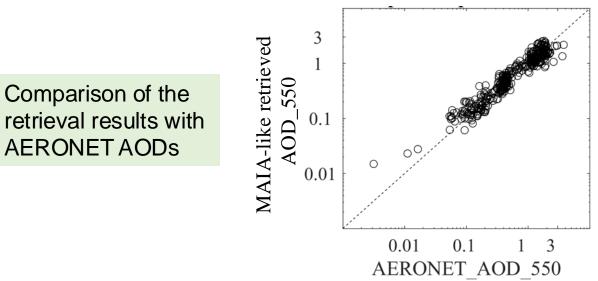
Target area updates

- Primary Target Areas (PTAs): Surface monitor data collections, epidemiological studies (3-4 satellite observations/week)
- Secondary Target Areas (STAs): Air quality and climate studies (1-4 satellite observations/week)
- Calibration/Validation Target Areas (CVTAs) (~monthly for Instrument/algorithm performance maintenance)

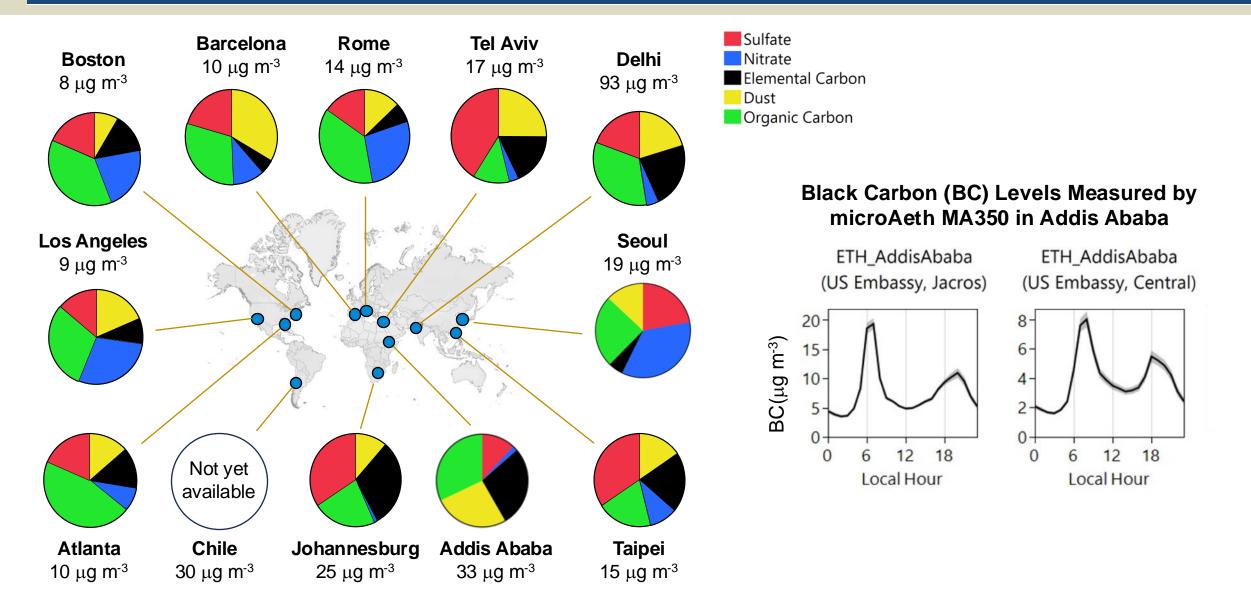
- Chile: upgraded from STA to PTA
 - The National Space Council (chaired by Vice President Harris) requested increased NASA emphasis on observations in South America.
 - NASA's Earth Action Program provided funding for operation of two SPARTAN stations in Chile.
- \circ South Korea: upgraded from STA to PTA
 - The Korean National Institute of Environmental Research (NIER) has agreed to share speciated PM data from their continuouslymonitoring air quality supersites with MAIA.
- China: downgraded from PTA to STA
 - Congressional law that prohibits bilateral collaboration between NASA and entities in China resulted in undesirable scientific compromises and programmatic risks.


The MAIA surface monitor air pollution network is currently in operation

	Existing	Networks	MAIA Deployed Monitors					
						12.0		
Instruments	Various		SS5i-PM _{2.5} filter-based sampler	Aerosol Mass Outdoor Sampler (AMOS)	microAeth MA350	PA-II-SD		
Supplier	Various		AirPhoton (SPARTAN network)	Colorado State University	AethLabs	PurpleAir		
Pollutants	Total PM _{2.5} /PM ₁₀	PM _{2.5} speciation	PM _{2.5} speciation	PM _{2.5} speciation	Black carbon	Total PM _{2.5}		
Locations	All primary target areas (PM _{2.5} only in Ethiopia)	Spain, Italy, South Korea, USA	Chile, Ethiopia, India, Israel, Taiwan, South Africa, USA	Ethiopia, India, Taiwan, South Africa, USA	Ethiopia, India USA	Ethiopia		

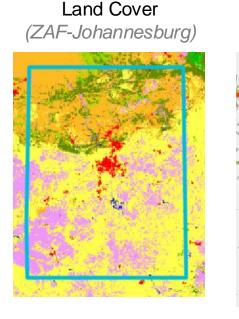

- Surface monitor data are used to train the PM estimation models
- PM concentrations are estimated using various predictors:
 - o AOD
 - other aerosol properties
 - \circ temperature
 - o relative humidity
 - o roadway density
 - \circ land use
 - o population density
 - o random effects

MAIA approach to aerosol retrievals

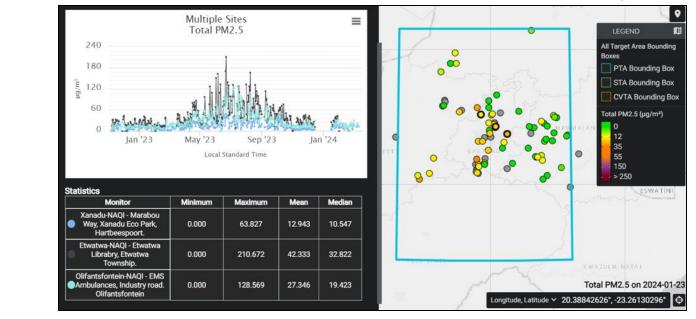

- A coupled Markov Chain/adding-doubling radiative transfer (RT) code models radiance and polarization fields at the top of atmosphere.
- The full-physics RT code is too slow for operational purposes. A neural-network (NN)-based RT approach is used to boost computational efficiency.
- The retrieval uses an optimal estimation (OE) approach and includes a pre-OE step that constrains AOD based on an adaptation of the MISR aerosol algorithm.
- $\circ~$ Algorithm testing is underway.

MISR and MODIS radiances from 2022-2023 were used to simulate MAIA observations at different AERONET locations

Fine particulate matter concentrations and chemical compositions from surface monitor data (2022-2023)



MAIA Geographic Information Visualization Tool (GIVT)


8

GIVT is a web-based interactive GIS tool publicly available on the MAIA website: <u>https://maia.jpl.nasa.gov/mmgis/</u> Capabilities:

- Map MAIA target areas and location/type/metadata of surface monitors
- Visualize and download Ancillary Geographic data maps from all MAIA target areas
- Access dynamic surface PM data collected from MAIA PTAs and assess the surface monitor network status
- $_{\odot}~$ Visualize PM data and compare levels across regions
- $\circ~$ Download user-selected portions of the surface monitor data

Roadway Density (ZAF-Johannesburg)

Example Surface Monitor Data Visualization in ZAF-Johannesburg PTA

Concluding remarks

- The MAIA satellite instrument will be launched in 2026 (flight mission duration: 3 years).
- MAIA will generate daily maps of total PM_{2.5}, total PM₁₀, and speciated PM_{2.5} (sulfate, nitrate, EC, OC, dust) at 1-km spatial resolution in 12 PTAs.
- Surface-based total and speciated PM data collection is now underway in most PTAs. The data can be explored using the GIVT tool on the MAIA website.
- MAIA data products will be publicly available at NASA's Atmospheric Science Data Center.
- Epidemiologists on the MAIA Science Team will investigate linkages between PM type and human health.

https://maia.jpl.nasa.gov