TOAR-2 chemical reanalysis WG report

Advancing understanding of tropospheric ozone through integration of
satellite and in-situ observations in chemical reanalysis
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Chemical reanalysis Focus Working Group
Co-leads: Kazuyuki Miyazaki, Dylan Jones, Helen Worden

» Evaluate current chemical reanalysis products to assess their potential (Jones et al.).

» Assesses the relative importance of individual observations (e.g., ozone vs precursor) to
improve ozone analyses and help to design observing systems (Sekiya et al.)

» Evaluate representativeness of FT ground-based ozone measurements (Miyazaki et al.).
* Human health impact assessment (\WWang et al)

* ML downscaling and bias correction (Miyazaki et al)

Satellite ozone assessment paper
Co-leads: Daan Hubert, Kazuyuki Miyazaki

* Provide present day maps, long-term changes, and attributions of tropospheric ozone

« Evaluate agreements between satellite records and harmonized data products.
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Overview and Goals in support of TOAR-II

Publication 1: Evaluated chemical reanalyses with TOAR-I| observations and other data
to assess the potential of using reanalysis data for studying spatial gradients and trends at
regional/global scales. Lead: Dylan Jones

Publication 2: The relative importance of individual observations to improve surface ozone
analyses were assessed to help design observing systems that better capture the
distribution in surface and FT ozone. Lead: Takashi Sekiya |Next talk by Takashi Sekiva

Publication 3: Well-validated chemical reanalysis ozone fields are used to improve the
TOAR-II observation quality control processes and representativeness by providing a first
guess information. Lead: Kazuyuki Miyazaki

Publication 4: Machine learning application to identify the drivers of surface ozone bias in
chemical reanalysis. Lead: Kazuyuki Miyazaki



Participating reanalysis systems

Assimilated measurements

Reanalysis system Domain Resolution Strato/Total O3 |Tropo O3 | Precursors | Surface |Scheme
- GLOBAL, 0.1-1000
IASI-R (E. Emili) P 2°x 2° MLS IASI 3D-Var
SBUV, OMI, MLS,
CAMSRA (A. Inness) GLOBAL 0.75° x 0.75° GOME?Z, CO, NO2 AD-Var
SCIAMACHY, MIPAS, ’
TROPOMI, OMPS
. OMI cloud| CO, NO2
RAQMS (B. Pierce) | GLOBAL, 0-60km 1°x 1° OMI, MLS cou . 3D-Var
cleared |(offline NOXx)
GEOS-CHEM (Z. Qu) GLOBAL 2°x 2.5° OMI NO2 4D-Var
. . GLOBAL, 70 - 1000 1.1°x1.1° TES, AIRS
TCR2 (K. Miyazaki) X MLS / CO, NO2, SO2 EnKF
hPa OMI
hi f
CAQRA (X.Tang) | REGIONAL (CHINA) | 15 km x 15 km co,No2 |-Minasurface ..
observations
CMAQ-GSI (R. Kumar)| REGIONAL (US) | 12 km x 12 km CO 3D-Var
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Mean and Interannual Var of 500-hPa O3 Concen: Northern Africa

70 1 = CAMSRA
= GEOS-CHEM
w— TCR2

65

60

55

50

45 -

\\

40

1 2 3 4 5 6 7 8 9 10 11 12

month

Mean and Interannual Var of 500-hPa O3 Concen: South America

— CAMSRA v
= GEOS-CHEM /

60 - g

50

40

30

20

Mean and Interannual Var of 500-hPa O3 Concen: China

= CAMSRA
851 —— GEOS-CHEM

80 -

75

70 A

65

60 -

55

50 -

month

Mean and Interannual Var of 500-hPa O3 Concen: Central Africa

80 { == CAMSRA
w——  GEOS-CHEM
= TCR2

70 -

=
Q
Q.
o
c 60 -
©
et
©
]
c
9
250
o
&)
m
o
40 A
30 A
1 2 3 4 5 6 7 8 9 10 11 12
month
Mean and Interannual Var of 500-hPa O3 Concen: US
m——  GEOS-CHEM
m— TCR2
75
3
o 70
(=
=
S 65
i
c
Y
c 60
o
9]
3

55

50
1 2 3 4 5 6 7 8 9 10 11 12

month
Mean and Interannual Var of 500-hPa O3 Concen: India
— CAMSRA
o GEOS-CHEM
m— TCR2

2 70
Q.
a
[ =
©
e
© 60 -
et
c
[«}]
(@)
c
(o]
(@]
m 50 4
o

40 -

03 concentration (ppbv)

Y
(%))

03 concentration (ppbv)

03 concentration (ppbv)

Mean and Interannual Var of 500-hPa O3 Concen: Southern Africa Se a S O n a I Va ri ati O n S i n reg i O n a I

70 -

(=)}
(%)}
1

[=)]
o
1

19}
(9}

w
o
1

B
o
1

~
o
!

(=)}
W,
1

()]
o
1

9]
w
1

w
o
!

Y
(%)

90 -

80 -

70 -

50 -

| m—TCR2

= CAMSRA
= GEOS-CHEM
= TCR2

1 2 3 4 5 6 7 8 9 10 11 12
month

Mean and Interannual Var of 500-hPa O3 Concen: Europe

o = CAMSRA

= GEOS-CHEM

Mean and Interannual Var of 500-hPa O3 Concen: Middle East

= CAMSRA
= GEOS-CHEM
= TCR2

mean ozone at 500 hPa

In the middle troposphere,
ozone concentrations are

more consistent across all the
reanalyses.

Over South America and
Central Africa, TRC-2 has
higher ozone during Jan—May .

Over the US, ozone in GEOS-

Chem peaks 3 months later
than in the other reanalyses.



500 hPa ozone
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Challenges remain in capturing

interannual variations, likely associated . |

with uncertainties in precursor emissions s

Jones et al., 2025




2005-2018 surface ozone linear trends
CAMS GEOS-Chem TCR2
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Further improvements using additional multi-scale observations with advanced DA techniques



Population exposed to
average ozone (OSMDAS)

2016

Require better observational
constraints, particularly in densely
populated regions with limited
monitoring

Wang et al., 2025
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Importance of correcting emissions within chemical reanalysis
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He et al., 2025 (BAMS)




MLS ' K Secondary pollutants\
(Ozone, CO,HNO3) . Ozone, PAN,
Secondary aerosols
TES, AIRS/OM|, CriIS
(Ozone) Chemis%

K(nitrate, sulfate, ammonium) J
Long-lived GHGs i Primary pollutants A CriS (FAN)
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Assimilation
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Representative errors of ground-based observations

REs occur when the atmospheric state is not uniformly and frequently sampled and lead to spurious
signals in trend analysis, which can be evaluated using the complete chemical reanalysis fields.

What are the spatial & temporal representative scales of
individual ground-based stations and networks?

Toward effective observing system design to better capture regional-global scale ozone variations

Miyazaki et al. (in prep)




Integration with machine learning

Keller and Evans Kelp et al. Bodnar et al. Aurora
Comrie et al., 1997 Offline RF - 1 month Online NN solver - 1 year Foundation model for air quality
Single station
forecasting/small NN
Nowack et al. Causal Kleinert et al. IntelliO3 Leufen et al. O3ResNet
networks for climate models Large scale DL for forecasting '

1997 .. 2019 2020 2021 2022 2023 2024
|
B :
Embedded DL eginning o DL and DF for mtegrators ML-reduction Foundation
in climate modern ML BayNNE 0ZONe £or Stiff hani
models for ozone or st mechanisms models
systems
Bauer et al. Rasp et al. Bauer et al. Bi et al. Eyring et al.

Pushing the frontiers in climate

Quiet revolution in numerical Deep learning to represent subgrid Digital revolution of Earth ML weather forecasting : . :
. . . modelling and analysis with machine
weather forecasting processes in climate models System Science Pangu-Weather learning
TOAR Phase 1 TOAR Phase 2

Hickman et al., 2025




ML system
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Output data Useful datasets for health
Global Bias Predictions impact assessment

Years

- advancements in modeling,
DA, observational system
design
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Summary

* Chemical reanalysis data has been used to enhance our understanding of
tropospheric ozone, and has been integrated into the broader TOAR-2 synthesis,
including health & climate assessment, and satellite product evaluation.

» Intercomparison results reveal that regional differences persist across products, and
ozone precursor fields exhibit substantial variability.

* Emerging techniques, such as machine learning and high resolution modelling, and
new-generation satellite observations will be essential for further improving their
accuracy and expanding their applicability across a wide range of domains.
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