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Co-leads: Kazuyuki Miyazaki, Dylan Jones, Helen Worden

Chemical reanalysis Focus Working Group

• Evaluate current chemical reanalysis products to assess their potential (Jones et al.). 
• Assesses the relative importance of individual observations (e.g., ozone vs precursor) to 

improve ozone analyses and help to design observing systems (Sekiya et al.) 
• Evaluate representativeness of FT ground-based ozone measurements (Miyazaki et al.). 
• Human health impact assessment (Wang et al) 
• ML downscaling and bias correction (Miyazaki et al)

Co-leads: Daan Hubert, Kazuyuki Miyazaki
Satellite ozone assessment paper

• Provide present day maps, long-term changes, and attributions of tropospheric ozone 

• Evaluate agreements between satellite records and harmonized data products.

APARC Reanalysis Intercomparison (A-RIP)



Overview and Goals in support of TOAR-II

• Publication 1: Evaluated chemical reanalyses with TOAR-II observations and other data 
to assess the potential of using reanalysis data for studying spatial gradients and trends at 
regional/global scales. Lead: Dylan Jones 

• Publication 2: The relative importance of individual observations to improve surface ozone 
analyses were assessed to help design observing systems that better capture the 
distribution in surface and FT ozone. Lead: Takashi Sekiya 

• Publication 3: Well-validated chemical reanalysis ozone fields are used to improve the 
TOAR-II observation quality control processes and representativeness by providing a first 
guess information. Lead: Kazuyuki Miyazaki 

• Publication 4: Machine learning application to identify the drivers of surface ozone bias in 
chemical reanalysis. Lead: Kazuyuki Miyazaki

Next talk by Takashi Sekiya



Assimilated measurements

Reanalysis system Domain Resolution Strato/Total O3 Tropo O3 Precursors Surface Scheme

IASI-R (E. Emili) GLOBAL, 0.1-1000 
hPa 2° x 2° MLS IASI 3D-Var

CAMSRA (A. Inness) GLOBAL 0.75° x 0.75°

SBUV, OMI, MLS, 
GOME2, 

SCIAMACHY, MIPAS, 
TROPOMI, OMPS

 CO, NO2  4D-Var

RAQMS (B. Pierce) GLOBAL, 0-60km 1° x 1° OMI, MLS OMI cloud 
cleared 

CO, NO2 
(offline NOx)  3D-Var

GEOS-CHEM (Z. Qu) GLOBAL 2° x 2.5°   OMI NO2  4D-Var

TCR2 (K. Miyazaki) GLOBAL, 70 - 1000 
hPa

1.1° x 1.1° MLS TES, AIRS/
OMI CO, NO2, SO2  EnKF

CAQRA (X. Tang) REGIONAL (CHINA) 15 km x 15 km   CO, NO2 China surface 
observations EnKF

CMAQ-GSI (R. Kumar) REGIONAL (US) 12 km x 12 km   CO  3D-Var

Participating reanalysis systems
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Seasonal variations in regional 
mean ozone at 500 hPa

• In the middle troposphere, 
ozone concentrations are 
more consistent across all the 
reanalyses.

• Over South America and 
Central Africa, TRC-2 has 
higher ozone during Jan–May .

• Over the US, ozone in GEOS-
Chem peaks 3 months later 
than in the other reanalyses.
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Time series of regional mean ozone at 500 hPa
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Time series of regional mean ozone at 500 hPa
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Chemical reanalysis 
intercomparisons

CAMS
TCR-2

GEOS-Chem

Jones et al., 2025

Challenges remain in capturing 
interannual variations, likely associated 

with uncertainties in precursor emissions



Linear trend in surface ozone
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2005-2018 surface ozone linear trends

Further improvements using additional multi-scale observations with advanced DA techniques

Jones et al., 2025



Wang et al., 2025
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Figure S10. Population-weighted ozone (OSMDA8) for each year from 2006 to 2016 in different regions. The horizontal 
axis represents ozone exposure concentrations, and the vertical axis represents population size. 
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axis represents ozone exposure concentrations, and the vertical axis represents population size. 
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Population exposed to 
average ozone (OSMDA8)
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Require better observational 
constraints, particularly in densely 

populated regions with limited 
monitoring



F��. 3. Comparison of annual mean NOx emissions in China from 2000 to 2020 (in Tg NOx-NO/yr) from

several datasets. Solid and Dashed lines represent emissions estimated using bottom-up and top-down approaches,

respectively. The references for the emission estimates are shown in the legend on top. Figure adapted from

Elguindi et al. (2020).
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and inverse modeling techniques to estimate emissions in a top-down (TD) approach, namely NOx287

(e.g., Stavrakou et al. 2008; Kurokawa et al. 2009; Miyazaki et al. 2017; Jiang et al. 2022; Plauchu288

et al. 2024; van der A et al. 2024), VOC (e.g., Millet et al. 2008; Stavrakou et al. 2012; Marais289

et al. 2012; Bauwens et al. 2016; Cao et al. 2018; Oomen et al. 2024; Müller et al. 2024), CO290

(e.g., Arellano et al. 2004; Müller et al. 2018; Qu et al. 2022b) and GHG (e.g., Wang et al. 2018;291

Lu et al. 2021). Figure 3 illustrates a comparison of NOx emissions in China from 2000 to 2020292

from several BU inventories and TD estimates (Elguindi et al. 2020). The differences in various293

estimates remain significant, especially for the trends, which underscores the need for continued294

efforts on mitigating uncertainties in emissions.295

The development of new retrievals (see Section 3.a) has advanced emission estimates from both300

natural and anthropogenic sectors. For example, the new TROPOMI HONO retrieval product301

showed intense emissions in wildfire plumes, which accounts for a substantial share of total OH302

production from natural sources (Theys et al. 2020). The first global satellite isoprene retrievals303

from CrIS (Fu et al. 2019), have been used in combination with formaldehyde observations to304
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He et al., 2025 (BAMS)

Importance of correcting emissions within chemical reanalysis

Chinese anthropogenic NOx emissions



MOMO-Chem Tropospheric 
Chemistry Reanalysis (TCR-3) 

Oxidation capacity (OH) 
↓ 

CH4

Long-lived GHGs

AQ-GHG co-emissions 
↓ 

CO2
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Representative errors of ground-based observations

REs occur when the atmospheric state is not uniformly and frequently sampled and lead to spurious 
signals in trend analysis, which can be evaluated using the complete chemical reanalysis fields. 

What are the spatial & temporal representative scales of  
individual ground-based stations and networks?

Miyazaki et al. (in prep)

FTIR, ozonesode, 
IAGOS, Umkehr

Toward effective observing system design to better capture regional-global scale ozone variations



Integration with machine learning

Figure 3. Timeline of a selection of studies using ML in ozone research, aligned with a selection of papers using ML in wider weather and

climate modeling research. In both wider Earth system modeling research, and in ozone research there has been rapid progress over the last

five years, as noted by landmark review papers highlighted in the Figure.

interpretability. Addressing these issues may be particularly relevant for the ozone modeling community where both predictive

accuracy and physical understanding are valued.75

In this Perspective, we provide an overview of the state of ML in tropospheric ozone research, review previous applications

of ML to various problems related to ozone, and discuss persistent challenges and emerging opportunities. We detail the

bottlenecks to progress in applying ML to ozone problems, including the limitations of available training data, heterogeneity of

data sources, and computational limits. We suggest that the use of ML can provide tangible improvement over existing methods

in some aspects of ozone research and we provide possible paths towards further improvement to complement existing models80

and initiatives.

We highlight three areas where ML for ozone has been most widely applied: forecasts based on ground-based observations

are reviewed in Section 2, methods for complementing or replacing parameterizations in numerical models of atmospheric

chemistry and transport are discussed in Section 3, and ML models that are using satellite data or combined data products

are presented in section 4. Limitations specific to each section are briefly mentioned, and we find common limitations across85

domains. Section 5 highlights and further details these cross-cutting issues and limitations with the application of ML to ozone

studies, while Section 6 describes future directions for the field, highlighting emerging approaches that seek to address the

cross-cutting challenges.

5

Hickman et al., 2025
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Miyazaki et al., 2025

- Global bias patters 

- Downscalling 

- Bias correction 

- Underlying drivers 
↓

- Useful datasets for health 
impact assessment 

- advancements in modeling, 
DA, observational system 

design



• Chemical reanalysis data has been used to enhance our understanding of 
tropospheric ozone, and has been integrated into the broader TOAR-2 synthesis, 
including health & climate assessment, and satellite product evaluation. 

• Intercomparison results reveal that regional differences persist across products, and 
ozone precursor fields exhibit substantial variability. 

• Emerging techniques, such as machine learning and high resolution modelling, and 
new-generation satellite observations will be essential for further improving their 
accuracy and expanding their applicability across a wide range of domains. 
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