

TOAR II Assessment of satellite ozone

CEOS AC-VC #21, 10-13 June 2025

Coordinating lead authors

Daan Hubert (BIRA-IASB) & Kazuyuki Miyazaki (JPL/Caltech)

Lead authors

Gaëlle Dufour (LISA), Elyse Pennington (JPL/Caltech), Viktoria Sofieva (FMI)

Acknowledgements to CEOS and all satellite data providers

Copyright 2025, California Institute of Technology. Government sponsorship acknowledged.

TOAR I Satellite ozone assessment (2018)

- 7 data sets, not harmonized
- Not integrated
- Large discrepancies
- 5° & seasonal resolutions
- 60°S-60°N (w/o high latitudes)

TOAR II Satellite data records 21 considered

Product	Provider	Coverage	Vert.	Meas.
IASI-FORLI	ULB / LATMOS / AC SAF	/ LATMOS / AC SAF 2008/01–2022/12		NP
		global		IR
IASI-SOFRID	LAERO	2008/01-2022/12	X	NP
		global		IR
IASI-KOPRA	LISA	2008/01-2022/12	X	NP
		*		IR
IASI+GOME2B	LISA/AERIS	2017/01-2023/12	X	NP
		global		IR+UV
CRIS-TROPESS	NASA JPL	2015/12-2021/05	X	NP
		65°S - 85°N		IR
AIRS-TROPESS	NASA JPL	2002/09-2022/12	X	NP
		65°S - 85°N		IR
AIRSOMI-TROPESS	NASA JPL	2004/11-2022/12	X	NP
		65°S - 85°N		IR+UV
TROPOMI	KNMI/ESA	2018/04-2023/12	X	NP
		global		UV
GOP-ECV	DLR/RAL/ESA	1995/07-2021/10	X	NP
		global		UV
GTTO-ECV 270	DLR/BIRA-IASB/ESA	1995/07-2023/12	X	CCD
		20°S - 20°N		UV
GTO-LIMB	FMI/DLR/ESA	2003/01-2023/12	X	LNM
		global		UV
OMI-LIMB	FMI/DLR/ESA	2004/10-2023/12	X	LNM
		global		UV
OMI-MLS	NASA GSFC	2004/10-2023/12	X	LNM
		60°S - 60°N		UV+MW
OMPS-LNM	IUP-UB	2012/02-2022/12	X	LNM
		60°S - 60°N		UV
OMPS-MERRA2	NASA GSFC	2012/01-2023/12	X	LNM
		global		UV+mod
EPIC-MERRA2	NASA GSFC	2015/06-2023/08	X	LNM
		global		UV+mod

- 21 data sets, harmonized (smoothing, a-priori, sampling, tropopause. See Keepers's talk)
- 1° x1° & monthly resolutions
- 90°S-90°N

- more accurate ozone climatology
- strengthen the basis for detecting and attributing long-term changes

TOAR II Satellite data records 21 considered

- UV nadir (OMI, TROPOMI, OMPS)
- Thermal infrared nadir (AIRS, CrIS, IASI)
- Limb-nadir matching (MLS-OMI, GTO-LIMB, OMPS-LNM)
- Multi-sensor (IASI+GOME-2, AIRS-OMI)

19 data records were harmonised, 2 more are in the pipeline

- 1 IASI data sets (SOFRID)
- 1 TROPESS data sets (CrIS)
- → Support robust intercomparison and ensemble-based ozone trend detection.

TOAR II assessment topics

- Present-day state (2018 2022)
 - Mean state
 - Seasonal cycle
- Long-term changes (2000s 2022)
 - Annual means
 - Seasonal changes
- Impact of COVID lockdown and recovery (2020 2023)
- Comparison to ground-based data (HEGIFTOM sonde)

Present day (2018-2022) TOC mean state

14 18 22 26 30 34 38 42 46 50

14 18 22 26 30 34 38 42 46 50

OMPS-MERRA2 (28.6 ± 6.0 ± 0.0): pdyn_merra2/orig

!!! Preliminary !!!

original

TROPOMI (32.3 ± 5.5 ± 0.0): plrt_merra2/orig

14 18 22 26 30 34 38 42 46 50

RSOMI_TROPESS (33.4 \pm 7.1 \pm 0.0): plrt_geos5/orig

14 18 22 26 30 34 38 42 46 50

OMPS-LNM (31.3 ± 6.0 ± 0.0): plrt_era5l/orig

14 18 22 26 30 34 38 42 46 50 14 18 22 26 30 34 38 42 46 50

OMI (26.2 ± 10.6 ± 0.0): plrt merra2/orig

14 18 22 26 30 34 38 42 46 50

IASI-SOFRID (31.6 ± 6.5 ± 0.0); plrt merra2/orig

14 18 22 26 30 34 38 42 46 50

GTTO-ECV 270 (22.5 ± 5.0 ± 0.0): p270/orig

14 18 22 26 30 34 38 42 46 50

EPIC-MERRA2 (29.0 ± 7.4 ± 0.0): pdyn_merra2/orig

14 18 22 26 30 34 38 42 46 50

GOME2 A (37.9 + 9.2 + 0.0) · nlrt merra 2 /orig

14 18 22 26 30 34 38 42 46 50

IASI-KOPRA (35.9 ± 3.0 ± 0.0): plrt_merra2/orig

14 18 22 26 30 34 38 42 46 50

GTO-LIMB (24.0 ± 5.6 ± 0.0): plrt_era5_fmi/or

14 18 22 26 30 34 38 42 46 50

CAMSRA (32.4 ± 6.3 ± 0.0): plrt_merra2/orig

14 18 22 26 30 34 38 42 46 50

GOME2B (17.8 ± 7.7 ± 0.0); plrt merra2/orig

14 18 22 26 30 34 38 42 46 50

AIRS TROPESS (31.5 ± 6.7 ± 0.0); pirt geos5/g

14 18 22 26 30 34 38 42 46 50

OMLLIMB (25.2 + 5.8 + 0.0): plrt_era5_fmi/o

14 18 22 26 30 34 38 42 46 50

GOP-ECV (13.1 ± 3.4 ± 0.0): p450/orig

14 18 22 26 30 34 38 42 46 50

CRIS TROPESS (32.8 ± 7.0 ± 0.0): plrt geos5/orig

14 18 22 26 30 34 38 42 46 50

OMI-MLS (31.5 ± 5.2 ± 0.0): plrt ncep/orig

14 18 22 26 30 34 38 42 46 50

Present day (2018-2022) TOC mean state

14 18 22 26 30 34 38 42 46 50

14 18 22 26 30 34 38 42 46 50

!!! Preliminary !!!

harmonised*

14 18 22 26 30 34 38 42 46 50

AIRSOMI TROPESS (nan ± nan ± nan): /harm

14 18 22 26 30 34 38 42 46 50

OMPS-LNM (31.3 ± 6.0 ± 0.0): plrt_merra2/harm

 OMI (24.5 ± 9.4 ± 0.0): plrt_merra2/harm

14 18 22 26 30 34 38 42 46 50

IASI-SOFRID (nan ± nan ± nan): /harm

14 18 22 26 30 34 38 42 46 50

GTTO-ECV 270 (30.8 ± 7.1 ± 0.1): plrt_merra2/harm

14 18 22 26 30 34 38 42 46 50

EPIC-MERRA2 (29.3 ± 7.5 ± 0.0); plrt merra2/harm

14 18 22 26 30 34 38 42 46 50

The state of the s

14 18 22 26 30 34 38 42 46 50

IASI-KOPRA (nan ± nan ± nan): /harm

14 18 22 26 30 34 38 42 46 50

GTO-LIMB (23.7 + 5.4 + 0.0) plrt_merra2/harm

14 18 22 26 30 34 38 42 46 50

CAMSRA (32.4 \pm 6.3 \pm 0.0): plrt merra2/harm

14 18 22 26 30 34 38 42 46 50

GOME2B (16.4 ± 6.2 ± 0.0): pirt_merra2/harm

14 18 22 26 30 34 38 42 46 50

AIRS TROPESS (nan ± nan ± nan): /harm

14 18 22 26 30 34 38 42 46 50

OMLIMB (24.8 + 5.6 + 0.0): pirt merra2/ha

14 18 22 26 30 34 38 42 46 50

GOP-ECV (24.6 ± 5.5 ± 0.0): plrt_merra2/harm

14 18 22 26 30 34 38 42 46 50

CRIS TROPESS (nan ± nan ± nan): /harm

14 18 22 26 30 34 38 42 46 50

OMI-MLS (30.9 ± 5.2 ± 0.0): plrt_merra2/harm

14 18 22 26 30 34 38 42 46 50

 Provide more robust assessment of the ozone distributions

Present day (2018-2022) TOC mean state

!!! Preliminary !!!

Comparison with sonde

- ★ GTTO-ECV 270
- TROPOMI
- IASI-FORLI
- IASI-SOFRID
- IASI-KOPRA
- ★ IASIGOME2B
- AIRS_TROPESS
- CRIS_TROPESS
- AIRSOMI_TROPESS
- OMI-MLS
- OMPS-LNM
- OMPS-MERRA2
- ★ EPIC-MERRA2
- OMI-LIMB
- Sondes
- CAMS
- TCR2

Present day (2018-2022) Seasonal cycle

!!! Preliminary !!!

Month of maximum TOC value

2005-2009

2018-2022

• Enabled by the 1° x1° & monthly resolution analysis

- 10

- 6

- 4

- 10

- 8

- 6

- 2

Independence of satellite data records

!!! Preliminary !!!

- A careful assessment of each product is essential for long-term trend analysis
- 20+ data records were considered, but not all are truly independent.
- Ensemble approaches to combine (a selection of) satellite tropospheric ozone data records.

Group	CDRs		similar	different	
1	GOP-ECV, TROPOMI		GOME-type sensor	sensor, L2	
2	AIRS, AIRS-OMI		L2 TROPESS, AIRS	spectral	
3	IASI-FORLI, IASI-SOFRID,	IASI-	IASI	sensors, L2	
	GOME2B				
4	OMI-MLS, OMI-LIMB		OMI total O3	sensors, total/strato O3	
5	OMPS-LNM, OMPS-MERRA2,	EPIC-	OMPS total O3,	sensors, total/strato O3	
	MERRA2		MERRA2 strato O3		

Long-term changes

TROPESS CCD

Impact of COVID lockdown and recovery (2020 – 2023): May-Jun

!!! Preliminary !!!

Ozonesonde

IASI-GOME2

Conclusions

There is very clear progress since TOAR I (2018)

- **Better satellite observations**: more data sets, more complementary, longer data sets, higher-quality data sets, higher resolution data sets, harmonised data sets
- This allows ensemble approach for all parameters and more complete characterisation of uncertainty (TOAR I: all results were for single satellite records)
- There is **much improved agreement** between satellite observations: present-day mean state (2018-2022) and long-term changes are more robust and better constrained
- Improved resolution: global maps at 1° (instead of 5°), seasonal cycle at monthly level (instead of seasonal)
- Improved coverage: true global average (instead of near-global 60°S-60°N)

These are excellent achievements by CEOS and the wider EO communities.

Recommendations

Finalise TOAR II assessment papers (see talk H. Worden)

- Results reviewed and ready by end 2025.
- Published by end 2026 (Philos. Trans. R. Soc. A).

Recommendations to CEOS / data providers by TOAR II satellite assessment team

- Satellite data continuity is paramount: natural variability and human-induced variability (lockdown) hide the small and non-linear long-term changes, data gaps will complicate robust assessments.
- Preserve independence between satellite records :
 - The upcoming loss of Aura MLS will impact the quality of the products derived limb-nadir matching considerably →
 the continuity of stable densely sampled limb profile measurements are vital!
 - Don't correct satellite using ground-based data unless really unavoidable
- Coordinate / ensure that sufficient metadata is provided to users such that harmonisation can be done.
- Explore capabilities of GEO sensors to characterise the tropospheric ozone diurnal cycle (if any), a possible source of bias between data records.
- Scientific interpretation in collaboration with other assessments is key to ensuring the robustness of satellite records.