

Medhavy Thankappan (GA), Vice-Chair Cody Anderson (USGS), Chair

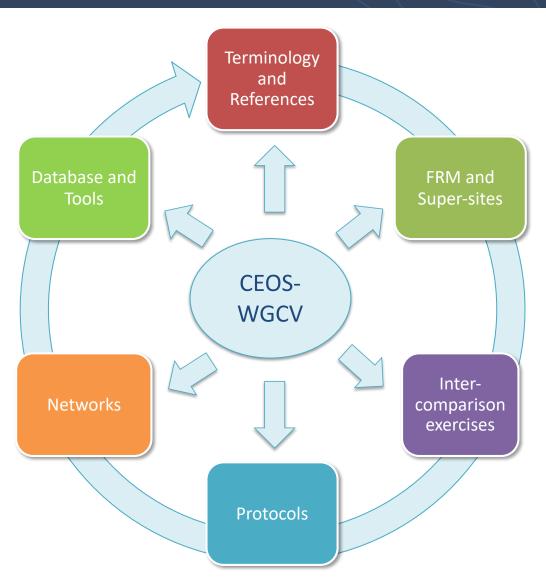
CEOS WGCV Role

The CEOS Working Group on Calibration & Validation (WGCV):

- Ensures long-term confidence in the accuracy and quality of satellite-based EO data and products
- Provides a forum for the exchange of information about calibration and validation and associated coordination, and cooperative activities
- Six subgroups in WGCV: Infrared Visible
 Optical Sensors, Land Product Validation, SAR,
 Terrain Mapping, Atmospheric Composition,
 Microwave Sensors
- Works closely with other CEOS entities

WGCV Plenary Meetings at USGS-EROS, CONAE

WGCV Subgroups


- Atmospheric Composition SubGroup (ACSG)
- Infrared Visible Optical Sensors (IVOS)
- Land Product Validation (LPV)
- Microwave Sensors (MSSG)
- Synthetic Aperture Radar (SAR)
- Terrain Mapping SubGroup (TMSG)

WGCV Coordinated Activities

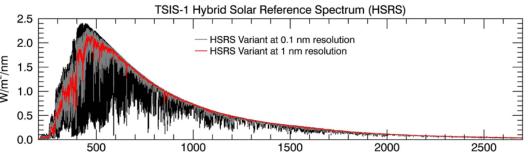
To facilitate interoperability of EO data, WGCV supports coordination of:

- Terminology and References: to ensure common vocabulary and standards
- Fiducial Reference Measurements and supersites: to work towards enhanced Cal/Val data quality
- Inter-comparison exercises: to characterise differences between methods/algorithms
- Protocols: to establish community-agreed good practices for Cal/Val
- Networks: to enable global operational satellite calibration and product validation
- Database and tools: to facilitate uptake of Cal/Val data and methods

Terminology and References

Vocabulary

 Dedicated CEOS task team working on establishing agreed **terminology**

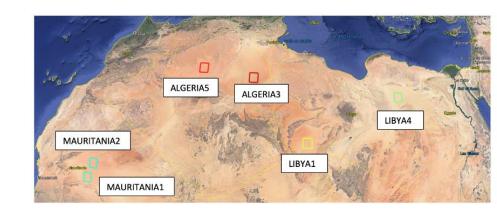

Reference Solar Spectrum

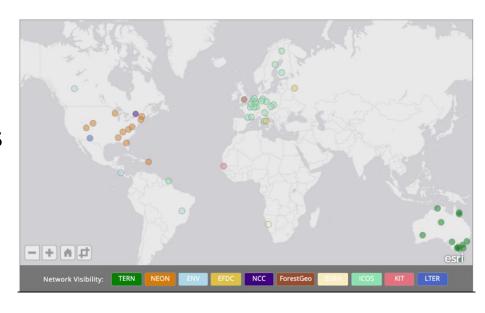
In March 2022, the **TSIS-1** HSRS (Coddington et al, 2021 and 2023) was recommended as the new solar irradiance reference spectrum

Reference Lunar Model

 Collaboration IVOS/GSICS to enhance absolute accuracy and inter-compare current lunar models (ROLO, GIRO, ESA/LIME)

FRM and Supersites

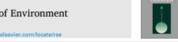



Fiducial Reference Measurements (FRM)

- A suite of independent, fully characterised, and traceable ground measurements that follow the principles outlined by QA4EO
- WGCV works in collaboration with GSICS to define Pseudo-Invariant Earth and Planetary Targets and methods for vicarious calibration and crosscalibration

Supersites

- Characterised sites following established protocols for the validation of satellite land products
- Active, long-term operations, supported by appropriate funding and by airborne LIDAR and hyperspectral acquisitions


Intercomparison Exercises

Intercomparison Exercise	Description
ACIX	Atmospheric Correction scheme intercomparison
CMIX	Cloud Masking scheme intercomparison
DEMIX	DEM intercomparison and impact on orthorectification process
BRIX	Intercomparison of Biomass algorithm retrieval
SRIX4Veg	Intercomparison of Surface reflectance for vegetation

Remote Sensing of Environment 285 (2023) 113412 Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rs

Atmospheric Correction Inter-comparison eXercise, ACIX-II Land: An assessment of atmospheric correction processors for Landsat 8 and Sentinel-2 over land

Georgia Doxani a.*, Eric F. Vermote J. Jean-Claude Roger J.c., Sergii Skakun J.c., Ferran Gascon d. Alan Collison , Liesbeth De Keukelaere, Camille Desjardins, David Frantz , Olivier Hagolle, Minsu Kim J. Jérôme Louis Eabio Pacifici Rringfried Pflug Hervé Poilvé Didier Ramon O

Remote Sensing of Environment 258 (2021) 112366

ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters

Nima Pahlevan *b*, Antoine Mangin , Sundarabalan V. Balasubramanian , Brandon Smith *b, Krista Alikas", Kohei Arai , Claudio Barbosa , Simon Bélanger , Caren Binding , Mariano Bresciani , Claudia Giardino , Daniela Gurlin , Yongzhen Fan , Tristan Harmel , Peter Hunter", Joji Ishikaza", Susanne Kratzer P, Moritz K. Lehmann J, Martin Ligi ,

Remote Sensing of Environment 274 (2022) 112990

Contents lists available at ScienceDirect

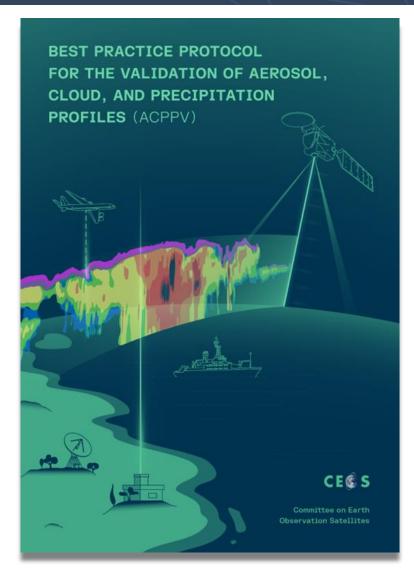
Remote Sensing of Environment

Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2


Sergii Skakun ", b.", Jan Wevers , Carsten Brockmann , Georgia Doxani , Matej Aleksandrov , Matej Batič , David Frantz , Ferran Gascon , Luis Gómez-Chova , Olivier Hagolle , Dan López-Puigdollers 1, Jérôme Louis 1, Matic Lubej 1, Gonzalo Mateo-García 1, Julien Osman 1, Devis Peressutti , Bringfried Pflug , Jernej Puc , Rudolf Richter , Jean-Claude Roger , Pat Scaramuzza", Eric Vermote", Nejc Vesel", Anže Zupanc", Lojze Žust

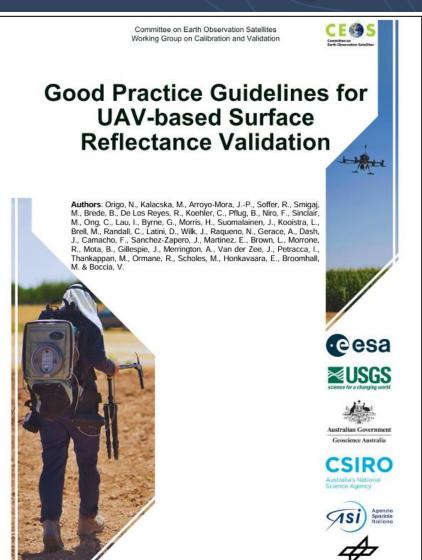
Validation Protocols

The LPV subgroup within WGCV works on developing :


- Community-agreed protocols for field sampling, upscaling approaches, uncertainty estimate
- Standardised approaches and tools for global validation
- Common reporting about land product quality and maturity level (validation stage)

Best Practice Protocol For The Validation Of Aerosol, Cloud, And Precipitation Profiles

- > Evaluates the need for common practice capturing lessons learned from profiler missions.
- Optimisation of Cal/Val techniques in terms of instrumentation, validation, sampling strategies and scenarios, and intercomparison methodologies.
- https://www.isac.cnr.it/en/projects/acpv-esa-noabest-practice-protocol-validation-aerosol-cloud-andprecipitation-profiles



Best Practice Surface Reflectance Intercomparison Exercise for Vegetation (SRIX4Veg)

- ➤ Best Practices protocol for validating satellite surface reflectance products using UAV spectroradiometers.
 - https://frm4veg.org/2025/02/24/good-practice-guidelines-for-uav-based-surface-reflectance-validation/
- Originated from SRIX4Veg intercomparison campaign in July 2022 in Barrax, Spain and March 2024 in Calperum, Australia.
- Aimed at users of UAV-mounted instruments capable of validating surface reflectance products.

Calibration Networks

Calibration Networks	Description
RADCalNet	Provides SI-traceable TOA reflectances for post-launch radiometric cal/val of optical sensors. https://www.radcalnet.org/
SARCalNet	Network of selected curated sites for SAR cal/val. https://www.sarcalnet.org/
TIRCalNet	Dedicated to TIR optical sensors cal/val. (Proposed)

Today 5 sites (+2 more in preparation)



Databases and Tools

The CEOS Cal/Val portal is the main platform for exchange and information sharing for the CEOS Working Group on Calibration and Validation

It provides a **repository** of documents, tools and datasets for Cal/Val, e.g.:

- MTF reference dataset for intercomparing different methods of MTF estimation
- LPV Direct v2.1 dataset for validation of land biogeophysical products (LAI, fAPAR, Fcover)
- SALVAL Tool to benchmark albedo products against ground-based data and reference satellite products

CEOS Database - Missions, Instruments, Measurements and Datasets (MIMS)

Consolidated Ground Control Point database, Radiometric and Spatial Matchup database

https://calvalportal.ceos.org/

WGCV + WGISS Meetings

Held from 15-18 October 2024 at USGS EROS, Sioux Falls, South Dakota, USA
Joint meeting with WGISS

Outcomes:

- Uncertainty expression
- ARD / interoperability
- Maturity Matrix
- CalVal Matchup Database, coordination SEO, Newspace
- Coordination with WMO-GSICS,
 Preflight Calibration Workshop, SITSat
 Task team

WGISS & WGCV to create a **joint deliverable for the 2025-2027 CEOS Work Plan** regarding the development of the CEOS/KCEO Glossary. Both working groups should ensure enough people are engaged, including from other CEOS groups, as well as from the external community. WGCV & WGISS → solicit support to brand the glossary as the 'CEOS/KCEO Glossary'.

* KCEO = Knowledge Centre on Earth Observation (EU)

Analysis Ready Data: LSI-VC

CEOS-ARD and beyond

- Led by LSI-VC supported by WGCV
- ARD Oversight Group for governance

Next steps to enhance interoperability of CEOS-ARD data – Surface Reflectance Quality and Consistency

CEOS Interoperability Framework

Led by WGISS

https://ceos.org/ard/

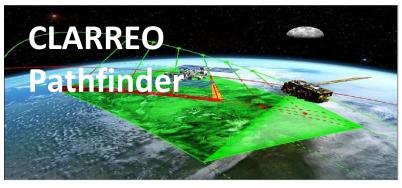
Product	CEOS-ARD Type	PFS Version	Agency	Mission / Instrument(s)	Threshold Specification	Target Specification	Access (DOI)	Info	Self Assessment	Peer Review	Sample Products
ALOS-2 PALSAR-2 Global Mosaics (RTC)	Normalised Radar Backscatter	v5.5	ΔΧΑL	ALOS-2 PALSAR-2	100%	Not assessed	Link	Link	DOC	DOC	Link
ALOS-2 PALSAR-2 25m ScanSAR NRB	Normalised Radar Backscatter	v5.5	AXAL	ALOS-2 PALSAR-2	100%	Not assessed	Link	Link	DOC	DOC	Link
EnMAP	Surface Reflectance	v5.0	DLR	EnMAP	100%	Not assessed	ТВА	Link	PDF	PDF	Link
Landsat Collection 2	Surface Reflectance	v5.0	USGS	Landsat 4, 5, 7, 8, 9	100%	6 81%	Landsat 4-5, 7, 8- 9	Link	PDF	PDF	Link
Landsat Collection 2	Surface Temperature	v5.0	USGS	Landsat 4, 5, 7, 8, 9	100%	6 83%	Landsat 4-5, 7, 8- 9	Link	PDF	PDF	Link
Landsat Collection 2 U.S. ARD	Surface Reflectance	v5.0	USGS	Landsat 4, 5, 7, 8, 9	100%	Not assessed	Link	Link	PDF	PDF	Link
Landsat Collection 2 U.S. ARD	Surface Temperature	v5.0	USGS	Landsat 4, 5, 7, 8, 9	100%	Not assessed	Link	Link	PDF	PDF	Link
NovaSAR-1 RTC	Normalised Radar Backscatter	v5.5	CSIRO	NovaSAR-1	100%	Not assessed	Link	Link	ZIP	ZIP	See self- assessment docs
PROBA-V L3 (0.1/0.333/1 km) TOC	Surface Reflectance	v5.0	VITO / ESA	PROBA-V	100%	Not assessed	Link	Link	PDF	PDF	Link
Sentinel-1 RTC	Normalised Radar Backscatter	v5.5	Sinergise & Digital Earth Africa	Sentinel-1 (A, B)	100%	Not assessed	Link	Link	PDF	PDF	Link
Sentinel-2 Level-2A	Surface Reflectance	v5.0	ESA	Sentinel-2A, 2B	100%	Not assessed	Link	Link	PDF	PDF	Link

CEOS-ARD Compliant Datasets

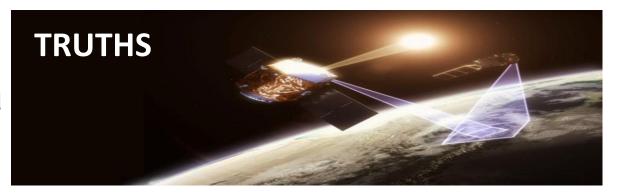
Pre-flight Calibration Workshop

CEOS WGCV and CGMS-GSICS
jointly organised a Workshop on
Pre-flight Calibration and
Characterisation of Optical
Satellite Instruments for Earth
Observation from 19-22 November
at ESA-ESTEC

Experts and developers of instruments from industry, academia and new space, gathered to discuss **pre-flight** calibration approaches for instrument types and applications


https://atpi.eventsair.com/pre-flight-calibration-workshop/

SI-Traceable Satellites (SITSat)



- SITSat missions such as **CLARREO Pathfinder** from NASA and **TRUTHS** from the European Space Agency are designed to deliver **highly accurate climate monitoring** data, with SI-traceable radiometric **uncertainties well below 1%** to qualify them as 'metrology laboratories in space.' As a reference benchmark, they can be used to **cross-calibrate other satellites in orbit**
- A dedicated Task Group was defined within CEOS-WGCV to work with Global Space-based Intercalibration System (GSICS) and coordinate the development and exploitation of multisystem SITSat data

