

Validation Efforts Help Advance TEMPO

TROPOSPHERIC EMISSIONS:

MONITORING OF POLLUTION (TEMPO) PROJECT

Validation and Quality Assessment of the TEMPO Level-2 Trace Gas Products

[December XX 2024]

Prepared by the TEMPO Validation Team and TEMPO Ad-hoc Validation
Working Group

Plan: available – https://tempo.si.edu under documents

Report: Draft under review

https://github.com/barronh/tempodash

Validation TEAM enhanced TEMPO mission

- ▶ 65+ contributors led by Jim Szykman (EPA) and Brad Pierce (UW-SEC) in collaboration with Science Team, NASA, NOAA, and SAO.
- Expanded the Pandonia Global Network of Pandoras
- Feedback about version 1 priori profile and unrealistic AMF spatial variation helped improve versions 2 and 3
- Validation report submitted to NASA
- including results shown today...

> EPA's Analysis System V3 – Aug 2023 to present

- V3 Nitrogen dioxide correlates well with Pandora and TropOMI.
- V3 Formaldehyde correlates well with Pandora ...

Example Applications of TEMPO with CMAQ

- Model evaluation and emissions inference.
- Surface concentration experiments
- Very preliminary and expanding!
- Applications presume validation!

TEMPO

TEMPO Validation Methodologies

> Correlative measurements : TropOMI and Pandora Spectrometers

- Pandora stations: best ground-based validation dataset available for total vertical columns.
- TropOMI: state-of-the-art satellite retrievals at similar spatial resolution.

> 96 Analysis Regions: Pandonia Global Network and Ozone Nonattainment Areas.

Pandora totHCHO Validation Aug 2023 to May 2025

line: 50% boxes: 25%-75%

Solid Boxes: Mon-Fri

TEMPO captures seasonal pattern (r=0.98) with good bias (NMB=-3%)

TropOMI captures seasonal pattern (r=0.91), but high in winter (NMB=+12%)

- Smaller variability in TropOMI
- TropOMI high-biased for low HCHO?

TropOMI totHCHO Evaluation Aug 2023 to May 2025

line: 50% boxes: 25%-75%

Solid Boxes: Mon-Fri

TEMPO captures
TropOMI seasonal
pattern (r=0.94) with
lower winter values,
which is likely good.

TropOMI captures Pandora seasonal pattern (r=0.91), but high in winter (NMB=+12%)

- Smaller variability in TropOMI
- TropOMI high-biased for low HCHO?

0.75

0.50

0.25

totHCHO Diurnal Validation

TEMPO L2 vs Pandora Total HCHO

Agreement: Correlation (R) and Index of Agreement (IOA)

Generally moderate agreement

- Small variation in performance
- Peaks at mid-day R=0.5

Bias and error worst in morning

- 6-7, 17-18LST: Few observations
- 7-10 and 15-17 show lower biases than mid-day

Err as % Mean
Mean Abs Bias
Mean Bias
RMSE

Site-level totHCHO Evaluation Available

Summaries and site-level analysis at https://gaftp.epa.gov/Air/aqmg/bhenders/share/TEMPO/README.html

Pandora totNO₂ Validation Aug 2023 to May 2025

line: 50% boxes: 25%-75%

Solid Boxes: Mon-Fri

TEMPO captures seasonal pattern (r=0.82) with good bias (NMB=3%)

TropOMI captures seasonal pattern (r=0.88), but low (NMB=-14%)

- **Smaller variability in TropOMI**
- **TropOMI low-biased for** high NO2?

TropOMI totNO2 and tropNO2 Eval @Pandora Aug 2023 to May 2025

line: 50% boxes: 25%-75%

Solid Boxes: Mon-Fri

TEMPO captures **Pandora seasonal** pattern (r=0.82) with good bias (NMB=3%)

Using TropOMI as a reference

As expected, TEMPO is higher than TropOMI (NMB=+19%)

So, you might expect TEMPO to be high biased over **Nonattainment Areas (NAA)**

TEMPO

TropOMI totNO₂ and tropNO₂ Eval @All Intersections Aug 2023 to May 2025

line: 50% boxes: 25%-75%

Solid Boxes: Mon-Fri

Unexpectedly TEMPO has lower NAA values (NMB=-11%)

- Pandora sites are typically in urban areas, mostly in the west
- NAA cover urban, but area dominated by suburbs/rural and area-wise are in the west (California).
- TropOMI may have a highbias at low NO2?

Need Pandoras at strategic suburban ad rural locations to provide ground truth.

Site-level totNO₂ and tropNO₂ Eval Available

Summaries and site-level analysis at https://gaftp.epa.gov/Air/aqmg/bhenders/share/TEMPO/README.html

Seasonal and Diurnal Performance is Consistent

NASA

TEMPO L2 vs Pandora Total NO2

Agreement: Correlation (R) and Index of Agreement (IOA)

Generally strong agreement

- Increasing correlation from 6-11 LST
- 10-17LST correlation generally good

Bias and error worst in morning

- 6-7 LST: Few observations
- 7-10:59 LST: the RMSE and MAB increase
- 11-15:59 LST error statistics are better
- 16-17:59 dropping again

Err as % Mean
Mean Abs Bias
Mean Bias
RMSE

Early Applications

- Focusing on NO2 Applications
 - Model performance evaluation (are columns similar?)
 - Dynamic evaluation (do columns respond to emissions similarly? Using weekend vs weekday
- Case study of convenience Sept 2023
 - Expediated Modeling of Burn Events Results (EMBER)*
 - 2018 anthropogenic emissions
 - 2023 preliminary fire inventory
 - Longer analysis would be ideal

Air Mass Factor differences from TEMPO prior

^{*} Simon et al. (10.1016/j.dib.2024.111208) Data in Brief

Model Performance Evaluation

TEMPO L2 vs Preliminary CMAQ Application

CMAQ – TEMPO

Sept 2023 average

- CMAQ has low biases in many major cities
- TEMPO and CMAQ have larger tropospheric columns in the morning hours (10-11LDT) than at polar overpass.
- Morning differences are larger in absolute scale.

Consistent w/ Nash et al. 2024 (10.5194/egusphere-2024-554), corrects low ozone bias that is largest in the

wes

Dynamic Evaluation

Weekday Increment

1PM overpass

- Weekday/weekend analysis (n=4)
- Tropospheric columns in major cities stand out in both TEMPO and CMAQ
- Mondays larger than Sundays in polluted scenes
- Unexpected differences in Mississippi

Dynamic Evaluation

TEMPO L2 vs Preliminary CMAQ Application

Weekday Increment

At morning scan

- Weekday/weekend analysis (n=4)
- TEMPO and CMAQ increments over cities are more similar at 10LDT than at 13LDT
- TEMPO has more negative increments than CMAQ in general and over the southeast and Great Lakes in particular.
- TEMPO Chicago increment looks suspect.
- Need longer data to isolate variability vs true difference.

Summary

- Community led validation TEAM helped TEMPO meet validation goals
 - Nitrogen dioxide and formaldehyde results contribute to both the beta and provisional maturity levels.
 - Assessing bias, precision and uncertainty (NO2-02, NO2-04, HCHO-02 and HCHO-04)
 - Inter-site gradients contributes to urban/rural gradient assessments (NO2-01 and HCHO-01)
 - Large pixel-to-pixel variation and data striping remains
 - Reveals strong disagreement between TEMPO and TropOMI HCHO, which is likely an improvement.
- TEMPO shows 2023 CMAQ simulation low-bias
 - Confirms TropOMI results (Kumm AGU presentation)
 - Geostationary coverage would require fewer assumptions in top-down emission adjustments.
- Thanks to:
 - Kelly Chance, SAO, NASA and all the people who helped deliver on the promise of TEMPO!
 - NASA LaRC ASDC for assistance to connect TEMPO to RSIG APIs and increase accessibility!
 - Pandonia Global Network and State and Local agencies for working with EPA to expand Pandora measurements!
 - Research groups and researchers who have contributed their time and analysis in support of TEMPO validation!