

Constituent data assimilation plans of the GMAO at NASA Goddard

Brad Weir (Morgan State & NASA GMAO) < <u>brad.weir@nasa.gov</u>>
Responsible for controversial views, mistakes, and bad ideas **Lesley Ott** (NASA GMAO)

GEOS Constituent Reanalysis (CR)

- NASA's first "all-atmosphere" chemical reanalysis
- Roughly: Retrospective GEOS CF w/ constituent assimilation (CoDAS)

- Meteorology: GEOS GCM replayed to reanalysis (GEOS IT)
- Resolution: 25km horiz., 72 eta levels to 0.01 hPa
- Chemistry: GEOS-Chem

CoDAS (Constituent Data Assimilation System)

- Generalization of legacy O₃ state estimation from NWP systems
- Tracer agnostic: Assimilates any point sample (MLS) or averaging kernel obs (TROPOMI/OCO) of any trace gas
- Available to the public as part of GEOS ADAS: https://github.com/GEOS-ESM/GEOSadas
- Whatever Ens/Var/Hybrid combo you like
- Backbone of several existing and upcoming products

JGR Atmospheres

RESEARCH ARTICLE

10.1029/2020JD033335

Key Points:

- The 2019 ozone hole area was about 10 ×10⁶ km² or less, compared to over 20×10⁶ km² typical for Septembers 2005–2018
- The anomalously high Antarctic total ozone resulted from an unusual polar vortex size and geometry rather than from chemistry
- Even a minor sudden stratospheric warming in the Southern Hemisphere can have a big impact

The Anomalous 2019 Antarctic Ozone Hole in the GEOS Constituent Data Assimilation System With MLS Observations

Krzysztof Wargan^{1,2}, Brad Weir^{3,2}, Gloria L. Manney^{4,5}, Stephen E. Cohn², and Nathaniel J. Livesey⁶

¹Science Systems and Applications, Inc., Lanham, MD, USA, ²Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA, ³Universities Space Research Association, Columbia, MD, USA, ⁴NorthWest Research Associates, Socorro, NM, USA, ⁵Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM, USA, ⁶Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

SCIENCE ADVANCES | RESEARCH ARTICLE

CORONAVIRUS

Regional impacts of COVID-19 on carbon dioxide detected worldwide from space

Brad Weir^{1,2}*, David Crisp³, Christopher W. O'Dell⁴, Sourish Basu^{2,5}, Abhishek Chatterjee^{1,2}, Jana Kolassa^{2,6}, Tomohiro Oda^{1,2,7,8,9}, Steven Pawson², Benjamin Poulter¹⁰, Zhen Zhang¹¹, Philippe Ciais¹², Steven J. Davis¹³, Zhu Liu¹⁴, Lesley E. Ott²

Activity reductions in early 2020 due to the coronavirus disease 2019 pandemic led to unprecedented decreases in carbon dioxide (CO₂) emissions. Despite their record size, the resulting atmospheric signals are smaller than and obscured by climate variability in atmospheric transport and biospheric fluxes, notably that related to the

Copyright © 2021
The Authors, some rights reserved; exclusive licensee
American Association for the Advancement of Science. No claim to original U.S. Governmen Works. Distributed under a Creative
Commons Attribution
License 4.0 (CC BY).

Earth and Space Science

10.1029/2022EA002632

Kev Points

• A new composition reanalysis of the stratosphere is introduced

RESEARCH ARTICLE

- Microwave Limb Sounder ozone, H₂O, HNO₃, HCl, and N₂O are assimilated for 2004–2021 and will be extended to the present
- The reanalysis is useful for studies of chemical and transport variability on time scales from hours to decades

M2-SCREAM: A Stratospheric Composition Reanalysis of Aura MLS Data With MERRA-2 Transport

Krzysztof Wargan^{1,2} , Brad Weir^{2,3,4} , Gloria L. Manney^{5,6} , Stephen E. Cohn², K. Emma Knowland^{2,3,4} , Pamela A. Wales^{2,3,4} , and Nathaniel J. Livesey⁷

¹Science Systems and Applications Inc., Lanham, MD, USA, ²Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA, ³Universities Space Research Association, Columbia, MD, USA, ⁴Now at Morgan State University, Baltimore, MD, USA, ⁵NorthWest Research Associates, Socorro, NM, USA, ⁶Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM, USA, ⁷Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

EA002632 by Nasa (

GEOS CR: Heritage

- Previously
 - MERRA-2 met: Strat ozone, trop water vapor (H2O), and aerosols
 - Carbon: CO₂, CH₄, CO
 - M2 SCREAM strat: Strat H2O, N2O, HNO3, HCI, CO, CH3CI
 - GEOS CF trop: NO₂, SO₂, 9.6 um O₃

GEOS CR: Everything together in one system

Vertical lines: Notable changes in observing system Light shading: Overlap used for tuning, evaluation, & bias correction

GEOS CR: Putting it all together

Carbon assimilation

- Assimilate satellite column CO₂, CH₄, and CO obs to produce time-varying, 3D fields (M2CC)
- 50km replay to MERRA-2 met, 12km run in progress
- Observationally-informed flux package (e.g. night lights, NDVI, FRP, surface growth rate)
- CO₂ is OCO-2 L3 product (OCO-2/GEOS) available on GES DISC & visualizations at https://fluid.nccs.nasa.gov/carbon
- Able to estimate fluxes

12km carbon DA

OCO-2 XCO₂ [ppm]

TROPOMI XCH₄ [ppb]

TROPOMI XCO [ppb]

M2 SCREAM

MERRA-2 Stratospheric Composition Reanalysis of Aura MLS

- 50 km replay to MERRA-2 met (except strat H₂O)
- Assimilates O₃, HCl, HNO₃, N₂O, and **strat** H₂O profiles from MLS & OMI column O₃
- Realistic, data-constrained, high-resolution strat and trop H₂O
- Publicly available: 2004 now(ish) on GES DISC

Earth and Space Science

RESEARCH ARTICLE

10.1029/2022EA002632

Key Points

- A new composition reanalysis of the stratosphere is introduced
- Microwave Limb Sounder ozone, H₂O, HNO₃, HCl, and N₂O are assimilated for 2004–2021 and will be extended to the present
- The reanalysis is useful for studies of chemical and transport variability on time scales from hours to decades

M2-SCREAM: A Stratospheric Composition Reanalysis of Aura MLS Data With MERRA-2 Transport

Krzysztof Wargan^{1,2} , Brad Weir^{2,3,4} , Gloria L. Manney^{5,6} , Stephen E. Cohn², K. Emma Knowland^{2,3,4} , Pamela A. Wales^{2,3,4} , and Nathaniel J. Livesey⁷

¹Science Systems and Applications Inc., Lanham, MD, USA, ²Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA, ³Universities Space Research Association, Columbia, MD, USA, ⁴Now at Morgan State University, Baltimore, MD, USA, ⁵NorthWest Research Associates, Socorro, NM, USA, ⁶Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM, USA, ⁷Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

M2 SCREAM

MERRA-2 Stratospheric Composition Reanalysis of Aura MLS

- 50 km replay to MERRA-2 met (except strat H₂O)
- Assimilates O₃, HCl, HNO₃, N₂O, and strat H₂O profiles from MLS & OMI column O₃
- Realistic, data-constrained, high-resolution strat and trop H₂O
- Publicly available: 2004 now(ish) on GES DISC

Earth and Space Science

RESEARCH ARTICLE

10.1029/2022EA002632

Key Points

- A new composition reanalysis of the stratosphere is introduced
- Microwave Limb Sounder ozone,
 H₂O, HNO₃, HCl, and N₂O are assimilated for 2004–2021 and will be extended to the present
- The reanalysis is useful for studies of chemical and transport variability on time scales from hours to decades

M2-SCREAM: A Stratospheric Composition Reanalysis of Aura MLS Data With MERRA-2 Transport

Krzysztof Wargan^{1,2}, Brad Weir^{2,3,4}, Gloria L. Manney^{5,6}, Stephen E. Cohn², K. Emma Knowland^{2,3,4}, Pamela A. Wales^{2,3,4}, and Nathaniel J. Livesey⁷

¹Science Systems and Applications Inc., Lanham, MD, USA, ²Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA, ³Universities Space Research Association, Columbia, MD, USA, ⁴Now at Morgan State University, Baltimore, MD, USA, ⁵NorthWest Research Associates, Socorro, NM, USA, ⁶Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM, USA, ⁷Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Hunga Tonga-Hunga Ha'apai

Southern hemisphere, 20 hPa

Coy et al., GRL 2022

MERRA-2

M2-SCREAM
Dashed: Increments
Solid: Increments + Radiation

Water vapor at 650 K potential temperature (~26 km) from M2-SCREAM

The extra water vapor induces radiative cooling and dynamical perturbations consistent w/ M2 analysis tendency

Feb

Jan

Early 2019: Dynamically-driven anomaly

Late 2019: Rare sudden stratospheric warming over Antarctica

2020: Exceptionally strong Arctic polar vortex

2020: Australian New Year's wildfires

2020 and 2021: Long-lasting Antarctic polar vortices

2022: Hunga Tonga eruption

MLS continuity

- Possible to continue strat H2Ov record from MLS w/ SAGE III/ISS data
- Other constituents ... not so much

Geophysical Research Letters*

RESEARCH LETTER

10.1029/2024GL112610

Key Points:

- Assimilation of SAGE III/ISS stratospheric water vapor (SWV) increases correlation to ACE-FTS by 17% versus when not assimilating SWV
- Assimilated SAGE III/ISS SWV captures broad, subpolar features like the tropical tape recorder but struggles with capturing isolated events
- SAGE III/ISS SWV profiles can continue the climate data record of Aura MLS, albeit with less coverage

Stratospheric Water Vapor Beyond NASA's Aura MLS: Assimilating SAGE III/ISS Profiles for a Continued Climate Record

K. Emma Knowland^{1,2,3}, Pamela A. Wales^{1,2}, Krzysztof Wargan^{2,4}, Brad Weir^{1,2}, Steven Pawson², Robert Damadeo⁵, and David Flittner⁵

¹Morgan State University, GESTAR-II, Baltimore, MD, USA, ²NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Greenbelt, MD, USA, ³Now at NASA Headquarters, Washington, DC, USA, ⁴Science Systems Association, Inc. (SSAI), Lanham, MD, USA, ⁵NASA Langley Research Center, Hampton, VA, USA

Abstract Stratospheric water vapor (SWV) is a greenhouse gas that has an important, yet uncertain, impact on the Earth's climate through its radiative effect and feedback. As the climate changes, it is thus critical to

GEOS CF

- GEOS-Chem chemistry: 250 gas-phase species, 725 reactions
- 25km replay to GEOS IT met
- Coupling w/ aerosol chemistry
- https://fluid.nccs.nasa.gov/cf

Atmos. Chem. Phys., 21, 3555–3592, 2021 https://doi.org/10.5194/acp-21-3555-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Global impact of COVID-19 restrictions on the surface concentrations of nitrogen dioxide and ozone

Christoph A. Keller^{1,2}, Mathew J. Evans^{3,4}, K. Emma Knowland^{1,2}, Christa A. Hasenkopf⁵, Sruti Modekurty⁵, Robert A. Lucchesi^{1,6}, Tomohiro Oda^{1,2}, Bruno B. Franca⁷, Felipe C. Mandarino⁷, M. Valeria Díaz Suárez⁸, Robert G. Ryan⁹, Luke H. Fakes^{3,4}, and Steven Pawson¹

JAMES

Journal of Advances in Modeling Earth Systems

RESEARCH ARTICLE

10.1029/2020MS002413

Key Points:

- GEOS-CF is a new modeling system that produces global forecasts of atmospheric composition at 25 km² horizontal resolution
- GEOS-CF model output is freely available and offers a new tool for academic researchers, air quality managers, and the public

Correspondence to:

Description of the NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0

Christoph A. Keller^{1,2}, K. Emma Knowland^{1,2}, Bryan N. Duncan¹, Junhua Liu^{1,2}, Daniel C. Anderson^{1,2}, Sampa Das^{1,2}, Robert A. Lucchesi^{1,3}, Elizabeth W. Lundgren⁴, Julie M. Nicely^{1,5}, Eric Nielsen^{1,3}, Lesley E. Ott¹, Emily Saunders^{1,3}, Sarah A. Strode^{1,2}, Pamela A. Wales^{1,2}, Daniel J. Jacob⁴, and Steven Pawson¹

¹NASA Goddard Space Flight Center, Greenbelt, MD, USA, ²Universities Space Research Association, Columbia, MD, USA, ³Science Systems and Applications, Inc., Lanham, MD, USA, ⁴School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA, ⁵Earth System Science Interdisciplinary Center, University of Maryland, College Park, Lanham, MD, USA

JAMES

Journal of Advances in Modeling Earth Systems®

RESEARCH ARTICLE

10.1029/2021MS002852

Key Points:

- Demonstrate the GEOS-CF system is capable of supporting NASA science missions and applications which observe stratospheric composition
- The GEOS-CF model produces realistic stratospheric ozone forecasts, a new capability during anomalous polar vortex conditions
- Spatial patterns of the GEOS-CF simulated concentrations of stratospheric composition agree we

NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0: Stratospheric Composition

K. E. Knowland^{1,2,3}, C. A. Keller^{1,2,3}, P. A. Wales^{1,2,3}, K. Wargan^{2,4}, L. Coy^{2,4}, M. S. Johnson⁵, J. Liu^{1,3,6}, R. A. Lucchesi^{2,4}, S. D. Eastham^{7,8}, E. Fleming^{4,6}, Q. Liang⁶, T. Leblanc⁹, N. J. Livesey¹⁰, K. A. Walker¹¹, L. E. Ott², and S. Pawson²

¹Universities Space Research Association (USRA)/GESTAR, Columbia, MD, USA, ²NASA Goddard Space Flight Center (GSFC), Global Modeling and Assimilation Office (GMAO), Greenbelt, MD, USA, ³Now Morgan State University (MSU)/GESTAR-II, Baltimore, MD, USA, ⁴Science Systems and Applications (SSAI), Inc., Lanham, MD, USA, ⁵Earth Science Division, NASA Ames Research Center, Moffett Field, CA, USA, ⁶Atmospheric Chemistry and Dynamics Laboratory, NASA GSFC, Greenbelt, MD, USA, ⁷Laboratory for Aviation and the Environment, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA, ⁸Joint Program on the Science and Policy of Global Change,

SO₂ assimilation: Mauna Loa eruption

SO₂ total column, 6 Dec 2022

COVID-19 CO₂, NO₂, and O₃

CORONAVIRUS

Regional impacts of COVID-19 on carbon dioxide detected worldwide from space

Brad Weir^{1,2}*, David Crisp³, Christopher W. O'Dell⁴, Sourish Basu^{2,5}, Abhishek Chatterjee^{1,2}, Jana Kolassa^{2,6}, Tomohiro Oda^{1,2,7,8,9}, Steven Pawson², Benjamin Poulter¹⁰, Zhen Zhang¹¹, Philippe Ciais¹², Steven J. Davis¹³, Zhu Liu¹⁴, Lesley E. Ott²

Activity reductions in early 2020 due to the coronavirus disease 2019 pandemic led to unprecedented decreases in carbon dioxide (CO₂) emissions. Despite their record size, the resulting atmospheric signals are smaller than and obscured by climate variability in atmospheric transport and biospheric fluxes, notably that related to the

Copyright © 2021
The Authors, some rights reserved; exclusive licensee
American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative
Commons Attribution
License 4.0 (CC BY).

Atmos. Chem. Phys., 21, 3555–3592, 2021 https://doi.org/10.5194/acp-21-3555-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Global impact of COVID-19 restrictions on the surface concentrations of nitrogen dioxide and ozone

Christoph A. Keller^{1,2}, Mathew J. Evans^{3,4}, K. Emma Knowland^{1,2}, Christa A. Hasenkopf⁵, Sruti Modekurty⁵, Robert A. Lucchesi^{1,6}, Tomohiro Oda^{1,2}, Bruno B. Franca⁷, Felipe C. Mandarino⁷, M. Valeria Díaz Suárez⁸, Robert G. Ryan⁹, Luke H. Fakes^{3,4}, and Steven Pawson¹

from C Keller

Tomorrow's Enterprise

- State estimation systems transitioning to Joint Effort for Data assimilation Integration (JEDI)
- Joint effort of GMAO, NOAA EMC & PSL, NCAR, Navy, Air Force, and UK Met Office managed through JCSDA
- Will be the basis of future coupled ocean-atmosphere (and more) analyses, e.g., MERRA-3
- Interoperable "all-DAS" system

Conclusions

- GMAO maintains state-of-the-art Earth System modeling and data assimilation systems
- Code (GitHub), products (GES DISC), etc. publicly available and documented in literature
- Increased coupling, resolution, fidelity of constituent analyses
- GEOS CR production starting soon
- Further inter-center interoperability, coordination, and collaboration w/ JEDI