Constituent data assimilation plans of the GMAO at NASA Goddard **Brad Weir** (Morgan State & NASA GMAO) < <u>brad.weir@nasa.gov</u>> Responsible for controversial views, mistakes, and bad ideas **Lesley Ott** (NASA GMAO) # GEOS Constituent Reanalysis (CR) - NASA's first "all-atmosphere" chemical reanalysis - Roughly: Retrospective GEOS CF w/ constituent assimilation (CoDAS) - Meteorology: GEOS GCM replayed to reanalysis (GEOS IT) - Resolution: 25km horiz., 72 eta levels to 0.01 hPa - Chemistry: GEOS-Chem # CoDAS (Constituent Data Assimilation System) - Generalization of legacy O₃ state estimation from NWP systems - Tracer agnostic: Assimilates any point sample (MLS) or averaging kernel obs (TROPOMI/OCO) of any trace gas - Available to the public as part of GEOS ADAS: https://github.com/GEOS-ESM/GEOSadas - Whatever Ens/Var/Hybrid combo you like - Backbone of several existing and upcoming products ### **JGR** Atmospheres #### RESEARCH ARTICLE 10.1029/2020JD033335 #### **Key Points:** - The 2019 ozone hole area was about 10 ×10⁶ km² or less, compared to over 20×10⁶ km² typical for Septembers 2005–2018 - The anomalously high Antarctic total ozone resulted from an unusual polar vortex size and geometry rather than from chemistry - Even a minor sudden stratospheric warming in the Southern Hemisphere can have a big impact # The Anomalous 2019 Antarctic Ozone Hole in the GEOS Constituent Data Assimilation System With MLS Observations Krzysztof Wargan^{1,2}, Brad Weir^{3,2}, Gloria L. Manney^{4,5}, Stephen E. Cohn², and Nathaniel J. Livesey⁶ ¹Science Systems and Applications, Inc., Lanham, MD, USA, ²Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA, ³Universities Space Research Association, Columbia, MD, USA, ⁴NorthWest Research Associates, Socorro, NM, USA, ⁵Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM, USA, ⁶Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA #### SCIENCE ADVANCES | RESEARCH ARTICLE #### CORONAVIRUS ### Regional impacts of COVID-19 on carbon dioxide detected worldwide from space Brad Weir^{1,2}*, David Crisp³, Christopher W. O'Dell⁴, Sourish Basu^{2,5}, Abhishek Chatterjee^{1,2}, Jana Kolassa^{2,6}, Tomohiro Oda^{1,2,7,8,9}, Steven Pawson², Benjamin Poulter¹⁰, Zhen Zhang¹¹, Philippe Ciais¹², Steven J. Davis¹³, Zhu Liu¹⁴, Lesley E. Ott² Activity reductions in early 2020 due to the coronavirus disease 2019 pandemic led to unprecedented decreases in carbon dioxide (CO₂) emissions. Despite their record size, the resulting atmospheric signals are smaller than and obscured by climate variability in atmospheric transport and biospheric fluxes, notably that related to the Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Governmen Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). ### Earth and Space Science 10.1029/2022EA002632 #### Kev Points • A new composition reanalysis of the stratosphere is introduced **RESEARCH ARTICLE** - Microwave Limb Sounder ozone, H₂O, HNO₃, HCl, and N₂O are assimilated for 2004–2021 and will be extended to the present - The reanalysis is useful for studies of chemical and transport variability on time scales from hours to decades #### M2-SCREAM: A Stratospheric Composition Reanalysis of Aura MLS Data With MERRA-2 Transport Krzysztof Wargan^{1,2} , Brad Weir^{2,3,4} , Gloria L. Manney^{5,6} , Stephen E. Cohn², K. Emma Knowland^{2,3,4} , Pamela A. Wales^{2,3,4} , and Nathaniel J. Livesey⁷ ¹Science Systems and Applications Inc., Lanham, MD, USA, ²Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA, ³Universities Space Research Association, Columbia, MD, USA, ⁴Now at Morgan State University, Baltimore, MD, USA, ⁵NorthWest Research Associates, Socorro, NM, USA, ⁶Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM, USA, ⁷Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA EA002632 by Nasa (# GEOS CR: Heritage - Previously - MERRA-2 met: Strat ozone, trop water vapor (H2O), and aerosols - Carbon: CO₂, CH₄, CO - M2 SCREAM strat: Strat H2O, N2O, HNO3, HCI, CO, CH3CI - GEOS CF trop: NO₂, SO₂, 9.6 um O₃ GEOS CR: Everything together in one system Vertical lines: Notable changes in observing system Light shading: Overlap used for tuning, evaluation, & bias correction # GEOS CR: Putting it all together # Carbon assimilation - Assimilate satellite column CO₂, CH₄, and CO obs to produce time-varying, 3D fields (M2CC) - 50km replay to MERRA-2 met, 12km run in progress - Observationally-informed flux package (e.g. night lights, NDVI, FRP, surface growth rate) - CO₂ is OCO-2 L3 product (OCO-2/GEOS) available on GES DISC & visualizations at https://fluid.nccs.nasa.gov/carbon - Able to estimate fluxes # 12km carbon DA ### OCO-2 XCO₂ [ppm] ### TROPOMI XCH₄ [ppb] ### TROPOMI XCO [ppb] ## M2 SCREAM MERRA-2 Stratospheric Composition Reanalysis of Aura MLS - 50 km replay to MERRA-2 met (except strat H₂O) - Assimilates O₃, HCl, HNO₃, N₂O, and **strat** H₂O profiles from MLS & OMI column O₃ - Realistic, data-constrained, high-resolution strat and trop H₂O - Publicly available: 2004 now(ish) on GES DISC ### Earth and Space Science #### **RESEARCH ARTICLE** 10.1029/2022EA002632 #### **Key Points** - A new composition reanalysis of the stratosphere is introduced - Microwave Limb Sounder ozone, H₂O, HNO₃, HCl, and N₂O are assimilated for 2004–2021 and will be extended to the present - The reanalysis is useful for studies of chemical and transport variability on time scales from hours to decades #### M2-SCREAM: A Stratospheric Composition Reanalysis of Aura MLS Data With MERRA-2 Transport Krzysztof Wargan^{1,2} , Brad Weir^{2,3,4} , Gloria L. Manney^{5,6} , Stephen E. Cohn², K. Emma Knowland^{2,3,4} , Pamela A. Wales^{2,3,4} , and Nathaniel J. Livesey⁷ ¹Science Systems and Applications Inc., Lanham, MD, USA, ²Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA, ³Universities Space Research Association, Columbia, MD, USA, ⁴Now at Morgan State University, Baltimore, MD, USA, ⁵NorthWest Research Associates, Socorro, NM, USA, ⁶Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM, USA, ⁷Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA ## M2 SCREAM **MERRA-2 Stratospheric Composition Reanalysis of Aura MLS** - 50 km replay to MERRA-2 met (except strat H₂O) - Assimilates O₃, HCl, HNO₃, N₂O, and strat H₂O profiles from MLS & OMI column O₃ - Realistic, data-constrained, high-resolution strat and trop H₂O - Publicly available: 2004 now(ish) on GES DISC ### Earth and Space Science #### **RESEARCH ARTICLE** 10.1029/2022EA002632 #### **Key Points** - A new composition reanalysis of the stratosphere is introduced - Microwave Limb Sounder ozone, H₂O, HNO₃, HCl, and N₂O are assimilated for 2004–2021 and will be extended to the present - The reanalysis is useful for studies of chemical and transport variability on time scales from hours to decades #### M2-SCREAM: A Stratospheric Composition Reanalysis of Aura MLS Data With MERRA-2 Transport Krzysztof Wargan^{1,2}, Brad Weir^{2,3,4}, Gloria L. Manney^{5,6}, Stephen E. Cohn², K. Emma Knowland^{2,3,4}, Pamela A. Wales^{2,3,4}, and Nathaniel J. Livesey⁷ ¹Science Systems and Applications Inc., Lanham, MD, USA, ²Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA, ³Universities Space Research Association, Columbia, MD, USA, ⁴Now at Morgan State University, Baltimore, MD, USA, ⁵NorthWest Research Associates, Socorro, NM, USA, ⁶Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM, USA, ⁷Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA # Hunga Tonga-Hunga Ha'apai Southern hemisphere, 20 hPa Coy et al., GRL 2022 MERRA-2 M2-SCREAM Dashed: Increments Solid: Increments + Radiation Water vapor at 650 K potential temperature (~26 km) from M2-SCREAM The extra water vapor induces radiative cooling and dynamical perturbations consistent w/ M2 analysis tendency Feb Jan Early 2019: Dynamically-driven anomaly Late 2019: Rare sudden stratospheric warming over Antarctica 2020: Exceptionally strong Arctic polar vortex 2020: Australian New Year's wildfires 2020 and 2021: Long-lasting Antarctic polar vortices 2022: Hunga Tonga eruption # MLS continuity - Possible to continue strat H2Ov record from MLS w/ SAGE III/ISS data - Other constituents ... not so much ### **Geophysical Research Letters*** #### **RESEARCH LETTER** 10.1029/2024GL112610 #### **Key Points:** - Assimilation of SAGE III/ISS stratospheric water vapor (SWV) increases correlation to ACE-FTS by 17% versus when not assimilating SWV - Assimilated SAGE III/ISS SWV captures broad, subpolar features like the tropical tape recorder but struggles with capturing isolated events - SAGE III/ISS SWV profiles can continue the climate data record of Aura MLS, albeit with less coverage Stratospheric Water Vapor Beyond NASA's Aura MLS: Assimilating SAGE III/ISS Profiles for a Continued Climate Record K. Emma Knowland^{1,2,3}, Pamela A. Wales^{1,2}, Krzysztof Wargan^{2,4}, Brad Weir^{1,2}, Steven Pawson², Robert Damadeo⁵, and David Flittner⁵ ¹Morgan State University, GESTAR-II, Baltimore, MD, USA, ²NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Greenbelt, MD, USA, ³Now at NASA Headquarters, Washington, DC, USA, ⁴Science Systems Association, Inc. (SSAI), Lanham, MD, USA, ⁵NASA Langley Research Center, Hampton, VA, USA **Abstract** Stratospheric water vapor (SWV) is a greenhouse gas that has an important, yet uncertain, impact on the Earth's climate through its radiative effect and feedback. As the climate changes, it is thus critical to # GEOS CF - GEOS-Chem chemistry: 250 gas-phase species, 725 reactions - 25km replay to GEOS IT met - Coupling w/ aerosol chemistry - https://fluid.nccs.nasa.gov/cf Atmos. Chem. Phys., 21, 3555–3592, 2021 https://doi.org/10.5194/acp-21-3555-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. ### Global impact of COVID-19 restrictions on the surface concentrations of nitrogen dioxide and ozone Christoph A. Keller^{1,2}, Mathew J. Evans^{3,4}, K. Emma Knowland^{1,2}, Christa A. Hasenkopf⁵, Sruti Modekurty⁵, Robert A. Lucchesi^{1,6}, Tomohiro Oda^{1,2}, Bruno B. Franca⁷, Felipe C. Mandarino⁷, M. Valeria Díaz Suárez⁸, Robert G. Ryan⁹, Luke H. Fakes^{3,4}, and Steven Pawson¹ ### **JAMES** Journal of Advances in Modeling Earth Systems #### RESEARCH ARTICLE 10.1029/2020MS002413 #### **Key Points:** - GEOS-CF is a new modeling system that produces global forecasts of atmospheric composition at 25 km² horizontal resolution - GEOS-CF model output is freely available and offers a new tool for academic researchers, air quality managers, and the public **Correspondence to:** #### Description of the NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0 Christoph A. Keller^{1,2}, K. Emma Knowland^{1,2}, Bryan N. Duncan¹, Junhua Liu^{1,2}, Daniel C. Anderson^{1,2}, Sampa Das^{1,2}, Robert A. Lucchesi^{1,3}, Elizabeth W. Lundgren⁴, Julie M. Nicely^{1,5}, Eric Nielsen^{1,3}, Lesley E. Ott¹, Emily Saunders^{1,3}, Sarah A. Strode^{1,2}, Pamela A. Wales^{1,2}, Daniel J. Jacob⁴, and Steven Pawson¹ ¹NASA Goddard Space Flight Center, Greenbelt, MD, USA, ²Universities Space Research Association, Columbia, MD, USA, ³Science Systems and Applications, Inc., Lanham, MD, USA, ⁴School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA, ⁵Earth System Science Interdisciplinary Center, University of Maryland, College Park, Lanham, MD, USA #### **JAMES** Journal of Advances in Modeling Earth Systems® #### RESEARCH ARTICLE 10.1029/2021MS002852 #### **Key Points:** - Demonstrate the GEOS-CF system is capable of supporting NASA science missions and applications which observe stratospheric composition - The GEOS-CF model produces realistic stratospheric ozone forecasts, a new capability during anomalous polar vortex conditions - Spatial patterns of the GEOS-CF simulated concentrations of stratospheric composition agree we ### NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0: Stratospheric Composition K. E. Knowland^{1,2,3}, C. A. Keller^{1,2,3}, P. A. Wales^{1,2,3}, K. Wargan^{2,4}, L. Coy^{2,4}, M. S. Johnson⁵, J. Liu^{1,3,6}, R. A. Lucchesi^{2,4}, S. D. Eastham^{7,8}, E. Fleming^{4,6}, Q. Liang⁶, T. Leblanc⁹, N. J. Livesey¹⁰, K. A. Walker¹¹, L. E. Ott², and S. Pawson² ¹Universities Space Research Association (USRA)/GESTAR, Columbia, MD, USA, ²NASA Goddard Space Flight Center (GSFC), Global Modeling and Assimilation Office (GMAO), Greenbelt, MD, USA, ³Now Morgan State University (MSU)/GESTAR-II, Baltimore, MD, USA, ⁴Science Systems and Applications (SSAI), Inc., Lanham, MD, USA, ⁵Earth Science Division, NASA Ames Research Center, Moffett Field, CA, USA, ⁶Atmospheric Chemistry and Dynamics Laboratory, NASA GSFC, Greenbelt, MD, USA, ⁷Laboratory for Aviation and the Environment, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA, ⁸Joint Program on the Science and Policy of Global Change, # SO₂ assimilation: Mauna Loa eruption ### SO₂ total column, 6 Dec 2022 # COVID-19 CO₂, NO₂, and O₃ #### **CORONAVIRUS** ### Regional impacts of COVID-19 on carbon dioxide detected worldwide from space Brad Weir^{1,2}*, David Crisp³, Christopher W. O'Dell⁴, Sourish Basu^{2,5}, Abhishek Chatterjee^{1,2}, Jana Kolassa^{2,6}, Tomohiro Oda^{1,2,7,8,9}, Steven Pawson², Benjamin Poulter¹⁰, Zhen Zhang¹¹, Philippe Ciais¹², Steven J. Davis¹³, Zhu Liu¹⁴, Lesley E. Ott² Activity reductions in early 2020 due to the coronavirus disease 2019 pandemic led to unprecedented decreases in carbon dioxide (CO₂) emissions. Despite their record size, the resulting atmospheric signals are smaller than and obscured by climate variability in atmospheric transport and biospheric fluxes, notably that related to the Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). Atmos. Chem. Phys., 21, 3555–3592, 2021 https://doi.org/10.5194/acp-21-3555-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. ### Global impact of COVID-19 restrictions on the surface concentrations of nitrogen dioxide and ozone Christoph A. Keller^{1,2}, Mathew J. Evans^{3,4}, K. Emma Knowland^{1,2}, Christa A. Hasenkopf⁵, Sruti Modekurty⁵, Robert A. Lucchesi^{1,6}, Tomohiro Oda^{1,2}, Bruno B. Franca⁷, Felipe C. Mandarino⁷, M. Valeria Díaz Suárez⁸, Robert G. Ryan⁹, Luke H. Fakes^{3,4}, and Steven Pawson¹ from C Keller # Tomorrow's Enterprise - State estimation systems transitioning to Joint Effort for Data assimilation Integration (JEDI) - Joint effort of GMAO, NOAA EMC & PSL, NCAR, Navy, Air Force, and UK Met Office managed through JCSDA - Will be the basis of future coupled ocean-atmosphere (and more) analyses, e.g., MERRA-3 - Interoperable "all-DAS" system # Conclusions - GMAO maintains state-of-the-art Earth System modeling and data assimilation systems - Code (GitHub), products (GES DISC), etc. publicly available and documented in literature - Increased coupling, resolution, fidelity of constituent analyses - GEOS CR production starting soon - Further inter-center interoperability, coordination, and collaboration w/ JEDI