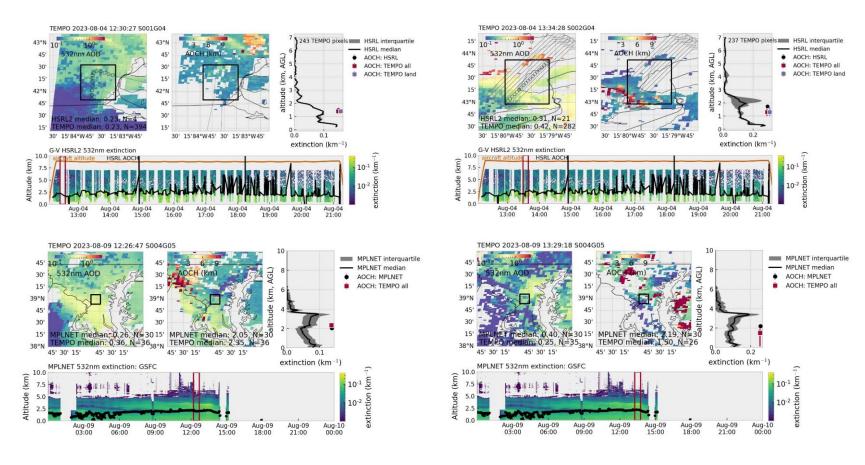
# TEMPO Aerosol Layer Height Product: Brief Update

Siyuan Wang,<sup>1,2</sup> Hai Zhang,<sup>3</sup> Shobha Kondragunta,<sup>3</sup> Brian McDonald.<sup>2</sup>


- <sup>1</sup> Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder
- <sup>2</sup> National Oceanic and Atmospheric Administration (NOAA), Chemical Sciences Laboratory (CSL)
- <sup>3</sup> National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data, and Information Service (NESDIS)



## **TEMPO AOCH Evaluation**

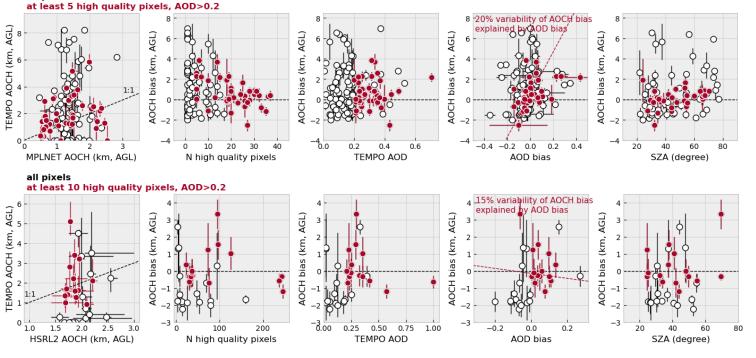
- Ground-based network: NASA MPLNET. Micro-Pulse Lidar.
- Ground-based network: NOAA NEXRAD Radar.
- Airborne campaign: NOAA/NASA AEROMMA/STAQS (summer 2023). NASA GV/HSRL2.
- Airborne campaign: NOAA USUS (summer 2024). NOAA Twin Otter/Doppler Lidar.
- High profile cases: e.g. Park Fire (#4 largest fire in California's recorded history)

## **Robust Performance in Moderate AOD**



← Two examples using GV/HSRL2 data during AEROMMA/STAQS

← Two examples using MPL data at GSFC


Lidar window: TEMPO overpass ± 10 min.

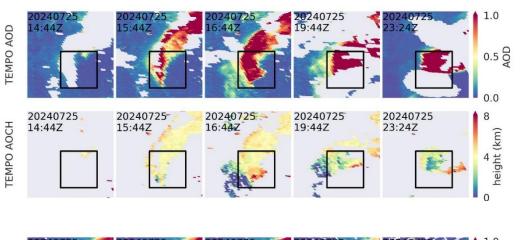
Geographic footprint: MPLNET within 0.1 deg; airborne: dynamically determined but no bigger than 0.5 deg.

Data courtesy: HSRL2: Johnathan Hair (NASA), Taylor Shingler (NASA); MPLNET: Judd Welton (GSFC), James Flynn (UH-Liberty), James Sherman (Appalachian-State), Robert Sica (London-CDR)

# **Summary: MPLNET + AEROMMA**

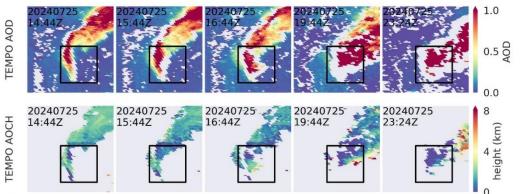
all pixels




MPLNET (GSFC, Appalachian State, UH-Liberty, London-CDN)

AEROMMA/STAQS GV/HSRL2

- Based on <u>August 2023</u>: 4 sites in MPLNET and 7 research flights during AEROMMA/STAQS.
- Currently working on analyzing one full year of TEMPO data (2023-2024).


# **Improved Performance with Extreme Smoke**

• <u>Park Fire</u> in California: ignited on 24 Jul 2024. Preliminary TEMPO AOD struggled with the thick smoke. This is now greatly improved.



#### **Preliminary**

TEMPO AOD affected by thick smoke (known challenge in AOD retrievals), particularly so in the early morning and late afternoon. As a result, AOCH retrieval was affected.



#### Latest

TEMPO aerosol products (AOD and AOCH) greatly improved for extreme smoke!

23:21Z

### **Cross Evaluate with Other Products**

- Park Fire in California: ignited on 24 Jul 2024.
- Generally good agreement with NEXRAD radar and stereoscopic GEOS-GEOS for this extreme event.

height (km) *IEMPO AOCH* 18:447 **23:24Z** 4 height (km) Altitude (km) 7.5 reflectivity (dbZ) 5.0 2.5 16Z 18Z 19Z 20Z 21Z 23Z

19:46Z

Data courtesy: Stereoscopic GEO+GEO: Mariel Friberg (UMD/NASA).