

A multi-pollutant fusion system

Barron H. Henderson^{1,4}

Contributors: Phil Dickerson^{1,4} Pawan Gupta^{2,4}, Shobha Kondragunta^{3,4}, Yang Liu^{4,6}, Meng Qi⁶, Alqamah Sayeed, Hai Zhang^{3,4}, Janica Gordon⁵, Halil Cakir¹, Brett Gantt¹, Benjamin Wells¹, Marcus Hylton⁷, Youngsun Jung⁹, and the HAQAST AirNow Teams⁴

¹US EPA Office of Air Quality Planning and Standards; ²National Aeronautics and Space Administration; ³National Oceanic and Atmospheric Administration / National Environmental Satellite, Data, and Information Service; ⁴NASA Health and Air Quality Applied Sciences Team and Tiger Teams; ⁵North Carolina Agricultural and Technical State University; ⁶Emory University; ⁷AirNow Data Management Center; ⁹National Oceanic and Atmospheric Administration / National Weather Service

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

*EPA

Jeff Pierce's HAQAST Showcase Example

Jeff Pierce's HAQAST Showcase Example

AirNow Vision: ultra-high-resolution data for all Americans!

- Currently using just monitors.
 - <30% of 3224 US counties
 - <80% population</p>
 - Ignoring satellites and sensors
- Example Problems
 - Smoke plumes go between "good" monitors.
 - AQI might be based on ozone where PM is the problem
- Data Fusion can:
 - Bring additional sources of data (sensors, satellites)
 - Increase reasonability of monitor interpolation
 - Allow for multi-pollutant AQI more places

*	Pop [M]	County%	Pop%
Ozone and PM25	210.8	15.3	62.8
Ozone Only	26.7	7.3	8.0
PM25 Only	24.9	6.1	7.4
Neither	73.1	71.3	21.8

^{*}County/Population from July 2024

Realtime hourly maps of **AirFuse** PM_{2.5} and ozone for AirN PM_{2 5} and ozone for AirNow

Best available data sources

- NOAA Forecast w/bias correction
- AirNow monitors (~1000 per hour)
- PurpleAir sensors (~9k per hour)
- Near-real-time satellite observations (1.4M)
 - GOES-PM25 developed by NOAA/NESDIS/STAR
 - NASA HAQAST project connecting AirNow to NOAA geostationary satellite data
- Ozone too, but no sensor or satellite data vet... Excited for TEMPO near-surface ozone

timeline

Data Fusion Goals:

- NOAA Satellite to AirNow
- Added low-cost sensors
- Project published EM Sept

Pilot on AirNowTech.org:

- 1-hr Ozone; 1-hr PM25
- Every hour publicly available
- Get a free password to monitor!

2021

2022

2023

Mar 2024

Today

NASA/NOAA/EPA HAQST Collab:

- EPA OAQPS/OID/ORD
- NOAA NESDIS
- NASA HAQAST: "Incorporating Satellite Data Updates into AirNow"

Validation Project:

- 1-year 10-fold cross validation
- 7 method comparisons
- Method Selection: feasibility, performance, stakeholder constraints

Ongoing Application:

- 1-year+ live on AirNowTech
- Collecting feedback from states
- Preparing for more public release

Fusion Methods

- 1. Acquire forecast model (y)
- 2. Acquire observations (*o*): monitors, sensors, and satellite
- 3. Calculate model bias on grid
 - First at obs points $(b_i = y_i o_i)$
 - Select neighbors (i) via Delaunay Diagram (faster w/ nearest)
 - Interpolate bias from points to grid $(b_x = \sum_i w_i b_i)$
 - Weight monitors more than PurpleAir (0.25x)
- 4. Subtract gridded bias $(f_x = y_x b_x)$
- 5. Measure Success
 - 10-fold cross validation (withhold 10%; predict withheld; repeat)
 - Never perfect... usually better than AirNow's IDW = $\sum_{i=1}^{10} \frac{\|p_i x\|^{-5}}{\sum_i \|p_i x\|^{-5}} dx$

Wikipedia: Inverse Distance Weighting as a sum of all weighting functions for each sample point.

$$w_i = \frac{\|p_i - x\|^{-2}}{\sum_i \|p_i - x\|^{-2}}$$

AirFuse runs in the cloud (or locally)

What are the biggest needs?

- Quality Assurance Challenges
 - Large changes from one hour to the next can indicate instrument error or "events"
 - Monitors measuring events (dust or fire) should be included.
 - Instrument error should be with held.
 - Typical automated QA may not distinguish.
- Dynamic quality assurance
 - GOES-PM25 or AirFuse surfaces are only as good as the inputs.
 - If monitors are not reporting, GOES-PM25 and AirFuse cannot calibrate.

AirNowTech - June 1 09EST Case Study

AirNowTech May 14 – 03EST Case Study

Next Steps

- AirFuse integrates forecast models, low-costs sensors, and monitors
 - Running in real-time since March 24, 2004
 - Currently without GOES-PM25
 - (not shown) Computer "vision" can help identify discontinuities.
 - Excited about TEMPO improvements GOES-PM25
- Needs that satellites can help
 - Events (fires and dust) trigger monitor QA flagging data is withheld from fusion.
 - Can states use satellite data to dynamically modify QA thresholds?
 - Dust events highlight the need to dynamically weight PurpleAir.
 - Can satellite wavelength-specific AOD provide guidance?
 - What other tools are available?
 - Night-time data products are a need that hasn't been met.

Questions?

henderson.barron@epa.gov

