

The OCO-2 and OCO-3 missions: Status, results and plans

Vivienne Payne, Abhishek Chatterjee, Junjie Liu Jet Propulsion Laboratory, California Institute of Technology

And the OCO-2/OCO-3 Project Teams, Science Team!

Tracking the whole-atmosphere CO₂ growth rate in near real time

CO₂ growth rate for 2024: One of the highest on record

(Both for NOAA ground-based record and for satellite record)

Strongly decoupled from ENSO index, likely that anomaly originated in the Southern Tropics

- Pandey et al. (2024)
 AGU Advances,
 10.1029/2023AV00114
 5
- Pandey et al. (in preparation)

The OCO-2 and OCO-3 missions

Orbiting Carbon Observatory-2 (OCO-2)

- Launched July 2, 2014
- Free flying spacecraft
- Sun-synchronous polar orbit

Orbiting Carbon Observatory-3 (OCO-3)

- Launched May 4, 2019
- International Space Station (ISS)
- ± 52° inclined orbit

OCO-2 and OCO-3 data products are publicly available via the NASA GES DISC

OCO-2 and OCO-3: Complementary coverage and sampling

OCO-2

- "Pole-to-pole" coverage, depending on season;
- Fixed 1330h equator crossing time (and local overpass time)

OCO-3

- Coverage limited to ±52° latitude, changing with season;
- Observations span all times of day

OCO-2 and OCO-3: Complementary coverage and sampling

OCO-2

- "Pole-to-pole" coverage, depending on season;
- Fixed 1330h equator crossing time (and local overpass time)

OCO-3

- Coverage limited to ±52° latitude, changing with season;
- Observations span all times of day

OCO-3 Snapshot Area Maps (SAMs)

- Collects data over an ~80 km × 80 km area in 2 minutes
- Complements the near-global nadir & glint measurements

See R. Nelson/A. Chatterjee talk on Tuesday!

OCO-2: Continuing to age like a fine wine!

- Instrument and spacecraft are in excellent health
- Outgassing/icing effects continue to slow as the mission extends in time

Figures: R. Rosenberg and the OCO-2 cal team

OCO-3: With age (and v11) comes wisdom

- OCO-3 instrument is in excellent health!
- OCO-3 v11: Consistency with OCO-2 v11.2 L2 algorithm, plus OCO-3-specific improvements to L1B calibration and geolocation compared to v10

Level 2 XCO₂ and SIF products

- Latest and greatest Level 2 data versions: v11.2 for OCO-2, v11 for OCO-3
 - Consistent algorithm used for OCO-2 and OCO-3!

Figure: Chris O'Dell, CSU

Forward stream

- Subset of soundings, latency < 1 week
- Products removed from GES DISC site on rolling basis
- New! Bias-corrected forward stream L2 products
 - Intended for users who need low latency

OCO-2 coverage, forward stream (06/22)

Retrospective stream

- All "cloud-free" soundings processed, monthly cadence.
- Full record available at GES DISC site
- L2 Lite products: Bias correction, quality filter applied
 - Recommended for most users

OCO-2 coverage, retrospective stream (06/22)

Why "OCO-2 v11.2" but "OCO-3 v11"?

- OCO-2 v11 → v11.1: Switch to Copernicus Digital Elevation Map
- OCO-2 v11.1 → v11.2: Transition from GEOS-FPIT to GEOS-IT met fields
 - Date of GEOS-IT transition: 2nd April 2024
 - Users should be aware: Transition introduces subtle but non-zero discontinuity in record
 - Mitigated, but not fully addressed, by v11.2 Lite reprocessing for pre-2024 data
 - To fully address this, a full L2FP reprocessing would be required
 - For more info, see OCO-2 Data User Guide

- OCO-3 v11 is fully consistent throughout the record
 - OCO-3 v11 processing started later, was able to "bake in" these DEM, GEOS-IT updates

Validation against TCCON (GGG2020): Agreement < 1 ppm

TCCON GGG2020.1 status

Changes to Xgases from implementation of time-varying O₂ DMF

Progress:

ightharpoonup Consistent time-varying O₂ DMF for all Xgases

N₂O T-dependent bias reduction

Track use of alternate CO priors

 Σ - Upgrade public file creation to support above

 Σ - Generate alternate pre-Apr 2024 CO priors

Changes to XN₂O from implementation of T-dependent bias reduction

- Impact of new time-varying O₂ DMF is much smaller than the TCCON error budget, benefit is to long timeseries analyses
- XN₂O bias reduction reduces temperature dependence in the common temperature ranges, future work needed to address the coldest temperatures
- Updating TCCON infrastructure to ensure that the GGG2020 to GGG2020.1 processing is applied correctly is taking longer than expected
 - First of three components almost complete
- Aiming now to have development complete by Sep. 2025.
- Sites that wish to use improved CO priors will need time after the GGG2020.1 release to reprocess

"Can I use OCO-2 and OCO-3 together?"

Yes!

- Direct comparisons for XCO2:
 - OCO-3 v11 agrees with OCO-2 v11.2 to better than 0.5 ppm for co-located soundings
 - This is well within the agreement of either sensor with TCCON.
 - Taylor et al. (2025), in prep

Closing remarks

- OCO-2 and OCO-3 are both in excellent health
- With OCO-2 v11.2 and OCO-3 v11, L2 products are now in step
- Accuracy and precision of XCO₂ products:
 - < 1 ppm for **both missions**
- Characterization of a new instrument/data product can take some time....
- XCO₂ and SIF datasets from OCO-2 and OCO-3
 - Shining new light on natural and anthropogenic components of carbon cycle
- Length of the record and quality of the data products are key
 - Particularly for studies of the natural carbon cycle