

ESTIMATING THE O&G EMISSION RATE DISTRIBUTION WITH MULTIPLE SATELLITE SYSTEMS

Dylan Jervis, M. Girard, J.-P. MacLean, J. McKeever, D. Marshall, F. Piedboeuf, A. Ramier, J. Sampson, M. Strupler, E. Tarrant, D. Young

IWGGMS 2025

UNDERSTANDING METHANE EMISSION RATE DISTRIBUTION

- What portion of emissions occur at what emission rates?
- Revealed "super-emitter" contributions, often missed in inventories
- Accurately estimating the emission rate distribution could enable cost-effective abatement strategies and set detection-technology requirements

AVIRIS, S2, TROPOMI: Ehret et al., ES&T, 2022

EMIT: Ayasse et al., ES&T, 2024

- Combine 15,421 plume measurements from 6 satellite systems to estimate a global parent 2024 O&G emission rate distribution
 - As a byproduct, can estimate "survey-mode" metrics for the detection probability and coverage
 of each satellite system

METHANE SATELLITE ECOSYSTEM IS EXPANDING AND MATURING

*For Tanager/Carbon Mapper, we take plume detections from from Sept 19th, 2024 (immediately after launch) until June 15th, 2025. The number of plumes in paranthesis is our estimate of the total annual O&G emissions Tanager/Carbon Mapper would have detected in a full calendar year.

MEASURED EMISSION RATE DISTRIBUTIONS

Fit model is the product of the satellite system *k* specific detection probability and a common parent distribution:

$$P_{k;meas}(Q; \mathbf{z}_k, \mathbf{z}_{parent}) = POD_k(Q; \mathbf{z}_k)P_{parent}(Q; \mathbf{z}_{parent})$$

Log-normal CDF

Log-normal PDF

Optimize the combined function:

$$f(Q; \mathbf{z}_k, \mathbf{z}_{parent}) = \sum_k a_k P_{k;meas}(Q; \mathbf{z}_k, \mathbf{z}_{parent})$$

SURVEY-MODE DETECTION PROBABILITY

Estimate O&G parent distribution lognormal parameters:

$$(\hat{\mu}, \hat{\sigma}) = (-4.66 \pm 1.12, 2.19 \pm 0.19)$$

SURVEY-MODE DETECTION PROBABILITY

Estimate O&G parent distribution lognormal parameters:

$$(\hat{\mu}, \hat{\sigma}) = (-4.66 \pm 1.12, 2.19 \pm 0.19)$$

"Survey-mode" detection probability:

- Averaged over all observing conditions (albedo, wi speed, solar zenith angle, etc.)
- Weak prior information on source locations
- 50%: (GHGSat, EMIT) = (470 kg/hr, 2220 kg/hr)

...vs "Target-mode" detection probability:

- Strong prior information on source locations and/c more inspection attention
- Similar to controlled release situation
- 50%: (GHGSat, EMIT) = (103 kg/hr*, ~700 kg/hr**)
 - ...@ 3 m/s wind speed

^{*}See Jason McKeever's talk

^{**}Ayasse et al., ES&T, 2025

RELATIVE SYSTEM COMPLETENESS

Estimate the spatiotemporal coverage of each satellite system k:

The number of plumes in each bin is given by:

$$N_k P_{k;meas}(Q; \hat{\mathbf{z}}_k, \hat{\mathbf{z}}_{parent})$$

If all systems had same coverage, would expect to see same number of plumes at very large emission rates (i.e. above detection limits):

$$C_{k;ST} = N_k P_{k;meas}(Q; \hat{\boldsymbol{z}}_k, \hat{\boldsymbol{z}}_{parent}) \Big|_{Q=250 \, t \, hr^{-1}}$$

Relative spatiotemporal completeness:

$$c_{k;ST} = C_{k;ST}/C_{max;ST}$$

Ehret et al., E&T, 2022

RELATIVE SYSTEM COMPLETENESS

Estimate the spatiotemporal coverage of each satellite system k:

The number of plumes in each bin is given by:

$$N_k P_{k;meas}(Q; \hat{\mathbf{z}}_k, \hat{\mathbf{z}}_{parent})$$

If all systems had same coverage, would expect to see same number of plumes at very large emission rates (i.e. above detection limits):

$$C_{k;ST} = N_k P_{k;meas}(Q; \hat{\boldsymbol{z}}_k, \hat{\boldsymbol{z}}_{parent}) \Big|_{Q=250 \, t \, hr^{-1}}$$

Relative spatiotemporal completeness:

$$c_{k;ST} = C_{k;ST}/C_{max;ST}$$

Ehret et al., E&T, 2022

Estimate the relative fraction of emissions observed by each system:

$$N_{k;tot} \propto \int_0^\infty POD_k(Q; \hat{\mathbf{z}}_k) P_{parent}(Q; \hat{\mathbf{z}}_{parent}) dQ$$

$$Q_{k;tot} \propto \int_{0}^{\infty} Q \cdot POD_{k}(Q; \hat{\mathbf{z}}_{k}) P_{parent}(Q; \hat{\mathbf{z}}_{parent}) dQ$$

Relative detection completeness:

$$c_{k;D} = N_{k;tot}/N_{max}$$
 or $c_{k;D} = Q_{k;tot}/Q_{max}$

RELATIVE SYSTEM COMPLETENESS: 2024 O&G PLUMES

^{*}For Tanager/Carbon Mapper, we use the estimate of the annual O&G plume count

2023 O&G + COAL EMISSION ESTIMATES

Jervis et al., 2025, in review Preprint: <u>https://doi.org/10.31223/X5V15D</u>

THANK YOU