The greenhouse gas observation mission with Global Observing SATellite for Greenhouse gases and Water cycle (GOSAT-GW): Updates

Hiroshi Tanimoto, Science and Application Lead Tsuneo Matsunaga, Project Management Lead

National Institute for Environmental Studies, Japan

with

<u>Takafumi Sugita, Hisashi Yashiro</u>, Isamu Morino, Makoto Saito, <u>Hirofumi Ohyama</u>, <u>Satoshi Inomata</u>, Kohei Ikeda, <u>Yu Someya</u>, <u>Tamaki Fujinawa</u>, Yukio Yoshida, Yosuke Yamashita, <u>Astrid Müller</u>, Matthias Frey, <u>Hyunkwang Lim</u>, Tazu Saeki, Nobuko Saigusa, <u>Yugo Kanaya</u>, Takashi Sekiya, <u>Prabir Patra</u>, Masayuki Takigawa, Masahiro Yamaguchi, Jagat Bisht, Yasko Kasai, <u>Tomohiro Sato</u>

National Institute for Environmental Studies (NIES)

Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

National Institute of Information and Communications Technology (NICT)

GOSAT, GOSAT-2, and ... GOSAT-GW

GOSAT 2009 --

GOSAT-2 2018 --

GOSAT-GW 2025 --

- TANSO-3 funded by MOEJ, AMSR3 (Advanced Microwave Scanning Radiometer 3) by MEXT
- JAXA is responsible for launch, LO and L1; NIES for L2 (and higher research products)

TANSO-3 sensor onboard GOSAT-GW

Tanimoto et al.

Progress in Earth and Planetary Science (2025) 12:8

https://doi.org/10.1186/s40645-025-00684-9

Progress in Earth and Planetary Science

RESEARCH ARTICLE

Open Access

The greenhouse gas observation mission with Global Observing SATellite for Greenhouse gases and Water cycle (GOSAT-GW): objectives, conceptual framework and scientific contributions

Hiroshi Tanimoto¹, Tsuneo Matsunaga¹, Yu Someya¹, Tamaki Fujinawa¹, Hirofumi Ohyama¹, Isamu Morino¹, Hisashi Yashiro¹, Takafumi Sugita¹, Satoshi Inomata¹, Astrid Müller¹, Tazu Saeki¹, Yukio Yoshida¹, Yosuke Niwa¹, Makoto Saito¹, Hibiki Noda¹, Yosusuke Yamashita¹, Kohei Ikeda¹, Nobuko Saigusa¹, Toshinobu Machida¹, Matthias Max Frey¹, Hyunkwang Lim¹, Priyanka Srivastava¹, Yoshitaka Jin¹, Atsushi Shimizu¹, Tomoaki Nishizawa¹, Yugo Kanaya², Takashi Sekiya², Prabir Patra², Masayuki Takigawa², Jagat Bisht², Yasko Kasal³, and Tomohiro O. Sato³

	GOSAT-GW	
Launch / lifetime	FY2025 / 7 years	
Satellite mass / power	2.9 t / 5200 W	
Launcher	H-IIA rocket	
Orbit	666 km, 13:30, ascending	
Repeat cycle	3 days (44 cycles/3days)	
Spectrometer	TANSO-3 (Grating) by Mitsubishi Electric	
Major targets	CO ₂ (FP), CH ₄ (FP, Proxy), NO ₂ (QDOAS)	
Spectral bands	0.45 / 0.7 / 1.6 μm	
Spectral Resolution (Sampling interval)	$<$ 0.5 nm @ 0.45 μm , $<$ 0.05 nm @ 0.7 μm , $<$ 0.2 nm @ 1.6 μm	
Swath	911 km (Wide Mode) or 90 km (Focus Mode)	
Footprint size, nadir	10 km (Wide Mode) or 1–3 km (Focus Mode)	
Pointing	\pm 40 / \pm 34.4 deg (AT/CT) for Focus Mode	

Tanimoto et al., Prog. Earth Planet. Sci., 2025

GOSAT-GW mission requirements

- Monitoring of whole atmosphere global-mean concentrations of GHGs
- Verification of national (or country-specific) anthropogenic emissions inventory of GHGs
- Detection of GHGs emissions from large emission sources, such as megacities, power plants (>6.5 Mt CO2/yr), etc

TANSO-3 grating spectrometer

Focus mode makes high spatial resolution footprints

Focus Mode

- Target area ≈ 90 km x 90 km
- Footprint ≈ 1 3 km
- Push-broom, AT/CT Pointing Func.
- Optional, upon request

Wide Mode

- Wide swath ≈ 911 km
- Footprint ≈ 10 km
- Push-broom, No AT/CT Pointing
- Standard operation

L2 product retrieval algorithm

Main targets	XCO ₂ , XCH ₄	NO ₂ (total + tropospheric column)	
Other variables	XH ₂ O, SIF, AOT, ALH, albedo,	Effective cloud fraction, Aerosol optical parameters	
Retrieval technique	Full Physics (XCO ₂ , XCH ₄ ,) Proxy (XCH ₄)	QDOAS (optical density fitting)	
A priori	JRA-3Q (Japanese reanalysis) NICAM (for GHGs and aerosols)	JRA-3Q (Japanese reanalysis) CHASER V4.0 with bias correction (for gas species, such as NO ₂ , O ₃ , and aerosol optical parameters)	
Cloud screening	Reflectance test Surface pressure retrieval	Cloud fraction derived from O ₂ –O ₂ absorption @ 477 nm	

Yu Someya (GHG), Tamaki Fujinawa, Hyunkwang Lim (NO2)

Ground data processing system

Latency - official products

<~2-3 days (focus-mode L2)

Hisashi Yashiro (GHG), Takafumi Suqita (NO2)

EM27/SUN and Pandora validation

 $EM27/SUN - CO_2$, CH_4 , CO

Pandora – NO₂, O₃, HCHO

	CO2	NO ₂	
	TCCON	EM27/SUN	Pandora
Hokkaido	ONGOING		ONGOING
Tsukuba	ONGOING	ONGOING	ONGOING
Central Tokyo		ONGOING	ONGOING
Suburban Tokyo			ONGOING
Yokosuka		ONGOING	ONGOING
Nagoya			ONGOING
Kobe			ONGOING
Kyushu	ONGOING		ONGOING

How does GOSAT-GW data look like?

Simulated GOSAT-GW data – 10 km x 10 km

Detection of NOx Emissions from Power Plants

Sodegaura Power Plant

JERA, 3600 MW

1 km x 1 km WRF-Chem model

WRF model results: Masahiro Yamaguchi, Masayuki Takigawa, Prabir Patra, Jagat Bisht, Yugo Kanaya

[molec cm⁻²]

3.5e+16

-3.0e+16

2.5e+16

2.0e+16

1.5e+16

Extensive validation + supporting observations

Cargoship-based monitoring along Japan's east coast

Satellite validation / Continuous emission monitoring / Plume transects from point sources

Collaboration: NIES, Japan (Astrid Müller, Matthias Max Frey, Hiroshi Tanimoto, Isamu Morino, Shin-Ichiro Nakaoka), Heidelberg University, Germany (Ralph Kleinschek, Ken von Buenau, Karolin Voss, Vincent Enders, André Butz)

Focus mode validation

- 3-day global coverage
- <90 focus mode requests possible
- ~18 co-located sites for TCCON/COCCON and PGN (GHG&NO₂)

20 21 24 Tsukuba 25 23 Saga PGN: 54, 164, ...; MAX-DOAS: Seoul TCCON: Tsukuba; COCCON: Tsukuba TCCON: Saga TCCON: Anmyeondo; COCCON: Seou 26 27 28 CT angle (°) PGN: 171; TCCON: Xianghe Seoul 29 30 31 CT angle (°) 32 33 PGN: 152; Xianghe TCCON: Ny-Âlesund 35 37 CT angle (°) 38 39 PGN: 115.106. 21. ...: TCCON: Garmisch, Zugspitze, Bremen; COCCON: Rome, Munich 42 43 CT angle (°) PGN: 101, ...; TCCON: Izaña; COCCON: Izaña Europe 44 PGN: 144: TCCON: Eureka 3 5 CT angle (°) PGN: 183, 206: COCCON: Cambridge, Toronto 6 Toronto CT angle (°) PGN: 145, 103, COCCON: Toronto Boston, Toronto 10 PGN: 65, 157, 142, 204, 57; PGN: 68, 74, 247; COCCON: Mexico City, Boulder TCCON: Caltech, Dryden 13 Mexico, Boulder PGN: 174 COCCON: Fairbanks Pasadena, Dryden 15 18 CT angle (°)

Path No. (The second day)

Path No. (The third day)

Path No. (The first day)

Hirofumi Ohyama, Satoshi Inomata

International collaborations to better identify/quantify CH₄ emissions

2025)

GOSAT and GHGSat, MethaneSAT, ...

The launch within 3 weeks!

H-IIA rocket No.50 (last!)

https://www.mhi.com/jp/news/24092502.html

- The GOSAT-GW satellite will be launched with the 50th H-IIA rocket, the last vehicle of the H-IIA series
- The launch is scheduled to be at 1:33:03 1:52:00 am Japan time on 24th June at Tanegashima Space Center

