Towards a remote sensing solution to quantify N₂O emissions by integrating shortwave and longwave infrared bands

Ayesha Riaz, Kang Sun State University of New York at Buffalo

Project management: Brian Buma

Radiative transfer modelling: Christopher Chan Miller, Robert Spurr, Karen Cady-Pereira

Instrument design: Thomas U. Kampe, Nathan Leisso

N₂O flux data: Wendy H. Yang, Emily R. Stuchiner, Eddy Will

N₂O: a key greenhouse gas overlooked from space

The challenge of N₂O remote sensing

Shortwave Longwave

- 2 μm: consistent vertical sensitivity but very weak N₂O absorption
- 7 µm: strong absorption and radiance level but weak near-surface sensitivity
- Integrate 2 μm and 7 μm to combine the strengths of short and longwave bands

How precisely can we observe XN₂O?

• XN₂O: Column-integrated mixing ratio of N₂O

$$(XN_2O = \frac{\Omega_{N2O}}{\Omega_A})$$

 S_m : measurement error covariance matrix

$$S_m = GS_oG^T$$

$$G = S_aK^T (KS_aK^T + S_o)^{-1}$$

$$\sigma_{XN_2O(m)} = \boldsymbol{h}^T \boldsymbol{S_m} \boldsymbol{h}$$

h: pressure weighing function

Atmospheric and surface states

- CrIS Level 2 files for N₂O, CH₄, H₂O, and temperature from the JPL MUSES algorithm
- Atmospheric profiles and surface conditions extracted from 100 CrIS pixels
- Area: US Midwest (Part of corn belt)
- Observation date: 23 August 2023

Observational uncertainty

Parameter [unit]	$2 \mu \text{m}$ band	$7~\mu\mathrm{m}$ band
Wavelength range [nm]	2240-2300	7600–8000
Spectral sampling [nm]	0.0575	0.25
Slit width [× spectral sampling] ^a	3	3
Exposure time [s]	0.1	0.1
Detector pixel size [μ m]	18	18
f-number	2	2
System efficiency	0.5	0.5
Readout noise [electrons]	60	60
Airborne observation altitude [km]	10	10
Spaceborne observation altitude [km]	600	600
Airborne along-track [m]	20	20
Spaceborne along-track [m]	701	701
Airborne across-track [m]	2.95	2.95
Spaceborne along track [m]	155	155
Airborne ground sampling distance [m]	7.7	7.7
Spaceborne ground sampling distance [m]	330	330

^a Gaussian slit function (i.e., instrument spectral response function, ISRF) is assumed.

$$S = \frac{\pi}{4} \left[I \right] dp^2 \cdot \frac{1}{f^2} \cdot n_{\text{sample}} \cdot dt \cdot d\lambda \cdot \eta$$
$$N = \sqrt{S + N_r^2}$$
$$SNR = \frac{S}{N}$$

SPLAT-VLIDORT radiative transfer model is used to simulate radiance (I)

Radiance sensitivity to state vector (Jacobians)

- State vector includes N₂O, CH₄, water vapor, temperature profiles, and surface temperature
- 2 µm: sensitivity to the whole column including near-surface
- 7 μm: stronger sensitivity to N₂O as compared to the 2 μm band, but less sensitive to near-surface layers

A priori constraint

- N₂O prior error is derived from University of Leicester GOSAT CH₄ retrieval, scaled by their background concentration ratio (330 ppb / 1900 ppb)
- H₂O and temperature priors are adopted from CrIS algorithm
- Scaling factor gamma (γ) is applied to N₂O prior standard deviation to tune prior constraint strength

XN₂O precision

- 2 μm: high XN₂O error, near-uniform sensitivity except when overconstrained by prior
- 7 μm: achieves lower XN₂O error but weaker near-surface sensitivity
- 2+7 μ m: large near surface value of column averaging kernel (\sim 0.91) and low XN_2O error (~2.9 ppb) at $\gamma = 0.5$

10-1 10^{0} 10^{-1} 10^{0} Multiplying factor to GOSAT prior SD (y)

XN₂O precision

- 2 μm: highest XN₂O error across all prior strengths
- 7 μm: comparable XN₂O error with dual-band approach but weaker near-surface sensitivity
- 2+7 µm: large near surface value of column averaging kernel (\sim 0.9) and low XN₂O error (\sim 1.7 ppb) at γ = 0.5

How precisely can we observe XN₂O?

Using 2 μ m and 7 μ m integration and at a moderate prior strength (γ = 0.5), we achieve:

- 2.9 ppb XN₂O error for airborne
- 1.7 ppb XN₂O error for spaceborne
- ~0.9 near surface value of column averaging kernel for both

With those precisions, can we detect actual surface emissions, and at what spatial scale?

Estimating N₂O emissions using errors

$$Q = \frac{Emission\ induced\ enhancement\ (\Delta\Omega)}{Column\ error\ (\sigma_{\Omega})} = \frac{E\Delta x^2 M_{air}g}{|u|\sigma_{XN20}x_0P_{air}}$$

Parameter	Value [unit]
Emissions (E)	1-50 [nmol m ⁻² s ⁻¹]
Airborne ground sampling distance $(x_{0_{air}})$	7.7 [m]
Spaceborne ground sampling distance (x_{0_space})	330 [m]
Airborne aggregation scale (△x)	X _{0_air} to 4 [km]
Spaceborne aggregation scale (∆x)	X _{0_space} to 15 [km]
Molar mass of dry air (M _{air})	0.029 [kg mol ⁻¹]
Acceleration due to gravity (g)	9.8 [m s ⁻²]
Wind speed ($ u $)	1.389 [m s ⁻¹]
Airborne σ_{XN20}	2.9 [ppb]
Spaceborne σ_{XN20}	1.7 [ppb]
Pressure (P _{air})	1e5 [Pa]

Estimating N₂O emissions using errors

- Airborne: 10 nmol m⁻² s⁻¹ emission flux is observable at unit signal-to-noise ratio
 (Q) at ~1 km
- Spaceborne: 10 nmol m⁻² s⁻¹ emission flux is observable at unit signal-to-noise ratio (Q) at ~5 km

N₂O chamber data from University of Illinois

Auto-chambers on conventionally tilled maize field in central Illinois, USA

- 4 Nodes, 5 chambers per node
- 5x10⁴ m² area of the field, with nodes 50–100 m distance apart
- 10 nmol m⁻² s⁻¹ or higher N₂O emission does occur in the real field especially during growing season
- N₂O flux correlated for nodes that are 100 m apart

Conclusion

- Evaluated remote sensing solutions for high-resolution mapping of N₂O flux variability in agricultural landscapes
- Integrating the shortwave and longwave bands deliver strong near-surface sensitivity (AVK ≈ 0.9) and low XN₂O error (≈ 2.9 ppb airborne; 1.7 ppb spaceborne)
- Emission flux of 10 nmol m⁻² s⁻¹ is observable at Q = 1 down to ~ 1 km for airborne and ~ 5 km for spaceborne