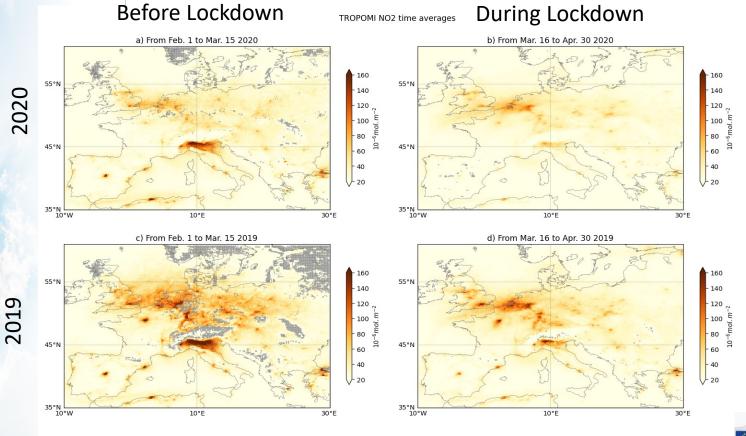


Copernicus Atmosphere Monitoring Service (CAMS)

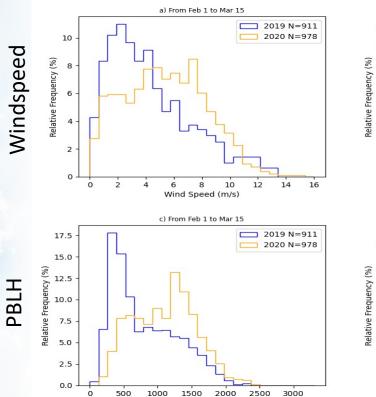
Estimating lockdown-induced NO₂ changes in Europe


<u>Jérôme Barré¹</u>, Hervé Petetin², Augustin Colette³, Marc Guevara², **Vincent-Henri Peuch**¹, Laurence Rouil³, Richard Engelen¹, Antje Inness¹, Johannes Flemming¹, Carlos Pérez García-Pando^{2,4}, Dene Bowdalo², Frederik Meleux³, Camilla Geels⁵, Jesper H. Christensen⁵, Michael Gauss⁶, Anna Benedictow⁶, Svetlana Tsyro⁶, Elmar Friese⁷, Joanna Struzewska⁸, Jacek W. Kaminski^{8,9}, John Douros¹⁰, Renske Timmermans¹¹, Lennart Robertson¹², Mario Adani¹³, Oriol Jorba², Mathieu Joly¹⁴, and Rostislav Kouznetsov¹⁵

¹European Centre for Medium-range Weather Forecast (ECMWF), Sinfield Park, Reading, UK
²Barcelona Supercomputer Centre (BSC), Barcelona, Spain
³National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
⁴ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
⁵Department of Environmental Science, Aarhus University, Roskilde, Denmark
⁶Norwegian Meteorological Institute, Oslo, Norway
⁷Rhenish Institute for Environmental Research at the University of Cologne, Cologne, Germany
⁸Institute of Environmental Protection – National Research Institute, Warsaw, Poland
⁹Faculty of Environmental Engineering, Warsaw University of Technology, Warsaw, Poland
¹⁰Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
¹¹Netherlands Organisation for Applied Scientific Research (TNO), Climate Air and Sustainability Unit, Utrecht, the Netherlands
¹²Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden
¹³Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy
¹⁴Météo-France, Toulouse, France

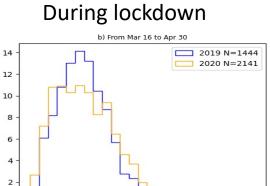
S5P NO2 EUROPEAN LOCKDOWN OVERVIEW

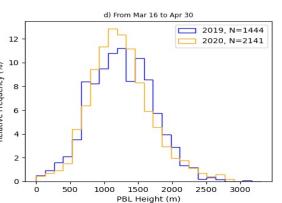
Atmosphere Monitoring



European Commission

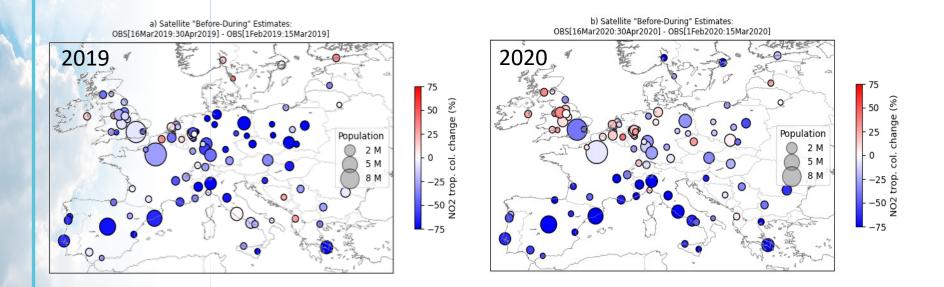
2019-2020 DISTRIBUTION OF WEATHER PARAMETERS


Wind Speed (m/s)

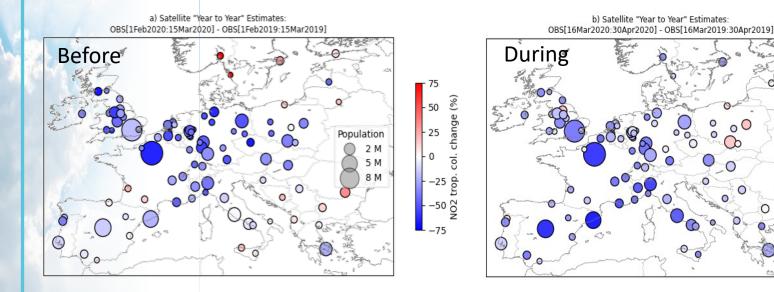

Atmosphere Monitoring

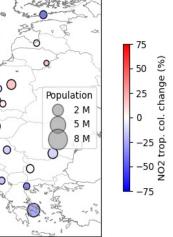
PBL Height (m)

Before lockdown



Europe's eyes on Earth


NON-WEATHER NORMALIZED ESTIMATES


- Using "before-during" estimate i.e. subtract [1Feb:15Mar] to [16Mar:30Apr]
- Select urban areas >0.5M : 100 across Europe
- Significant reductions in 2019! Stronger than in 2020 in many areas.

NON-WEATHER NORMALIZED ESTIMATES 2

- Using "year1-vs-year2" estimate for the same period of year: i.e. subtract [2019] to [2020]
- Significant reductions before lockdown! Stronger in certain areas as well.

ACCOUNTING FOR WEATHER VARIABILITY

Atmosphere Monitoring

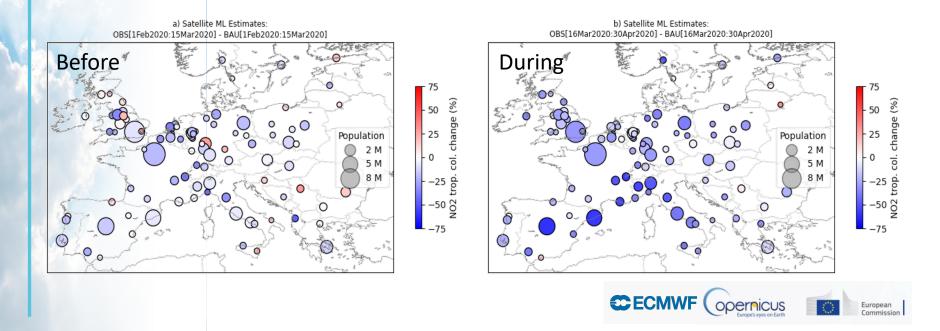
Machine Learning: Weather Normalization Methodology

- Training Set
- ECMWF NWP operational forecasts:
 - 10m wind speed and direction,
 - planetary boundary layer height
 - 2m temperature
 - surface relative humidity
 - geopotential at 500hPa
 - Date information
- CAMS regional 3D NO₂ forecasts
- S5P NO₂ columns or surface NO₂ (target)

Gradient boosting Regressor Hyperparameter tuning (grid search) with cross-validation (5 k-fold)

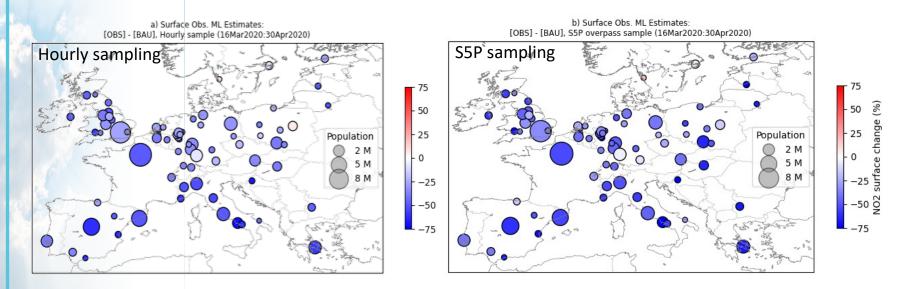
Simulate "business as usual" (BAU) S5P NO₂ columns or surface NO₂

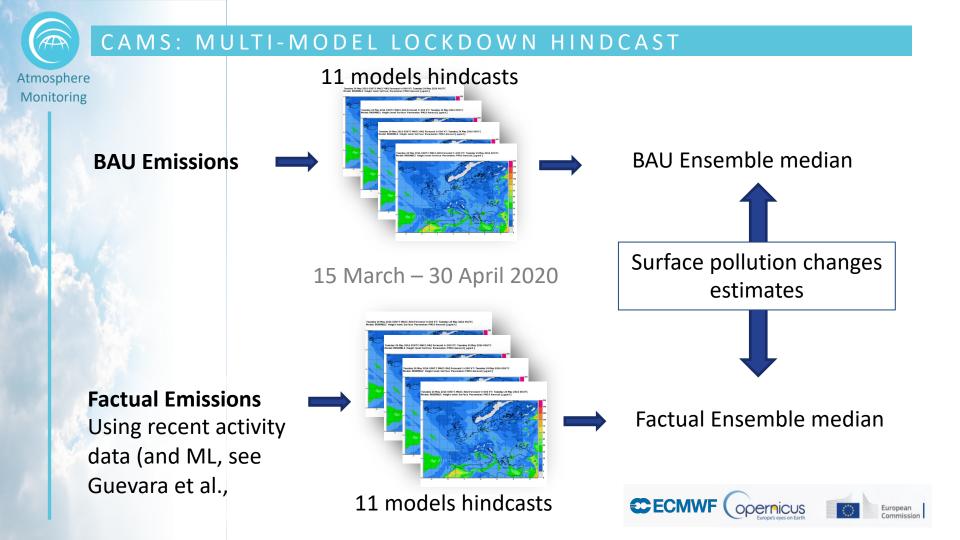
Evaluation with Test Set


Calculate 2020 estimates:

Rea I– BAU

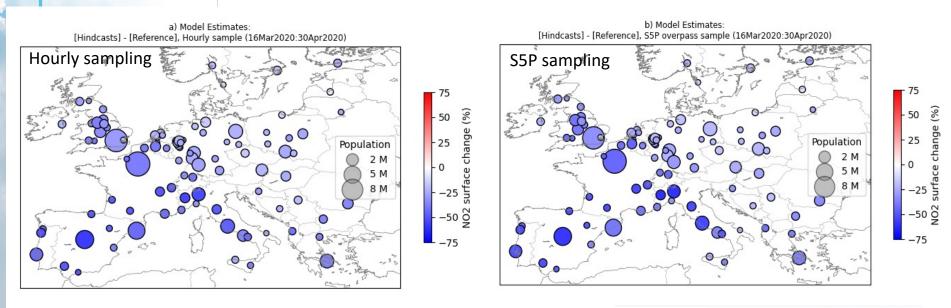
WEATHER NORMALIZED ESTIMATES (SATELLITE)


- Lower reductions in the period before lockdown
- Caveat: ML model is not perfect and cannot fully represent the anomaly



WEATHER NORMALIZED ESTIMATES (SURFACE STATIONS)

- Testing on the effect of S5P sampling versus hourly sampling
- Estimates tend to be stronger at satellite revisit times -> dependence on reduction factor and time of the day



CAMS REGIONAL MODEL ENSEMBLE ESTIMATES

Atmosphere

- Early version of Guevara et al.: scaling factor per sector (road, industry and aviation) per country constant for the whole period.
 - No significant dependence on time sampling as emission scaling is constant over time in these simulations.

Atm Mo

nosphere onitoring			Average Changes	Inter city Standard Deviation
1			(%)	(%)
	Sui	rface <u>stations</u> [hourly]	-36.74	15.09
	Surface <u>s</u>	tations [S5P sampling 1pm]	-43.06	18.82
	CAMS	<u>model</u> ensemble [hourly]	-30.35	10.79
8 m /4	CAMS mode	ensemble [S5P sampling 1pm]	-31.82	11.97
		<u>Satellite</u> S5P	-22.72	15.51

- Horizontal representativeness issues between pixel based and stations
- Satellite overpass sampling tests suggest a time of the day dependence on emissions reductions (model vs surface sites)
- Vertical sampling: column vs surface, weaker reduction seen columns (satellite)

CONCLUDING REMARKS

- Effects of lockdown on surface air pollution cannot be assessed correctly if weather variability and BAU emissions variability are not considered.
- When normalized with actual weather conditions, satellite-based, surface stations -based and model-based estimates provide similar country dependent variations linked with stringency of measures.
- In average the NO₂ reductions are around -30% over Europe during the most stringent phase of the 1st lockdown. Lower surface reduction are found on other pollutants (e.g. around -10% for PM), that do not have as large a contribution from transport and industrial emissions.
- Differences still exist between the type of estimates.

REFERENCES

Atmosphere Monitoring

> Barré, J., Petetin, H., Colette, A., Guevara, M., Peuch, V.-H., Rouil, L., Engelen, R., Inness, A., Flemming, J., Pérez García-Pando, C., Bowdalo, D., Meleux, F., Geels, C., Christensen, J. H., Gauss, M., Benedictow, A., Tsyro, S., Friese, E., Struzewska, J., Kaminski, J. W., Douros, J., Timmermans, R., Robertson, L., Adani, M., Jorba, O., Joly, M., and Kouznetsov, R.: Estimating lockdown induced European NO₂ changes, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-995, in review, 2020.

Guevara, M., Jorba, O., Soret, A., Petetin, H., Bowdalo, D., Serradell, K., Tena, C., Denier van der Gon, H., Kuenen, J., Peuch, V.-H., and Pérez García-Pando, C.: Time-resolved emission reductions for atmospheric chemistry modelling in Europe during the COVID-19 lockdowns, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-686, in review, 2020.

Petetin, H., Bowdalo, D., Soret, A., Guevara, M., Jorba, O., Serradell, K., and Pérez García-Pando, C.: Meteorology-normalized impact of the COVID-19 lockdown upon NO₂ pollution in Spain, Atmos. Chem. Phys., 20, 11119–11141, https://doi.org/10.5194/acp-20-11119-2020, 2020.

