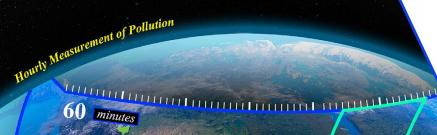
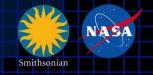
Tropospheric Emissions: Monitoring of Pollution

TEMPO Mission Overview and Status

Kelly Chance Smithsonian Astrophysical Observatory tempo.si.edu


> **CEOS-ACC-12** October 13, 2016



Smithsonian

TEMPO summary

- Currently on-schedule and on-budget
 - System Requirements Review and Mission Definition Review in November 2013
 - KDP-B April 2014
 - Most technical issues solved at the preliminary design level, following technical interchange meeting at Ball, April 2014
 - PDR on July 31, 2014
 - Now in Phase C (implementation): KDP-C April 10, 2015
 - Instrument CDR June 2015
 - Ground Systems CDR May 2016
 - Test Readiness Review August 2016
- Select satellite host 2017+
 - TEMPO operating longitude and launch date are not known until after host selection
- Instrument delivery 08/2017 for launch 11/2018 or later, most likely in 2020 or 2021

Hourly atmospheric pollution from geostationary Earth orbit

PI: Kelly Chance, Smithsonian Astrophysical Observatory Instrument Development: Ball Aerospace Project Management: NASA LaRC Other Institutions: NASA GSFC, NOAA, EPA, NCAR, Harvard, UC Berkeley, St. Louis U, U Alabama Huntsville, U Iowa, RT Solutions, Carr Astronautics

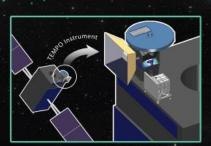
International collaboration: Mexico, Canada, Cuba, Korea, UK, ESA, Spain, Netherlands

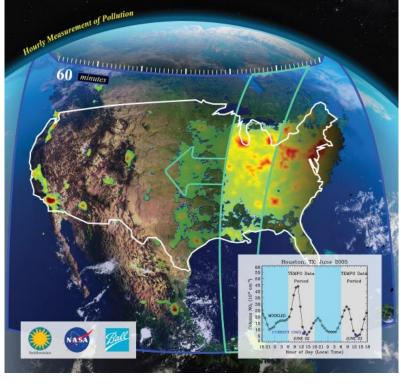
Selected Nov. 2012 as NASA's first Earth Venture Instrument

 NASA will arrange hosting on commercial geostationary communications satellite with launch expected NET 11/2018

Provides hourly daylight observations to capture rapidly varying emissions & chemistry important for air quality

- UV/visible grating spectrometer to measure key elements in tropospheric ozone and aerosol pollution
- Distinguishes boundary layer from free tropospheric & stratospheric ozone


Aligned with Earth Science Decadal Survey recommendations


- Makes many of the GEO-CAPE atmosphere measurements
- Responds to the phased implementation recommendation of GEO-CAPE mission design team

TEMPO

Tropospheric Emissions: Monitoring of Pollution

TEMPO's concurrent high temporal (hourly) and spatial resolution measurements from geostationary orbit of tropospheric ozone, aerosols, their precursors, and clouds create a revolutionary dataset that provides understanding and improves prediction of air quality and climate forcing in Greater North America.

North American component of an international constellation for air quality observations October 13, 2016

TEMPO instrument concept

Measurement technique

- Imaging grating spectrometer measuring solar backscattered Earth radiance
- Spectral band & resolution: 290-490 + 540-740 nm @ 0.6 nm FWHM, 0.2 nm sampling
- 2 2-D, 2k×1k, detectors image the full spectral range for each geospatial scene

• Field of Regard (FOR) and duty cycle

- Mexico City/Yucatan, Cuba to the Canadian oil sands, Atlantic to Pacific
- Instrument slit aligned N/S and swept across the FOR in the E/W direction, producing a radiance map of Greater North America in one hour

Spatial resolution

- 2.1 km N/S × 4.7 km E/W native pixel resolution (9.8 km²)
- Co-add/cloud clear as needed for specific data products
- Standard data products and sampling rates
 - Most sampled hourly, including eXceL O₃ (troposphere, PBL)
 - NO₂, H₂CO, C₂H₂O₂, SO₂ sampled hourly (average results for \geq 3/day if needed)
 - Nominal spatial resolution 8.4 km N/S × 4.7 km E/W at center of domain (can often measure 2.1 km N/S × 4.7 km E/W)
 - Measurement requirements met up to 50° for SO₂, 70° SZA for other products

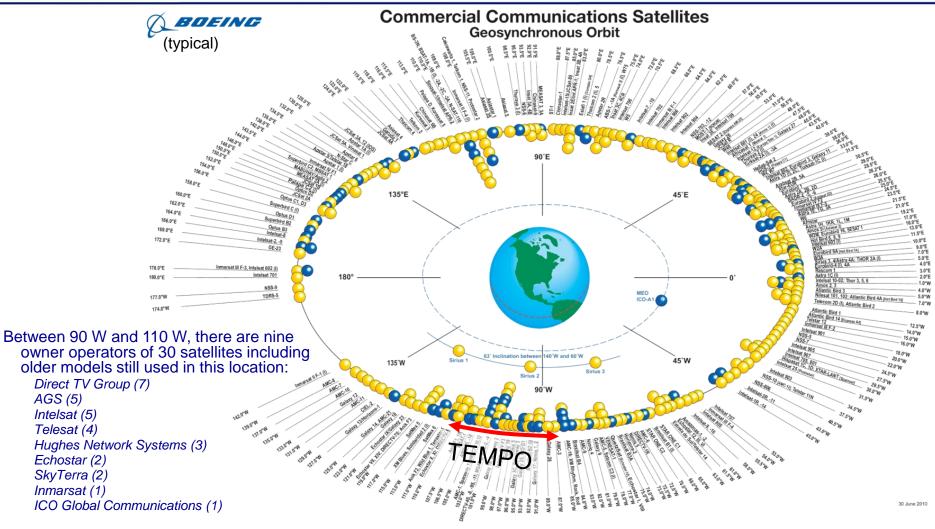
TEMPO

Baseline and threshold data products

Species/Products	Required Precision	Temporal Revisit
0-2 km O ₃ (Selected Scenes) <mark>Baseline only</mark>	10 ppbv	2 hour
Tropospheric O ₃	10 ppbv	1 hour
Total O ₃	3%	1 hour
Tropospheric NO ₂	1.0×10^{15} molecules cm ⁻²	1 hour
Tropospheric H ₂ CO	1.0×10^{16} molecules cm ⁻²	3 hour
Tropospheric SO ₂	1.0×10^{16} molecules cm ⁻²	3 hour
Tropospheric C ₂ H ₂ O ₂	4.0×10^{14} molecules cm ⁻²	3 hour
Aerosol Optical Depth	0.10	1 hour

- Minimal set of products sufficient for constraining air quality
- Across Greater North America (GNA): 18°N to 58°N near 100°W, 67°W to 125°W near 42°N
- Data products at urban-regional spatial scales
 - Baseline ≤ 60 km² at center of Field Of Regard (FOR)
 - Threshold \leq 300 km² at center of FOR
- Temporal scales to resolve diurnal changes in pollutant distributions
- Collected in cloud-free scenes
- Geolocation uncertainty of less than 4 km
- Mission duration, subject to instrument availability
 - Baseline 20 months
 - Threshold 12 months

TEMPO mission concept

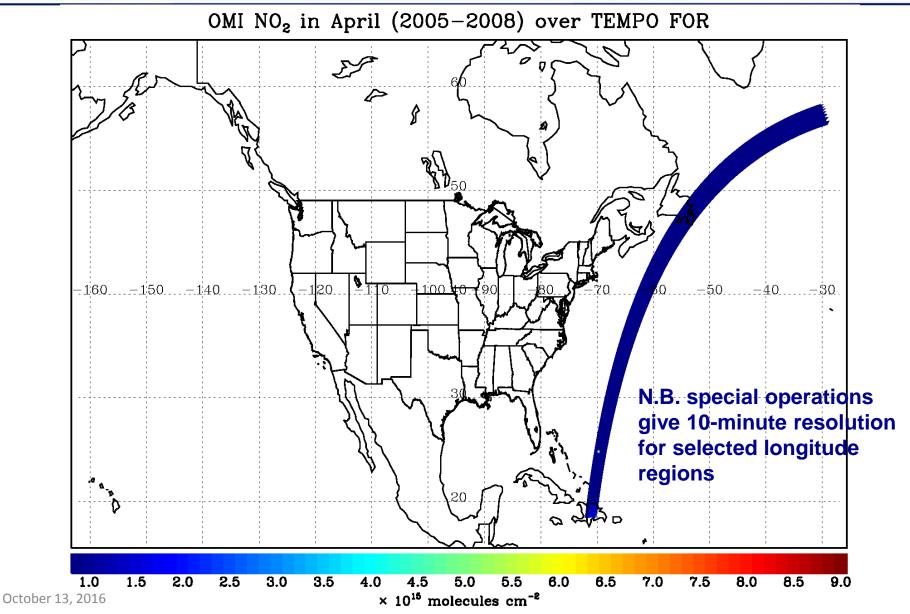

• Geostationary orbit, operating on a commercial telecom satellite

- NASA will arrange launch and hosting services (per Earth Venture Instrument scope)
 - 80-115° W acceptable latitude
 - Specifying satellite environment, accommodation
- Hourly measurement and telemetry duty cycle for at least ≤70° SZA

• TEMPO is low risk with significant space heritage

- We proposed SCIAMACHY in 1985, as suggested by the late Dr. Dieter Perner
- All proposed TEMPO measurements have been made from low Earth orbit satellite instruments to the required precisions by SAO and Science Team members
- All TEMPO launch algorithms are implementations of currently operational algorithms
 - NASA TOMS-type O₃
 - SO₂, NO₂, H₂CO, C₂H₂O₂ from fitting with AMF-weighted cross sections
 - Absorbing Aerosol Index, UV aerosol, Rotational Raman scattering cloud
 - SAO eXceL profile/tropospheric/PBL O₃ for selected geographic targets
- Example higher-level products: Near-real-time pollution/AQ indices, UV index
- TEMPO research products will greatly extend science and applications
 - **Example research products:** BrO and IO from AMF-normalized cross sections; height-resolved SO₂; additional cloud/aerosol products; vegetation products; additional gases

Geostationary orbit opportunities of interest

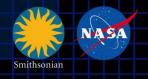

TEMPO can be located between 80 – 120 West

NASA

Smithsonian

TEMPO hourly NO₂ sweep

100



NASA

mithsonian

A day in the life

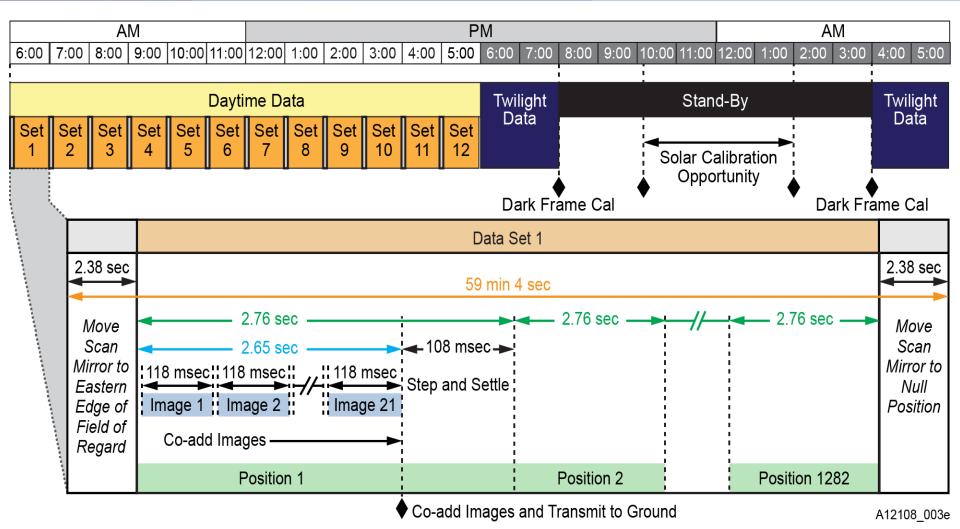


Figure 7. Nominal daily operations for TEMPO instrument.

t<mark>rophysical</mark> Observatory

CfA

Air quality requirements from the GEO-CAPE Science Traceability Matrix

11-28-2011 DRAFT GEO-CAPE aerosol-atmospheres Science Traceability Matrix BASELINE and THRESHOLD

Science Questions	(color flag maps to Science Questions)		asurem ed to Me				Measurement Rationale	
. What are the	Baseline measurements ¹ :	Geostatio	nary Obse	rving Lo	cation: 10	00 W +/-10	Provides optimal view of North America	
temporal and spatial variations	O3, NO2, CO, SO2, HCHO, CH4, NH3, CHOCHO, different temporal sampling frequencies, 4 km \times 4 km product horizontal spatial resolution at the center		Column measurements: A to K All the baseline and threshold species				Continue the current state of practice in vertical; add temporal resolution.	
of emissions of gases and	of the domain; and AOD, AAOD, AI, aerosol optical centroid height (AOCH), hourly for SZA<70 and 8 km x 8 km product horizontal spatial resolution at the	Cloud Car resolution,	nera 1 km two spectr	x 1km ho al bands,	prizontal sp baseline	oatial only	Improve retrieval accuracy, provide diagnostics for gases and aerosol	
aerosols important	rosols important center of the domain.			: [A to K]				
for air quality and climate?	<u>Threshold measurements¹</u> : CO hourly day and night; O3, NO2 hourly when SZA<70; AOD hourly (SZA<50) ; at 8 km x 8 km	Two pieces tropospher sensitivity t	e in dayligl	ht with	ith (Baseline and		Separate the lower-most troposphere from the free troposphere for O3, CO.	
. How do physical, chemical, and	product horizontal spatial resolution at the center of the domain.	Altitude (+/			AOC		Detect aerosol plume height; improve retrieval accuracy.	
dynamical	A Measure the threshold or baseline species or	Product ho	orizontal sp	oatial reso	olution at t	he center of t	the domain, (nominally 100W, 35 N): A to	
processes determine	properties with the temporal and spatial resolution specified (see next column) to quantify		m (baseline		Gas	es	Capture spatial/temporal variability; obt	
tropospheric	the underlying emissions, understand emission	8 km x 8 kr			Aero		better yields of products.	
composition and	processes, and track transport and chemical evolution of air pollutants [1, 2, 3, 4, 5, 6]	8 km x 8 kr			- prop	erties r open	Inherently larger spatial scales, sufficien	
air quality over scales ranging	B Measure AOD, AAOD, and NH3 to quantify	16 km x 16	6 km (basel	line only)	ocea		to link to LEO observations	
from urban to	aerosol and nitrogen deposition to land and coastal regions [2, 4]	Spectral n		to H			Typical use	
continental,	Measure AOD, AAOD, and AOCH to relate	UV-Vis or U SWIR, MW		03 CO			Provide multispectral retrieval informati in daylight	
diurnally to seasonally?	surface PM concentration, UV-B level and	UV	/IR	SO2, H	сно		in adjigit	
seasonally?	visibility to aerosol column loading 🚺 🙎 3, 4, 5, 🖻	SWIR		CH4			Retrieve gas species from their atmospheric spectral signatures (typica	
3. How does air	Determine the instantaneous radiative forcings	TIR		NH3				
pollution drive climate forcing	associated with ozone and aerosols on the continental scale and relate them quantitatively to natural and anthropogenic emissions [3, 5, 5]	Vis		AOD, NO2, CHOCHO		но	Obtain spectral-dependence of AOD fo particle size and type information Obtain spectral-dependence of AAOD	
and how does	G Observe pulses of CH4 emission from biogenic			AAOD			aerosol type information	
climate change affect air quality	and anthropogenic releases; CO anthropogenic and wildfire emissions; AOD, AAOD, and AI from	UV-deep blue AI		AI AOCH			Provide absorbing aerosol information	
on a continental	fires; AOD, AAOD, and AI from dust storms; SO2	Vis-NIR					Retrieve aerosol height 3	
scale?	and AOD from volcanic eruptions 🚺 4, 🛐					d/Coastal al	eas, baseline and threshold: A to K	
How can	Quantify the inflows and outflows of O3, CO, SO2, and aerosols across continental boundaries		Time resolution	n Typic n value			Description	
observations from space improve air	to determine their impacts on surface air quality and on climate [2, 3, 5]		Hourly, SZA<70		18 2km	km: 10 ppbv tropopause	Observe to with two pieces of information in a troposphere with sensitivity to the locust 2 km for surfa	
quality forecasts and assessments	Characterize aerosol particle size and type from spectral dependence measurements of AOD and AAOD 1.2, 3, 4, 5, 6		Hou	6	Stra	tosphere: 5% km: 20ppbv	AQ; also transport, chi, ate forcing Track anthropogenic and biomass	
for societal benefit?	Acquire measurements to improve representation of processes in air quality models		da 🖉	2 x10	18 2km	-tropopause ppbv	sensitivity to the lowest 2 km in daylig	
. How does	and improve data assimilation in forecast and assessment models [4]	AOD	A<70	0.1 –	1 0.05		Observe total aerosol; aerosol; burce and transport; climate forcing	
intercontinental transport affect air	Synthesize the GEO-CAPE measurements with information from in-situ and ground-based	NO2	ourly, ZA<70	6 x10	¹⁵ 1×1	D ¹⁵	Distinguish background from enhance polluted scenes; atmospheric che nist	
quality?	remote sensing networks to construct an	Additic	atmosph	eric mea	surement	s over Land	/Coastal areas, baseline only: At 🕅	
Linuale entre de	enhanced observing system [1 , 2 , 3 , 4 , 5 , 8] Z Leverage GEO-CAPE observations into an	Species	Time		Typical value ²	Precision ²	Description	
 How do episodic events, such as wild fires, dust 	integrated observing system including geostationary satellites over Europe and Asia	нсно.	3/day, S		1.0x10 ¹⁶	1×10 ¹⁶	Observe biogenic VOC emissions expected to peak at midday; cheir str	
outbreaks, and	together with LEO satellites and suborbital platforms for assessing the hemispheric transport	SO2*	3/day, S		1×10 ¹⁶	1×10 ¹⁶	Identify major pollution and volcanic emissions; atmospheric chemist /	
volcanic eruptions,	(1 , 2 , 3 , 4 , 5 , 6)	CH4	day		4 ×10 ¹⁹	20 ppbv	Observe anthropogenic and natural emissions sources	
volcanic eruptions, affect atmospheric	K. Integrate observations from GEO-CAPE and		2/9			0-2 km: 2ppbv	Observe agricultural emissions	
volcanic eruptions, affect atmospheric composition and	other platforms into models to improve	NH3	2/a.					
volcanic eruptions, affect atmospheric	other platforms into models to improve representation of processes in the models and to link the observed composition, deposition, and	NH3 СНОСНС	2/08	1		4×10 ¹⁴	Detect VOC emissions erosol formation, atmospheric chemistry	
volcanic eruptions, affect atmospheric composition and	other platforms into models to improve representation of processes in the models and to		2/0	LA		4×10 ¹⁴	formation, atmosphere, chemistry Distinguish smoke and dust from non-	
volcanic eruptions, affect atmospheric composition and	other platforms into models to improve representation of processes in the models and to link the observed composition, deposition, and radiative forcing to the emissions from	сносно			0 - 0.05		formation, atmosphere chemistry Distinguish smoke and dust from non UV absorbing erosols; climate forcin	
volcanic eruptions, affect atmospheric composition and	other platforms into models to improve representation of processes in the models and to link the observed composition, deposition, and radiative forcing to the emissions from	сносно					formation, atmospheric chemistry Distinguish smoke and dust from non- UV absorbine erosols; climate forcin Detaction usols near/above clouds an even snow/ice; aerosol events	
volcanic eruptions, affect atmospheric composition and	other platforms into models to improve representation of processes in the models and to link the observed composition, deposition, and radiative forcing to the emissions from	сносно		SZA<70	0 - 0.05		formation, atmosphere chemistry Distinguish smothered dust from non- UV absorbing arosols; climate forcin Determine plume height; large scale Determine plume height; large scale	
volcanic eruptions, affect atmospheric composition and	other platforms into models to improve representation of processes in the models and to link the observed composition, deposition, and radiative forcing to the emissions from	сносно Аас	.iy, S Hourly, S	SZA<70 SZA<70	0 – 0.05 -1 – +- Variable (<i>,F H, I, J</i> ,	0.02 0.1 1 km	formation, atmosphere chemistry Distinguish smoke and dust from non- UV absorbing urosols; climate forciny Detacts ussols near/above clouds an acter snow/ice; aerosol events	
volcanic eruptions, affect atmospheric composition and	other platforms into models to improve representation of processes in the models and to link the observed composition, deposition, and radiative forcing to the emissions from	сносно Аас	.iy, S Hourly, S	SZA<70 SZA<70	0 – 0.05 -1 – 1 3 Variable	0.02 01 1 km K) baseline	formation, atmospheric chemistry Distinguish smoler and dust from non- UV absorbing a rosols; climate forcing Distortion and the state of the state internet state of the state of the state of the state of the state of the state transport, conversions from AOD to P	

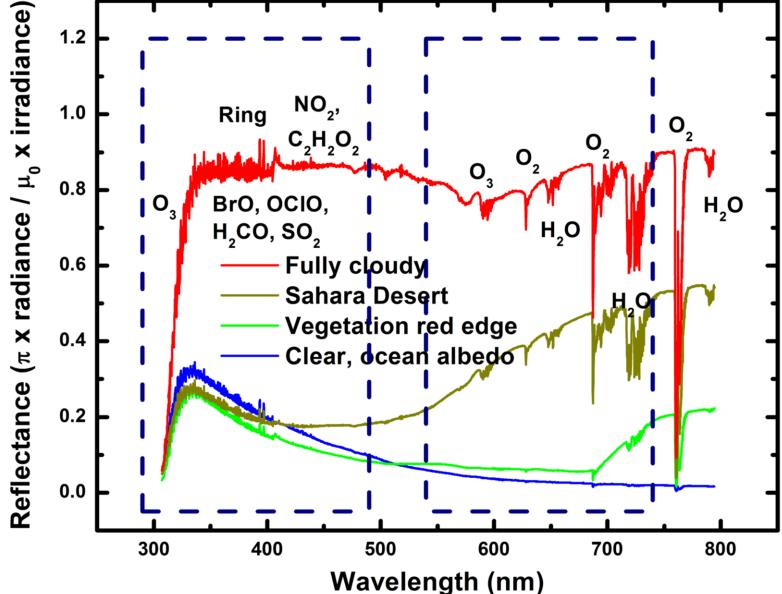
oth. Al=Aerosol index. See next page for footnotes.

AOD=Aerosol optical depth, AAOD=Aerosol a

1PO

> Infrared species

	Atmospheric measurements over Land/Coastal areas, baseline and threshold: [A to K]									
	SpeciesTime resolutionTypical value		ical e ²	Precision ²		Description				
	03 Hourly, SZA<70 9:		9 x10 ¹⁸ 2km- 15		m: 10 ppbv -tropopause: ppbv osphere: 5%	Observe O3 with two pieces of information in the troposphere with sensitivity to the lowest 2 km for surface AQ; also transport, climate forcing				
	co	Hourly, day and night	2 x10	x10 ¹⁸ 2km-		m: 20ppbv -tropopause: ppbv	Track anthropogenic and biomass burning plumes; observe CO with two pieces of information in the vertical with sensitivity to the lowest 2 km in daylight			
J	AOD	Hourly, SZA<70	0.1 –	1	0.05		Observe total aerosol; aerosol sources and transport; climate forcing			
	NO2	Hourly, SZA<70	6 x10) ¹⁵	1×10	15	Distinguish background from enhanced/ polluted scenes; atmospheric chemistry			
	Addition	al atmospheri	ic mea	isurer	nents	over Land/C	Coastal areas, baseline only: <mark>A to K</mark>			
	Species	Time resolution		Typic value	al 2	Precision ²	Description			
	нсно*	3/day, SZA	<50	1.0x1	0 ¹⁶	1×10 ¹⁶	Observe biogenic VOC emissions, expected to peak at midday; chemistry			
	SO2*	3/day, SZA	<50	1×10	16	1×10 ¹⁶	Identify major pollution and volcanic emissions; atmospheric chemistry			
	СН4	2/day		4 ×10	19	20 ppbv	Observe anthropogenic and natural emissions sources			
	NH3	2/day		2x10 ¹	16	0-2 km: 2ppbv	Observe agricultural emissions			
	сносно	D* 2/day		2x10 ¹	14	4×10 ¹⁴	Detect VOC emissions, aerosol formation, atmospheric chemistry			
	AAOD	Hourly, SZ	A<70	0 — 0.	.05	0.02	Distinguish smoke and dust from non- UV absorbing aerosols; climate forcing			
	AI	Hourly, SZ	A<70	-1 – +	⊦ 5	0.1	Detect aerosols near/above clouds and over snow/ice; aerosol events			
							Determine a la serie la state de serie de la ser			

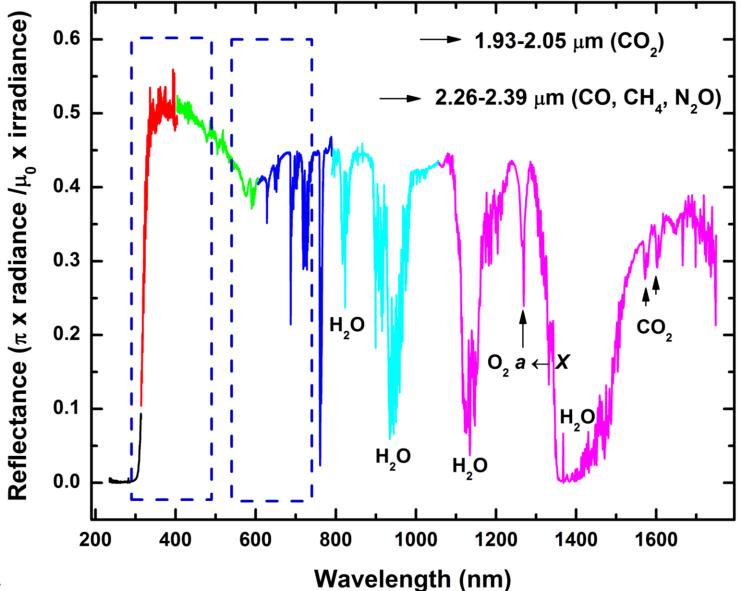

Ultraviolet visible species (GOME, TEMPO, etc.)

A

October 13, 2016

	resolucion	value		
існо*	3/day, SZA<50	1.0x10 ¹⁶	1×10 ¹⁶	Observe biogenic VOC emissions, expected to peak at midday; chemistry
iO2*	3/day, SZA<50	1×10 ¹⁶	1×10 ¹⁶	Identify major pollution and volcanic emissions; atmospheric chemistry
;H4	2/day	4 x10 ¹⁹	20 ppbv	Observe anthropogenic and natural emissions sources
НЗ	2/day	2x10 ¹⁶	0-2 km: 2ppbv	Observe agricultural emissions
носно*	2/day	2x10 ¹⁴	4×10 ¹⁴	Detect VOC emissions, aerosol formation, atmospheric chemistry
AOD	Hourly, SZA<70	0 – 0.05	0.02	Distinguish smoke and dust from non- UV absorbing aerosols; climate forcing
J	Hourly, SZA<70	-1 – +5	0.1	Detect aerosols near/above clouds and over snow/ice; aerosol events
осн	Hourly, SZA<70	Variable	1 km	Determine plume height; large scale transport, conversions from AOD to PM1

Typical TEMPO-range spectra (from ESA GOME-1)



PO

NASA

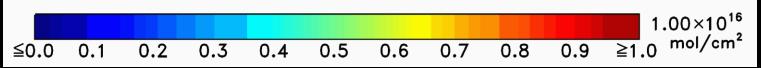
Smithsonian

Typical TEMPO-range spectra (from SCIAMACHY, 2002-2012)

PO

NASA

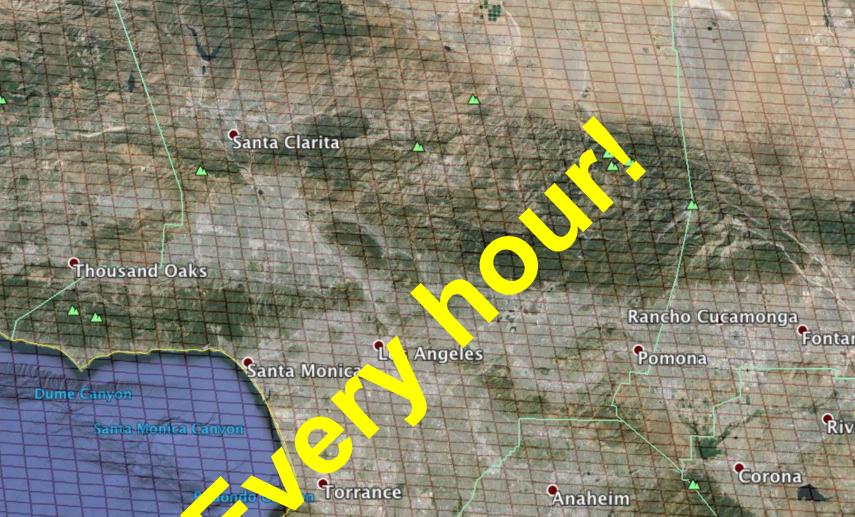
Smithsonian


_EO measurement capability

A full, minimally-redundant, set of polluting gases, plus aerosols and clouds is now measured to very high precision from satellites. Ultraviolet and visible spectroscopy of backscattered radiation provides O₃ (including profiles and tropospheric O_3), NO_2 (for NO_x), H_2CO and $C_2H_2O_2$ (for VOCs), SO_2 , H₂O, O₂-O₂, N₂ and O₂ Raman scattering, and halogen oxides (BrO, CIO, IO, OCIO). Satellite spectrometers we planned since 1985 began making these measurements in 1995.

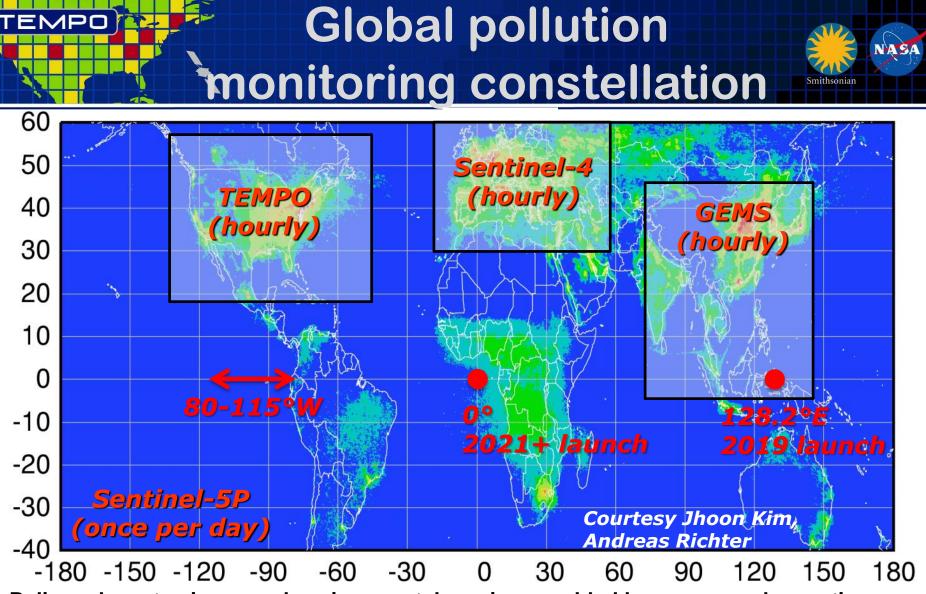
Los Angeles coverage

EMPO


Oxnard

Mugu Canyon

Santa Monica Basin


OH-

Long Beach

Image Landsat © 2015 Google Irvine Huntington Beach Google earth

Policy-relevant science and environmental services enabled by common observations

- Improved emissions, at common confidence levels, over industrialized Northern Hemisphere
- Improved air quality forecasts and assimilation systems
- Improved assessment, e.g., observations to support United Nations Convention on Long Range Transboundary Air Pollution

October 13, 2016

NO₂, SO₂, H₂CO, C₂H₂O₂ vertical columns

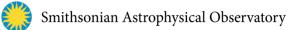
Direct fitting to TEMPO radiances

AMF-corrected reference spectra, Ring effect, etc.

DOAS option available to trade more speed for less accuracy, if necessary Research products could include H_2O , BrO, OCIO, IO

O₃ profiles, tropospheric O₃

eXceL optimal-estimation method developed @ SAO for GOME, OMI May be extended to SO_2 , especially volcanic SO_2


TOMS-type ozone retrieval included for heritage

Aerosol products from OMI heritage: AOD, AAOD, Aerosol Index Advanced/improved products likely developed @ GSFC, U. Nebraska Cloud Products from OMI heritage: CF, CTP

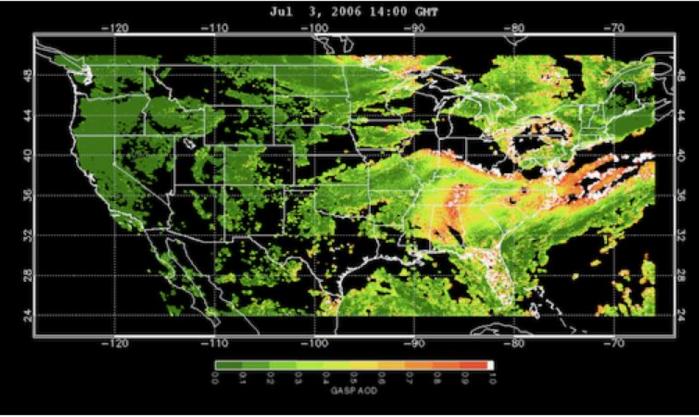
Advanced/improved products likely developed @ GSFC

UVB research product based on OMI heritage (FMI, GSFC)

Nighttime research products include city lights October 13, 2016

Default Launch Data Products

Product	Algorithm	Hourly Coverage @ ≤ 4.5 × 8 km²
O ₃	TOMS-Vn	15 - 50.25°N, 60 - 130°W
O ₃	XL optimal estimation	Selected urban areas and burning regions
NO ₂	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
SO ₂	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
H ₂ CO	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
$C_2H_2O_2$	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
Aerosol OD and SSA	AERUV	15 - 50.25°N, 60 - 130°W
Cloud pressure and fraction	CLDRR	15 - 50.25°N, 60 - 130°W
UBV and Eryth. dose	UVB	15 - 50.25°N, 60 - 130°W
AQ indices	L3-L4 based	15 - 50.25°N, 60 - 130°W


Secondary and Improved Data Products

Product	Algorithm	Hourly Coverage @ ≤ 4.5 × 8 km²
O ₃	XL optimal estimation	15 - 50.25°N, 60 - 130°W (or, extended regions)
BrO	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
H ₂ O	Direct fitting, AMF (λ)	15 - 50.25°N, 60 - 130°W
Aerosols	AERUV+	15 - 50.25°N, 60 - 130°W
Clouds	CLDRR+	15 - 50.25°N, 60 - 130°W
SO ₂	Height-resolved	15 - 50.25°N, 60 - 130°W

TEMPO

www.epa.gov/rsig

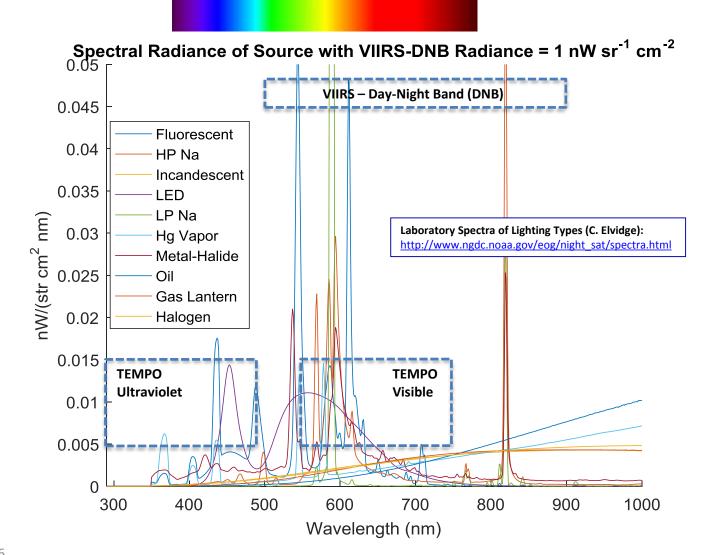
J. Szykman for more information

NASA

AQ indices

What is an AQ index?"

"The Canadian Air Quality Health Index is a multipollutant index based on the sum of PM2.5, NO_2 , and O_3 , weighted by their contribution to mortality in daily time-series study across Canadian cities." [Cooper et al., 2012]


Cooper et al., for example, propose a satellite-based multipollutant index using the WHO Air Quality Guidelines (AQG):

$$SATMPI = \frac{PM_{2.5}}{AQG_{PM2.5}} \left[1 + \frac{NO_2}{AQG_{NO_2}} \right]$$

- Can we define different indices as appropriate to locations, seasons, times?
- Might they be formulated using RSIG?
- Might assimilation be included?

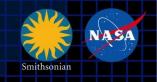
Cooper, M., R.V. Martin, A. van Donkelaar, L. Lamsal, M. Brauer, and J. Brook, A satellite-based multi-pollutant index of global air quality, *Env. Sci. and Tech.*, **46**, 8523-8524, 2012.

City lights spectroscopic signatures

NASA

Smithsonian

1P0


Volcanic **SO**₂ (column amount and plume altitude is a potential research product. Diurnal out-going **shortwave radiation and cloud forcing** is a potential research product.

Nighttime "city lights" products, which represent anthropogenic activities at the same spatial resolution as air quality products, may be produced twice per day (late evening and early morning) as a research product. Meeting TEMPO measurement requirements for NO₂ (visible) implies the sensitivity for city lights products over the CONUS within a 2-hour period at 2×4.5 km² to 1.1×10^{-8} W cm⁻² sr⁻¹ µm⁻¹.

Several additional first-measurement molecules are being studied.

 H_2O will be produced at launch from the 7v vibrational polyad at 445 nm. Water vapor retrieved from the visible spectrum has good sensitivity to the planetary boundary layer, since the absorption is optically thin, and is available over both the land and ocean. The hourly coverage of TEMPO will greatly improve the knowledge of water vapor's diurnal cycle and make rapid variations in time readily observed.

Traffic, biomass burning

Morning and evening higher-frequency scans The optimized data collection scan pattern during mornings and evenings provides multiple advantages for addressing TEMPO science questions. The increased frequency of scans coincides with peaks in vehicle miles traveled on each coast.

Biomass burning The unexplained variability in ozone production from fires is of particular interest. The suite of NO_2 , H_2CO , $C_2H_2O_2$, O_3 , and aerosol measurements from TEMPO is well suited to investigating how the chemical processing of primary fire emissions effects the secondary formation of VOCs and ozone. For particularly important fires it is possible to command special TEMPO observations at even shorter than hourly revisit time, probably as short as 10 minutes.

NO_x studies

Lightning NO_x Interpretation of satellite measurements of tropospheric NO₂ and O₃, and upper tropospheric HNO₃ lead to an overall estimate of 6 ± 2 Tg N y-1 from lightning [Martin et al., 2007]. TEMPO measurements, including tropospheric NO₂ and O₃, can be made for time periods and longitudinal bands selected to coincide with large thunderstorm activity, including outflow regions, with fairly short notice.

Soil NO_x Jaeglé et al. [2005] estimate 2.5 - 4.5 TgN y⁻¹ are emitted globally from nitrogen-fertilized soils, still highly uncertain. The US a posteriori estimate for 2000 is 0.86 ± 1.7 TgN y⁻¹. For Central America it is 1.5 ± 1.6 TgN y⁻¹. They note an underestimate of NO release by nitrogen-fertilized croplands as well as an underestimate of rain-induced emissions from semiarid soils.

TEMPO is able to follow the temporal evolution of emissions from croplands after fertilizer application and from rain-induced emissions from semi-arid soils. Higher than hourly time resolution over selected regions may be accomplished by special observations. Improved constraints on soil NO_x emissions may also improve estimated of lightning NO_x emissions [Martin *et al.* 2000].

October 13, 2016

DO

Halogens

BrO will be produced at launch, assuming stratospheric AMFs. Scientific studies will correct retrievals for tropospheric content. IO was first measured from by SAO space using SCIAMACHY spectra [Saiz-Lopez et al., 2007]. It will be produced as a scientific product, particularly for coastal studies, assuming AMFs appropriate to lower tropospheric loading.

The atmospheric chemistry of halogen oxides over the ocean, and in particular in coastal regions, can play important roles in ozone destruction, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei [Saiz-Lopez and von Glasow, 2012]. The budgets and distribution of reactive halogens along the coastal areas of North America are poorly known. Therefore, providing a measure of the budgets and diurnal evolution of coastal halogen oxides is necessary to understand their role in atmospheric photochemistry of coastal regions. Previous ground-based observations have shown enhanced levels (at a few pptv) of halogen oxides over coastal locations with respect to their background concentrations over the remote marine boundary layer [Simpson et al., 2015]. Previous global satellite instruments lacked the sensitivity and spatial resolution to detect the presence of active halogen chemistry over mid-latitude coastal areas. TEMPO observations together with atmospheric models will allow examination of the processes linking ocean halogen emissions and their potential impact on the oxidizing capacity of coastal environments of North America.

TEMPO also performs hourly measurements one of the world's largest salt lakes: the Great Salt Lake in Utah. Measurements over Salt Lake City show the highest concentrations of BrO over the globe. Hourly measurement at a high spatial resolution can improve understanding of BrO production in salt lakes.

PN **Spectral indicators**

Fluorescence and other spectral indicators Solar-induced fluorescence (SIF) from chlorophyll over both land and ocean will be measured. In terrestrial vegetation, chlorophyll fluorescence is emitted at red to far-red wavelengths (~650-800 nm) with two broad peaks near 685 and 740 nm, known as the red and far-red emission features. Oceanic SIF is emitted exclusively in the red feature. SIF measurements have been used for studies of tropical dynamics, primary productivity, the length of carbon uptake period, and drought responses, while ocean measurements have been used to detect red tides and to conduct studies on the physiology, phenology, and productivity of phytoplankton. TEMPO can retrieve both red and far-red SIF by utilizing the property that SIF fills in solar Fraunhofer and atmospheric absorption lines in backscattered spectra normalized by a reference (e.g., the solar spectrum) that does not contain SIF.

TEMPO will also be capable of measuring **spectral indices developed for estimating foliage pigment contents and concentrations**. Spectral approaches for estimating pigment contents apply generally to leaves and not the full canopy. A single spectrally invariant parameter, the Directional Area Scattering Factor (DASF), relates canopy-measured spectral indices to pigment concentrations at the leaf scale.

UVB TEMPO measurements of daily UV exposures build upon heritage from OMI and TROPOMI measurements. Hourly cloud measurements from TEMPO allow taking into account diurnal cloud variability, which has not been previously possible. The OMI UV algorithm is based on the TOMS UV algorithm. The specific product is the downward spectral irradiance at the ground (in W m⁻² nm⁻ ¹) and the erythemally weighted irradiance (in W m⁻²). October 13, 2016

Air quality and health without

TEMPO's hourly measurements allow better understanding of the complex chemistry and dynamics that drive air quality on short timescales. The density of TEMPO data is ideally suited for data assimilation into chemical models for both air quality forecasting and for better constraints on emissions that lead to air quality exceedances. Planning is underway to combine TEMPO with regional air quality models to improve EPA air quality indices and to directly supply the public with near real time pollution reports and forecasts through website and mobile applications. As a case study, an OSSE for the Intermountain West was performed to explore the potential of geostationary ozone measurements from TEMPO to improve monitoring of ozone exceedances and the role of background ozone in causing these exceedances (Zoogman et al. 2014).


Clouds The launch cloud algorithm is be based on the rotational Raman scattering (RRS) cloud algorithm that was developed for OMI by GSFC. Retrieved cloud pressures from OMCLDRR are not at the geometrical center of the cloud, but rather at the optical centroid pressure (OCP) of the cloud. **Additional** cloud products are possible using the O_2 - O_2 collision complex and/or the $O_2 B$ band.

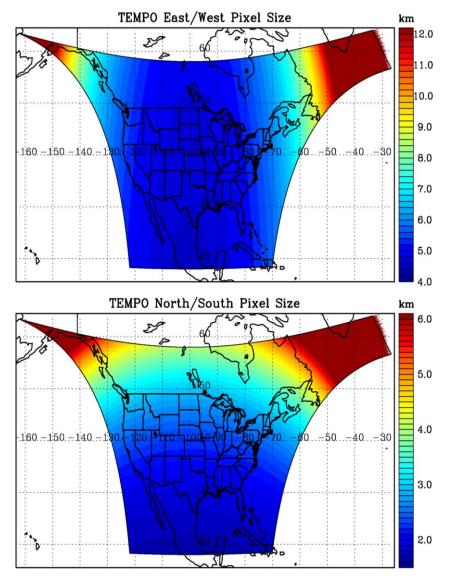
Aerosols TEMPO's launch algorithm for retrieving aerosols will be based upon the OMI aerosol algorithm that uses the sensitivity of near-UV observations to particle absorption to retrieve Absorbing Aerosol Index (AAI), aerosol optical depth (AOD) and single scattering albedo (SSA). TEMPO may be used together with the advanced baseline imager (ABI) instruments on the NOAA GOES-R and GOES-S satellites for aerosol retrievals, reducing AOD and fine mode AOD uncertainties from 30% to 10% and from 40% to 20%.

TEMPO Science Team, U.S. 🗩

EMPO

12-

Team Member	Institution	Role	Responsibility
K. Chance	SAO	PI	Overall science development; Level 1b, H ₂ CO, C ₂ H ₂ O ₂
X. Liu	SAO	Deputy PI	Science development, data processing; O_3 profile, tropospheric O_3
J. Al-Saadi	LaRC	Deputy PS	Project science development
J. Carr	Carr Astronautics	Co-I	INR Modeling and algorithm
M. Chin	GSFC	Co-I	Aerosol science
R. Cohen	U.C. Berkeley	Co-I	NO ₂ validation, atmospheric chemistry modeling, process studies
D. Edwards	NCAR	Co-I	VOC science, synergy with carbon monoxide measurements
J. Fishman	St. Louis U.	Co-I	AQ impact on agriculture and the biosphere
D. Flittner	LaRC	Project Scientist	Overall project development; STM; instrument cal./char.
J. Herman	UMBC	Co-I	Validation (PANDORA measurements)
D. Jacob	Harvard	Co-I	Science requirements, atmospheric modeling, process studies
S. Janz	GSFC	Co-I	Instrument calibration and characterization
J. Joiner	GSFC	Co-I	Cloud, total O ₃ , TOA shortwave flux research product
N. Krotkov	GSFC	Co-I	NO ₂ , SO ₂ , UVB
M. Newchurch	U. Alabama Huntsville	Co-I	Validation (O_3 sondes, O_3 lidar)
R.B. Pierce	NOAA/NESDIS	Co-I	AQ modeling, data assimilation
R. Spurr	RT Solutions, Inc.	Co-I	Radiative transfer modeling for algorithm development
R. Suleiman	SAO	Co-I, Data Mgr.	Managing science data processing, BrO, H ₂ O, and L3 products
J. Szykman	EPA	Co-I	AIRNow AQI development, validation (PANDORA measurements)
O. Torres	GSFC	Co-I	UV aerosol product, Al
J. Wang	U. Nebraska	Co-I	Synergy w/GOES-R ABI, aerosol research products
J. Leitch October 13, 1	2010 Ball Aerospace	Collaborator	Aircraft validation, instrument calibration and characterization 33
D. Neil	LaRC	Collaborator	GEO-CAPE mission design team member


Team Member	Institution	Role	Responsibility
Randall Martin	Dalhousie U.	Collaborator	Atmospheric modeling, air mass factors, AQI development
Chris McLinden	Environment Canada	Collaborator	Canadian air quality coordination
Michel Grutter de la Mora	UNAM, Mexico	Collaborator	Mexican air quality coordination
Gabriel Vazquez	UNAM, Mexico	Collaborator	Mexican air quality, algorithm physics
Amparo Martinez	INECC, Mexico	Collaborator	Mexican environmental pollution and health
J. Victor Hugo Paramo Figeuroa	INECC, Mexico	Collaborator	Mexican environmental pollution and health
Brian Kerridge	Rutherford Appleton Laboratory, UK	Collaborator	Ozone profiling studies, algorithm development
Paul Palmer	Edinburgh U., UK	Collaborator	Atmospheric modeling, process studies
Alfonso Saiz-Lopez	CSIC, Spain	Collaborator	Atmospheric modeling, process studies
Juan Carlos Antuña Marrero	GOAC, Cuba	Collaborator	Cuban Science team lead, Cuban air quality
Osvaldo Cuesta	GOAC, Cuba	Collaborator	TEMPO validation, Cuban air quality
René Estevan Arredondo	GOAC, Cuba	Collaborator	TEMPO validation, Cuban air quality
J. Kim	Yonsei U.		Korean GEMS, CEOS constellation of GEO pollution monitoring
C.T. McElroy	York U. Canada	Collaborators,	CSA PHEOS, CEOS constellation of GEO pollution monitoring
B. Veihelmann	ESA	Science Advisory Panel	ESA Sentinel-4, CEOS constellation of GEO pollution monitoring
J.P. Veefkind	KNMI	'	ESA Sentinel-5P (TROPOMI)

1PO

NASA

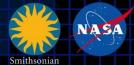
Smithsonian

TEMPO footprint (GEO at 100° W)

Location	N/S (km)	E/W (km)	GSA (km²)
36.5°N, 100°W	2.11	4.65	9.8
Washington, DC	2.37	5.36	11.9
Seattle	2.99	5.46	14.9
Los Angeles	2.09	5.04	10.2
Boston	2.71	5.90	14.1
Miami	1.83	5.04	9.0
Mexico City	1.65	4.54	7.5
Canadian oil sands	3.94	5.05	19.2

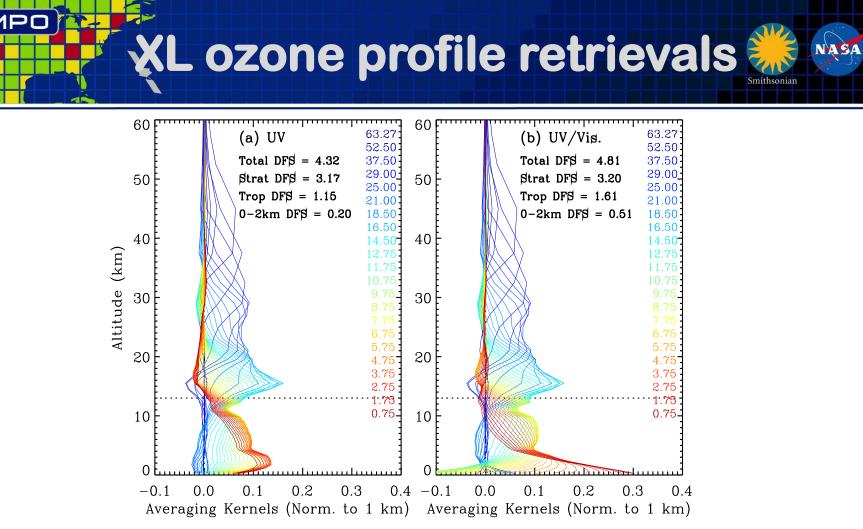
Assumes 2000 N/S pixels

For GEO at 80°W, pixel size at 36.5°N, 100°W is 2.2 km × 5.2 km.


NASA

Smithsonian

Low Earth orbit:


100

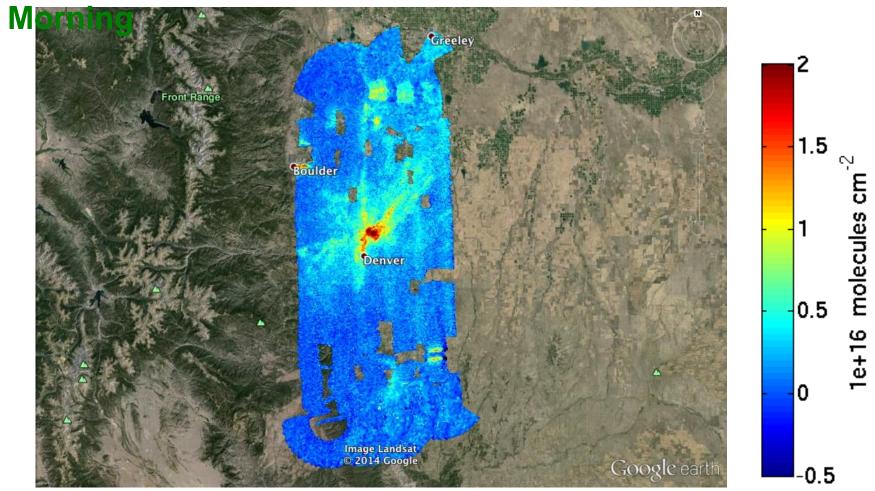
Sun-synchronous nadir heritage

Instrument	Detectors	Spectral Coverage [nm]	Spectral Res. [nm]	Ground Pixel Size [km ²]	Global Coverage
GOME-1 (1995-2011)	Linear Arrays	240-790	0.2-0.4	40 × 320 (40 × 80 zoom)	3 days
SCIAMACHY (2002-2012)	Linear Arrays	240-2380	0.2-1.5 30 × 30/60/90 30 × 120/240		6 days
OMI (2004)	2-D CCD	270-500	0.42-0.63	13×24 - 42×162	daily
GOME-2a,b (2006, 2012)	Linear Arrays	240-790	0.24-0.53	.24-0.53 40 × 80 (40 × 10 zoom)	
OMPS-1 (2011)	2-D CCDs	250-380	0.42-1.0 50 × 50		daily

Previous experience (since 1985 at SAO and MPI) Scientific and operational measurements of pollutants O₃, NO₂, SO₂, H₂CO, C₂H₂O₂ Octobe (& CO, CH₄, BrO, OCIO, CIO, IO, H₂O, O₂-O₂, Raman, aerosol,)

Retrieval averaging kernels based on iterative nonlinear retrievals from synthetic TEMPO radiances with the signal to noise ratio (SNR) estimated using the TEMPO SNR model at instrument critical design review in June 2015 for (a) UV (290-345 nm) retrievals and (b) UV/Visible (290-345 nm, 540-650 nm) retrievals for clear-sky condition and vegetation surface with solar zenith angle 25°, viewing zenith angle 45° and relative azimuthal angle 86°. DFS is degrees of freedom for signal, the trace of the averaging kernel matrix, which is an indicator of the number of pieces of independent information in the solution.

- 2. How do physical, chemical, and dynamical **processes** determine tropospheric composition and air quality over scales ranging from urban to continental, diurnally to seasonally?
- 3. How does air pollution drive **climate** forcing and how does climate change affect air quality on a continental scale?
- 4. How can observations from space improve **air quality forecasts and assessments** for societal benefit?
- 5. How does intercontinental transport affect air quality?
- 6. How do episodic events, such as wild fires, dust outbreaks, and volcanic eruptions, affect atmospheric composition and air quality?


Table D.2-3 TEMPO STM¹ clearly links science questions with instrument and investigaton requirements.

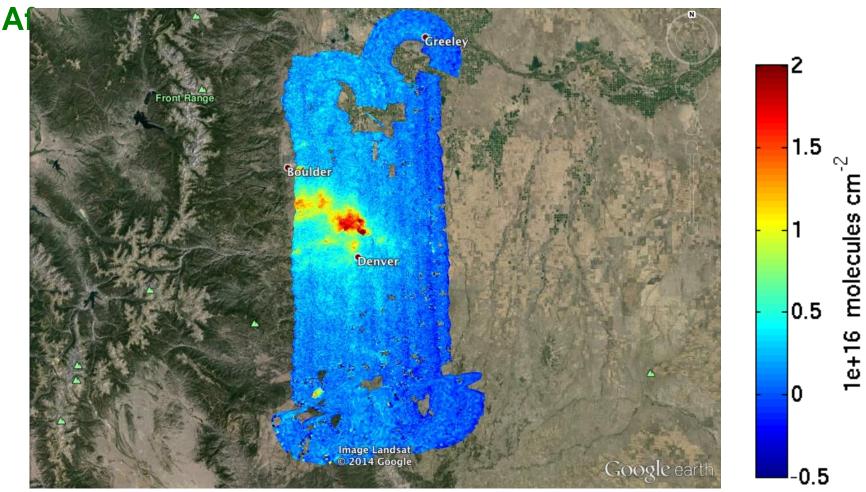
Science Questions	Science Objective	Science Measurement	Instrument Fu	nction Requirer	nents	Investigation Requirements			
		Observables	Physical Par	rameters	Parameter	Req.	Predicted		
Q1. What are the	-High temporal resolution		Relevant absor	ption bands	Spectral Range	290-690 nm	290-690 nm		
temporal and spatial	measurements to capture changes	Spatially imaged & spectrally	for trace gases & windows		Spectral Resolution	0.6 nm	0.6 nm	1-year mission	
variations of emissions	in pollutant gas distributions.	resolved, solar backscattered earth radiance, spanning spectral windows	for aero	sols	Spectral Sampling	0.2 nm	0.2 nm	lifetime (minimum)	
of gases and aerosols important for AQ and climate?	- High spatial resolution measurements that sense urban	suitable for retrievals of O_3 , NO_2 , H_2CO , SO_2 and $C_2H_2O_2$ at spatial scales comparable to regional			densities (10 ¹⁵ cm ⁻²), unles		<u> </u>	On-orbit Calibration	
	scale pollutant gases across GNA	scales comparable to regional atmospheric chemistry models.	Species	Precision	Band	Signal to N	oise (hourly)		
Q2. How do physical,	and surrounding areas.	auriospheric chemisuly models.	O₃:0-2 km O₃#: FT	10 ppbv 10 ppbv	O3:Vis (546-648 nm)	958	1254	FOR	
chemical, and	- Measurement of major elements		03": F1	5%	O3: UV (303-345 nm)	1122	1635	encompasses	
dynamical processes determine tropospheric	in tropospheric O ₃ chemistry cycle,	Multispectral data in suitable O ₃	O ₃ #: Total	3%				CONUS and	
composition and AQ	including multispectral	absorption bands to provide vertical	NO ₂ #	1.00	423-451 nm	1233	1910	adjacent areas	
over scales ranging	measurements to improve sensing	distribution information.	H ₂ CO# (3/day)	10.0	327-354 nm	487	2094	GEO Longitude:	
from urban to	of lower-tropospheric O ₃ , with		SO ₂ # (3/day)	10.0	305-345 nm	1297	1820	Preferred: 100W	
continental, diurnally to	precision to clearly distinguish pollutants from background levels	Spectral radiance measurements with	C ₂ H ₂ O ₂ # (2/day)	0.40	433-457 nm	1350	2331	Acceptable:	
seasonally?	- Observe aerosol optical	suitable quality (SNR) to provide multiple measurements over daylight		Baseline Aero	sol/Cloud properties hourly	@ 8×4.5 km ²		75W – 137W	
Q3. How do episodic	properties with high temporal and	hours for solar zenith angle < 70°.	Property	Precision	Band	Signal	o Noise	GEO Bus Pointing:	
events affect atmospheric	spatial resolution for quantifying		AOD#	0.05				Control <0.1°	
composition and AQ?	and tracking evolution of aerosol	Spatially imaged, wavelength	AAOD#	0.03	354, 388 nm	1000	1596	Knowledge <0.04°	
· · ·	loading.	dependence of atmospheric	Al#	0.2					
Q4. How does AQ drive	- Determine the instantaneous	reflectance spectrum for solar zenith	CF#	0.05	346-354 nm	600	1608	Provide near-real- time products to	
climate forcing and	radiative forcings associated with	angles <70°.	CTP#	100 mb				user communities	
climate change affect AQ on a continental	O ₃ and aerosols on the continental		Solar irradiance	e spectrallv		Albedo Calibration		within 2 hrs to	
scale?	scale.		resolved over spectral range		λ-dependent	< 1%	0.5%	enable assimilation	
					λ-independent	< 3%	2.0%	into chemical	
Q5. How can observations from	- Integrate observations from TEMPO and other platforms into				Spectral Accuracy	<0.02 nm	<0.02 nm	models (NOAA & EPA) and use by	
space improve AQ	models to improve representation	No additional observable	No additional	physical	Polarization Factor	<5%UV,	≤4%UV,	smart-phone	
forecasts and	of processes in the models and	requirements	requirem			≤20% Vis	≤20% Vis	applications	
assessments for	construct an enhanced observing				Geolocation Accuracy	4.0 km	2.8 km	4	
societal benefit?	system.				FOR	CONUS	GNA	Archive and	
					Imaging Time	1 hr	1 hr	distribute TEMPO	
Q6. How does intercontinental	 Quantify the flow of pollutants across continental boundaries; 	No additional observable	No additional	physical	IFOV: N/S×E/W * GSD E/W *	2×4.5 km ² 4.0 km	2×4.5 km ² 4.0 km	science data	
transport affect AQ?	Join a global observing system.	requirements	requirem	ients	MTF: N/S×E/W	0.3×0.3	0.50×0.46	products	

¹FT=Fore Troposphere (2km-tropopause), SOC=Stratospheric Ozone Column, AOD=Aerosol optical depth, AAOD=Aerosol absorption optical depth, AI=Aerosol index, CF=Cloud Fraction & CTP=Cloud Top Pressure, Albedo=Radiance/Irradiance, FOR=Field Of Regard, IFOV=Instantaneous Field Of View, GSD=Ground Sample Distance. *Projected to 36.5°N,100°W from GEO 100°W. # Threshold Products at 8×9km² and 80-minute intervals instead of hourly.

TEMPO TEMPO measurements will capture the diurnal cycle of pollutant emissions

GeoTASO NO₂ Slant Column, 02 August 2014

Co-added to approx. October 13, 2016 500m x 450m


Morning vs. Afternoon

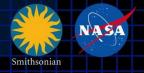
Preliminary data, C. Nowlan, SAO

NASA

TEMPO TEMPO measurements will capture the diurnal cycle of pollutant emissions

GeoTASO NO₂ Slant Column, 02 August 2014

Co-added to approx. October 13, 2016 500m x 450m


Morning vs. Afternoon

Preliminary data, C. Nowlan, SAO

NASA

TEMPO template

