Geostationary CO2 concepts: G3E – Geostationary Emission Explorer for Europe

A. Butz¹, J. Orphal², H. Bovensmann³, T. von Clarmann², F. Friedl-Vallon², F. Hase², G. Hechenblaikner⁴, T. Knigge⁴, R. Münzenmayer⁴, O. Sqalli Houssini⁴, F. Schmülling⁵

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR) e. V., Oberpfaffenhofen, Germany ²Karlsruhe Institute of Technology (KIT), Karlsruhe Germany ³Institute of Environmental Physics, University of Bremen, Germany ⁴Airbus DS GmbH, Friedrichshafen, Germany ⁵Deutsches Zentrum für Luft- und Raumfahrt (DLR) e. V., Bonn, Germany

Benefit of a geostationary observer

Contiguous spatial and temporal imaging

2014-07-01 00 UT

XCO₂ fields from MACC @ ECMWF, 0.2°x0.2°, 3h

Courtesy by V.-H. Peuch, M. Razinger, A. Agusti-Panareda

Benefit of a geostationary observer

Contiguous spatial and temporal imaging

384 386 388 390 392 39 XCO₂ / ppm

- Spatiotemporal context: disentangle transport, boundary conditions and sources/sinks
- **Local horizontal contrast:** emissions of localized sources
- Local temporal contrast: diurnal cycle, source specification
- Sampling density: less sampling bias (Don't miss events).

Benefit of a geostationary observer

Contiguous spatial and temporal imaging

Performance of a geostationary mission, geoCARB, to measure CO ₂ , CH ₄ and CO column-averaged concentrations	[Polonsky et al., AMT, 2013]
I. N. Polonsky ¹ , D. M. O'Brien ² , J. B. Kumer ³ , C. W. O'Dell ⁴ , and the geoCARB Team ⁵	
Constraining regional greenhouse gas emissions using geostationary concentration measurements: a theoretical study	[Rayner et al., AMT, 2014]
P. J. Rayner ¹ , S. R. Utembe ¹ , and S. Crowell ²	
Geostationary Emission Explorer for Europe (G3E): mission concept and initial performance assessment	[Butz et al., AMT, 2015]
A. Butz ¹ , J. Orphal ¹ , R. Checa-Garcia ¹ , F. Friedl-Vallon ¹ , T. von Clarmann ¹ , H. Bovensmann ² , O. Hasekamp ³ , J. Landgraf ³ , T. Knigge ⁴ , D. Weise ⁴ , O. Sqalli-Houssini ⁴ , and D. Kemper ⁴	
Potential of a geostationary geoCARB mission to estimate surface emissions of CO ₂ , CH ₄ and CO in a polluted urban environment: case study Shanghai	[O'Brien et al., AMT, 2016]
Denis M. O'Brien ¹ , Igor N. Polonsky ² , Steven R. Utembe ³ , and Peter J. Rayner ³	

Basic G3E specs:

- Geostationary orbit
- 2h per scan over Europe
- 2 x 3 km² ground pixels (at ~50° N/10°E, 1.7 x 1.7 km² at sub-satellite)
- XCO₂, XCH₄: anthropogenic (precision <0.5%) + biogenic (accuracy <0.x%)
- XCO: source/transport attribution (precision/accuracy < 10%)
- Support: aerosols, fluorescence

Alternative instrument concept investigated: imaging FTS

- Geostationary orbit
- 2h per scan over Europe, 900s dwell time for each zone x 8 zones
- 375 (NS) x 313 (EW) effective detector pixels
- 2 x 3 km² ground pixels (at ~50° N/10°E, 1.7 x 1.7 km² at sub-satellite)
- XCO₂, XCH₄: anthropogenic (precision <0.5%) + biogenic (accuracy <0.x%)
- XCO: source/transport attribution (precision/accuracy < 10%)
- Support: aerosols, fluorescence

[Butz et al., AMT, 2015]

Alternative instrument concept investigated: imaging FTS

•

٠

•

[Butz et al., AMT, 2015]

Alternative instrument concept investigated: imaging FTS

- Geostationary orbit
- 2h per scan over Euro
- 375 (NS) x 313 (EW)
- 2 x 3 km² ground pixe
- XCO₂, XCH₄: anthropo
- XCO: source/transpor

AIRBUS DEFENCE & SPACE

• Support: aerosols, flu

DLR

G3E: simulated noise performance

[Butz et al., AMT, 2015]

Trial ensemble: MODIS albedo (500 m x 500 m) sampled at 0.1° x 0.1° for a European albedo ensemble

G3E: simulated noise performance

G3E: simulated performance under aerosol load

[Butz et al., AMT, 2015]

Analogue to our retrieval simulations for OCO-2, GOSAT, S5P, S5 [e.g. Butz et al., RSE, 2012]

- Goal: contiguous imaging of GHG (+support: XCO, aerosols, fluorescence) to disentangle and quantify anthropogenic and biogenic sources and sinks, disentangle transport
- Mission concept: 4-channel grating spectrometer in GEO (extensive LEO/GEO heritage: S5, S4, CarbonSat, ...; data reduction)
- It is feasible with accuracies comparable to LEO.
- Synergies: MTG-FCI/IRS/S4 clouds, aerosols, SWIR-TIR CO, process markers (NO₂, SO₂, ...)

