Air quality / GHG co-benefits: opportunities for a constellation of earth observations and stakeholders

Daven K. Henze University of Colorado, Boulder

Zhen Qu (CU Boulder), Jana Milford (CUB), Kristen Brown (EPA), Susan Anenberg (GWU), Pattanun Achakulwisut (GWU), Michael Brauer (UBC,IHME), Daniel Moran (NUST), Joshua S. Apte (UT Austin) Funding: NASA ACMAP, HAQAST

Types of AQ/GHG co-benefits

Co-benefits of AQ measurements for constraining ff CO_2 emissions: e.g., talks from Arellano, Miyazaki, plume analysis of Reuter et al. (2019).

Challenges being / to be addressed:

- mixes of small point sources, area sources
- NO_x/CO_2 ratios are changing or not well known
- NO_x controls turned off when the price is right
- Urban biosphere contributions to city plumes can be significant e.g. 20% in LA based on ¹⁴C, (Lehman, Miller)

```
Benefits of GHG measurements to AQ emissions? e.g., NH_3 / CH_4....
```


What are some other "co-benefits" besides understanding emissions?

- engaging stakeholders (e.g., C40 cities, GUAPO,CCAC) who are interested in the co-benefits of AQ or GHG emission control strategies
- evaluating the effectiveness of such policies being adopted at the city to national scale
- designing new strategies that maximize co-benefits

Climate and health co-benefits of short-lived climate pollutants (SLCPs)

Air quality / GHG co-benefits in the US

Brown et al. (2017):

- EPA MARKAL energy system model, 13 regions
- Baseline (BAU) scenario including current policies and energy demand projections
- Implement emission fees according to external damage:
 - PM_{2.5} and O₃ mortality impacts (Muller et al., 2011; NRC 2010; Fann et al., 2009, 2012)
 - CO₂ (SCC 2013)
- Estimate NO_x and CO₂ emissions in 2045:

Air quality / GHG connections in cities world wide

Anenberg et al. (submitted): compare $PM_{2.5}$ health impacts, CO_2 emissions, carbon footprint, and GDP in cities world-wide using globally consistent datasets and methods

PM_{2.5} from Shaddick et al. (2018): hierarchical Bayesian synthesis of satellite-derived products, surface obs, geostatistical info

Of the 250 largest cities, only 8% < WHO guideline of 10 μg/m³ (all in USA, Canada, Australia and Brazil)

Air quality / GHG connections in cities world wide

Anenberg et al. (submitted): compare $PM_{2.5}$ health impacts, CO_2 emissions, carbon footprint, and GDP in cities world-wide using globally consistent datasets and methods

PM_{2.5} from Shaddick et al. (2018): hierarchical Bayesian synthesis of satellite-derived products, surface obs, geostatistical info

Health impacts calculated following Global Burden of Disease (GBD) methods (Cohen et al, 2017)

- Regional mortality rates, IER concentration-response relationships
- 4.1 (2.3 6.1) million premature deaths globally
- stroke (20%), IHD (39%), COPD (19%), lung cancer (7%), and lower respiratory infections (16%)
- cities defined as broader metropolitan regions (GHS-SMOD)

City ff CO₂ emissions from ODIAC for 2016

PM2.5 deaths
31
10,000
20,000
30,531

Region

- HI North America
- Caribbean
- Central Latin America
- Andean Latin America
- Tropical Latin Amer.
- S. Latin America
- Western Europe
- Central Europe
- Eastern Europe
- N. Africa and M. East
- W. Sub-Saharan Africa
- Central Sub-Sah. Afr.
- E. Sub-Saharan Africa
- S. Sub-Saharan Africa
- Central Asia
- South Asia
- Southeast Asia
- 📕 East Asia
- HI Asia Pacific
- Australasia

Top 10 $PM_{2.5}$ death rate in Asia (high $PM_{2.5}$ concentrations) and Eastern Europe (high baseline mortalities)

Region

- HI North America
- Caribbean
- Central Latin America
- Andean Latin America
- Tropical Latin Amer.
- S. Latin America
- Western Europe
- Central Europe
- Eastern Europe
- N. Africa and M. East
- W. Sub-Saharan Africa
- Central Sub-Sah. Afr.
- E. Sub-Saharan Africa
- S. Sub-Saharan Africa
- Central Asia
- South Asia
- Southeast Asia
- 📕 East Asia
- HI Asia Pacific
- Australasia

- What is the connection between $PM_{2.5}$ and CO_2 ?
- no correlation of PM_{2.5} with eCO₂ rate
- Slight correlation of PM_{2.5} death rate with eCO₂ rate

Consider trends compared to GDP per capita

- Richer countries are reducing air pollution
- Little relationship between GDP and eCO₂ per capita
- Richer countries still have largest carbon footprint (CF)
- "Reducing" PM_{2.5} without reducing CF can mean shifting rather than reducing net AQ burden
- Within regions the trends are not as clear

PM2.5 deaths 31 • 10,000 0 20,000 0 30,531 Region HI North America Caribbean Central Latin America Andean Latin America Tropical Latin Amer. S. Latin America Western Europe Central Europe Eastern Europe N. Africa and M. Fast W. Sub-Saharan Africa Central Sub-Sah. Afr. E. Sub-Saharan Africa S. Sub-Saharan Africa Central Asia South Asia Southeast Asia East Asia HI Asia Pacific Australasia

High-income

Southeast Asia, East Asia, and Oceania

Routinely Taking Stock of Air Pollution: Global Burden of Disease (GBD) and the NCD countdown

Non communicable disease (NCD) countdown:

 Sustainable Development Goal 3.4, is 33% reduction, in the probability of dying between 30 years and 70 years of age from cancers, cardiovascular diseases, chronic respiratory diseases, and diabetes by 2030 relative to 2010 (Bennett et al., 2018).

GBD assessment now being conducted annually:

Summary

- Air quality touted as an incentive for reducing CO₂ emissions (e.g., Vandyck et al., 2018: AQ cobenefits may counterbalance costs to meet Paris Agreement).
- AQ control policies that employ end-of-pipe technologies haven't helped reduce eCO₂ rate
- Low-carbon development presents an opportunity for co-benefits that has yet to be widely realized
- These estimates have many sources of uncertainty that benefit from an observing constellation:
 - city-to-national scale CO₂ emissions
 - city-to-national scale surface PM_{2.5} estimates (and associated sources)
- The paucity of data in a large number of cities / countries means that nearly anything we can provide now will at least be helpful

Thanks!

GBD

Comparison of GBD ambient AQ health impacts across the years (Ostro et al., 2018)

Large differences associated with updates to IERs

- Air quality touted as an incentive for reducing CO2 emissions
- AQ control policies that employ end-of-pipe technologies don't help reduce eCO2
- Low-carbon development presents an opportunity for co-benefits that has yet to be widely realized
- This disconnect presents a challenge to multi-species systems for improving CO2 flux estimations through e.g. trace-gas assimilation
 - Trends in AQ constituents alone may not be associated with changes to ff CO2 (especially if consider these emissions just being exported to another part of the world)
 - A constellation is required to understand these tradeoffs

- Connections and opportunities
 - The AQ equivalent of the stocktank assessment is the annual GBD assessment of air quality health burden

PM2.5 deaths

31

• 10,000

0 20,000

0 30,531

Region

HI North America

Caribbean

Central Latin America

Andean Latin America

Tropical Latin Amer.

S. Latin America

Western Europe

Central Europe

Eastern Europe

N. Africa and M. East

W. Sub-Saharan Africa

Central Sub-Sah. Afr.

E. Sub-Saharan Africa

S. Sub-Saharan Africa

Central Asia

South Asia

Southeast Asia

📕 East Asia

HI Asia Pacific

Australasia